
HAL Id: hal-01109193
https://hal.science/hal-01109193v1

Submitted on 25 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Managing environment models in multi-robot teams
Pierrick Koch, Simon Lacroix

To cite this version:
Pierrick Koch, Simon Lacroix. Managing environment models in multi-robot teams. eu-
Rathlon/ARCAS Workshop and Summer School on Field Robotics, Jun 2014, Sevilla, Spain. �hal-
01109193�

https://hal.science/hal-01109193v1
https://hal.archives-ouvertes.fr


Managing environment models in multi-robot teams

Pierrick Koch and Simon Lacroix

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

Univ de Toulouse, INSA, F-31400 Toulouse, France

pierrick.koch@laas.fr simon.lacroix@laas.fr

Abstract— Multi-robot cooperation in a dynamic environ-
ment implies that each involved robot is able to create, update
and exchange environment models – which are essential to the
autonomy of mobile robots. The ability to exchange data, in
other words to communicate, rely on the fact that robots share
a common language and common frames in space and time.

In this paper we present an open-source architecture 1

dedicated to build a collection of environment models of a
dynamic environment with multiple robots. This work is lead
with air-ground cooperation scenarios in mind, such as the
ones considered within the Action project 2. Managing models
during the mission means defining methods and protocols
to transmit and merge models built from different sources
and on different robots, while respecting time and bandwidth
constraints and being robust to unavoidable inconsistencies
between the models. Our first work builds upon GDAL, a well
known standard in geographic information systems (GIS). The
architecture is currently able to build models with different
robots in simulation. Current work aims at detecting and
solving inconsistencies between the various models, and at
porting the architecture on-board real robots.

I. INTRODUCTION

The basic scheme to define autonomous operations of

a robot is to predict the consequences of their actions,

so as to select the ones that lead to the achievement of

the given task (“decision”). Predicting actions consequences

requires the application of the action models onto models of

the environment, so the availability of environment models

is therefore a key component of robots autonomy. In a

partially unknown and dynamic world, such models must

be derived from sensor data acquired by the robots, that

are aggregated into the models to be made available to the

decision processes.

A. A variety of environment models

In general numerous actions can be performed by robots,

such as grasping objects, moving form one position to the

other, gathering knowledge on a given area... We consider

here the case of robots operating in large scale outdoor en-

vironments, to achieve exploration, patrolling or monitoring

tasks. In such cases, the main actions come down to motions,

observations, and communications – e.g. with the remote

operators control station or between robots.

The variety of actions to plan and execute calls for a

variety of environments models: it is indeed illusory to define

a model structure that encodes all the information required

1https://github.com/pierriko/atlaas#atlaas
2http://action.onera.fr

to assess the outcome of all the considered actions. Instead,

we favor the development of layered representations, each

representation being dedicated to plan a given action (figure

1):

• Models that represent the geometry of the terrain are

required to plan motions. A digital elevation model

(DEM) is required for local mobility, achieved by a

short term path planner that must be fast and real-

time; a more abstract description of the world is needed

for higher level of decision, as the mission planner,

demanding lower resolution and less time constraints

(traversability model);

• 3D models are required to evaluate the communication

and visibility of an area from a given position

• Utility models encode the interest of observing areas,

e.g. the probability that it contains an event to monitor

(orthoimage);

• Dedicated models are required for localization, exhibit-

ing characteristic elements in the environment (land-

marks)

• ...

Fig. 1. Various semantic layers of environment representations. Each layer
is dedicated to a given type of information, dedicated to a given decisional
of functional process.

Note that one can distinguish three main types of data

structure to encode information on the environment in the

models:

• raster structures represent continuous information (sur-

faces, volumes) on a discretized representation, either

2D or 3D [1];

• vector structures represent a set of discrete information

(landmarks, particular elements), that are localized with



the associated uncertainties;

• topological structures represent spatial relations be-

tween areas or elements, representing accessibility (nav-

igation graph), inter visibility...

B. Motivations

The basic procedure to build any environment model on

the basis of the data provided by the environment sen-

sors consists in acquiring the data and then to merge it

in the data structure that defines the environment model.

This calls for an essential requirement: the robot must be

well localized, so that the environment model is spatially

consistent. A lot of work has been dedicated in robotics

to the localization problem, yielding in particular feature-

based Simultaneous Localization And Mapping approaches

(SLAM), in which landmarks are detected and memorized

(which defines a specific layer of environment model – of

vector type). Nevertheless, one can never guarantee that a

robot is precisely localized in the long term, an naively

integrating data in raster type data structures as the robot

is not properly localized lead to inconsistent models, whose

consistency can’t be recovered afterwards (figure 2).

Fig. 2. Inaccurate localization leads to model corruption: here the DEM
integrates data acquired while the robot was not always properly localized:
building walls are represented twice at different positions.

Besides, the environment may contain dynamic elements,

that are often hardly detected in the acquired data, and

whose introduction in the environment models may lead

to temporally inconsistent models, e.g. by memorizing in

the same data structure the presence of elements that had

different positions at different time instants (figure 3).

These two issues become even more important when

considering teams of robots operating under communication

constraints. To cooperate, the robots must have the ability to

share tasks to achieve goals and missions. For this purpose,

they need a common language, they need to share the

information they have acquired on the environment, and they

need to know where they are with respect to each other.

The inter-robot communications being not permanent and

subject to environmental perturbations, no central approach

can be efficient: each robot must build and manage its own

Fig. 3. A car “ghost” on a parking lot map: points corresponding to the
car have been perceived while it was moving, and have been merged in
different map cells (the “trace” of the car can be seen starting in the center
of the model, an going up-left). Here the resulting map is not temporally
consistent, as it encodes time varying information gathered at different time
instants.

environment representations, and data exchanges between the

robots must be optimized.

Managing environment models in a multi-robot context

also brings up additional issues with localization (the robots

being not precisely localized one with respect to the others)

and the presence of dynamic elements, the robots sharing

information that may have been acquired at very different

time instants.

C. Outline

We propose in this article a mean to manage raster-like

environment models so that localization errors and dynamic

elements do not corrupt them: each robot raster models

are maintained as a series of “tiles”, that is to say local

environment models, whose spatial and time consistency

can be guaranteed. When the robots move and/or exchange

information, the spatial and time inconsistencies are actively

detected and managed.

Section II presents digital elevation models, a basic data

structure on which we have worked so far. Section III depicts

our approach to manage such models over long ranges of

time and distances. Finally section IV recaps our on-going

and future work.

II. DIGITAL ELEVATION MODELS

A Digital Elevation Model is a raster representation that

encodes the terrain geometry as a function z = f(x, y),
estimated over a regular Cartesian grid: it is a 2.5D height-

map where each cell value represents an elevation. It is a

very common data structure to represent the terrain geometry,

which is for instance used to assess the terrain traversability,



either to generate local motions of the robot to reach a goal

avoiding obstacles, or to plan long term itineraries. Such a

model is incrementally built by merging point clouds from

the robot depth sensors (e.g. stereovision or LIDAR) into the

raster. This process must run in real-time to enable the robot

to continuously plan its trajectory [2]. Merging is basically

done by averaging height of points perceived at each cell in

the map.

However, dynamic elements of the environment create

“ghosts” that should be removed from the model (see Figure

3), and the presence of vertical elements is poorly encoded

by this merging process.

To solve this problem, we check whether a cell encodes

a vertical area, an area that can be modelled as a surface,

or an area that contains a dynamic object. This is made

by computing a local (in space and time) DEM using the

latest point could acquired, and by analyzing the variance

σz on the elevation z of each cell. Depending on whether

this variance exceeds a fixed threshold T or not and on the

state of the corresponding cell in the current model, the state

of the model cells is updated according to the merge logic

shown Figure 4.

0

o

i

m

m
v

v

f

f

v

f

v: vertical (σ ≥ T)
f: flat (σ < T)
m: merge
i: move current cell in cache
o: move cached-cell to current

Fig. 4. Merge logic of the local instantaneous cell of the DEM with the
current DEM. A cell is assessed “vertical” if σz > T , ”flat” otherwise.

This graph does not show the specific case where both

current and new cells are considered flat, but their height

differs: cells can not be merged in this case, and are hence

assessed as “dynamic”, the current cell value is kept in a

cache, and replaced by the new one.

Following a cell state allows to assess whether it contains

a dynamic element or not. Such information is also relevant

for map registration, in order to filter landmarks, keeping the

most stable areas for model matching. This is an important

point from the lifelong autonomy perspective: the model

must be re-usable and adaptable, even though drastic changes

occur in the environment (e.g. on a parking lot).

III. ATLAAS

We propose to use tiles to keep track of past modelled

areas, so as to cope with robot localisation and environment

dynamics issues, and also to ease the exchange of informa-

tion between robots. This is achieved by subdividing space

into a set of smaller maps, allowing to cache data, dump and

load them as the robot moves to different areas.

A. Pile of tiles

A tile is composed by different layers, for each cell, we are

currently storing the lowest and highest elevations perceived,

the elevation mean and variance, the number of points it

contains, and the timestamp of the last update.

The current implementation merges incoming point clouds

in a map of 9 tiles (3 ∗ 3). When the robot moves out

of the central tile, we dump the ones out of the map and

load existing if any, using a simple hysteresis threshold. For

local path planning purposes, we build maps of 0.1 meter

resolution, of size 40 × 40m3: this size is selected so as

to make sure each tile is spatially consistent, making the

hypothesis that the robot localization drift is not exceeding

the cell resolution over the tile size (we are using inertial-

visual SLAM [3]).

Fig. 5. Current map of 3 ∗ 3 tiles with their layers. You can see the tiles
delimitation in red, and in green the central “hysteresis” robot area (best
view with colors).

Each tile being spatially and temporally consistent, and

can be treated as an independent dataset containing its own

relative frame and the transformation to the global frame.

This hierarchy [4] gives the possibility to reshape the overall

model as the robot position is updated – e.g. after a loop

closure detection and correction by the SLAM algorithms.

The overall model is generated by composed tiles, hence

can quickly be re-arranged.

Space subdivision is also a key for sharing data be-

tween robots, sending chunk of information on demand,

and registering them in another robot frame using remote

synchronization methods.

B. Position referencing

In order to share models in a multi-robot scenario, it is

first necessary to rely on standard for sharing frames in space

and time. We are using the Universal Transverse Mercator

(UTM) coordinate system to refer the position of each of the

tiles, to be consistent with GPS position estimations – and

with existing maps.

3For 9 tiles of 40 ∗ 40m, the memory footprint is 33 MB



A tile is one file, a multi-layer GeoTiff/Float32 saved using

the Geospatial Data Abstraction Library (GDAL). We built

a generic library wrapping GDAL I/O using modern C++11

STL containers for in-memory storage 4.

We keep an history of past tiles for the same area and use

registration based on “stable” cells by computing the proba-

bility of the dynamic of each cell. It is when tiles overlap that

we will handle the issues, by properly “merging” tiles, after

having registered them (either by directly correlating them

[5], or matching landmark maps associated to the tiles).

Furthermore, keeping only one frame of reference is not

sufficient. It is desirable to have a model that is still fixed

as the robot moves forward and when loop closure appears.

Hence the track of local reference in the global model should

be kept and transformed to local chunk of data to prevent

corruption. Doing so while sharing models means that tiles

with reference to the global frame and information about its

potential error (covariance) must be memorized.

The architecture as it is today provides the foundation

of tiles referencing, containing valuable information on all

cells... We could test in simulation using the MORSE simu-

lator [6].

IV. DISCUSSION

We have sketched the foundation of a new architecture for

environment raster models management. It is still in early

stage development, being ported on multi-robots at the time

of writing. It has proved to work in simulation, most of the

work is now focusing on better handling of the dynamics,

and better handling of the localizations update from loop-

closures.

So far we have restricted its use to 2.5D raster models,

which is a good compromise of level of detail versus

computational time for our needs. But other data structure

could be exploited, such a 3D hierarchized raster struc-

tures. Interesting framework have been proposed by the

community, as in “octomap” [1] where using ray-tracing

allow to clear cells between the sensors and every points

perceived. Such method allow to take advantage of the

sensor’s characteristics. However such algorithm require a

considerable amount of computation and time which are not

available in many autonomous robotic system.

Further, one could also define tiles whose spatial consis-

tency can be updated over time, as in the HYMM [7] frame-

work. This would allow to propagate SLAM corrections into

the raster models.

We are also considering dividing sensor data in two

categories, the close points are considered valid and use

directly for local path planner in the real-time loop, and

points above a certain threshold needs some filtering and

re-localization using matching algorithm [8], such points are

not critic in the locomotion process thus can be treated in a

parallel thread.

Upcoming challenges are a fine time management, al-

lowing to come back in a past state. Bandwidth constraint,

4http://trac.laas.fr/git/gdalwrap

how to efficiently exchange data. And guarantee the global

consistency, by registering externally loaded models.

REFERENCES

[1] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,” Autonomous Robots, 2013.

[2] A. Kleiner and C. Dornhege, “Real-time localization and elevation
mapping within urban search and rescue scenarios: Field reports,” J.

Field Robot., vol. 24, no. 8-9, pp. 723–745, 2007.
[3] C. Roussillon, A. Gonzalez, J. Solà, J.-M. Codol, N. Mansard,

S. Lacroix, and M. Devy, “Rt-slam: A generic and real-time visual
slam implementation,” in ICVS, pp. 31–40, 2011.

[4] P. Beeson, J. Modayil, and B. Kuipers, “Factoring the mapping problem:
Mobile robot map-building in the hybrid spatial semantic hierarchy,”
The International Journal of Robotics Research April 2010 vol. 29 no.

4 428-459, pp. 428–459, 2010.
[5] B.-V. Pham, A. Maligo, and S. Lacroix, “Absolute map-based local-

ization for a planetary rover,” in 12th ESA Workshop on Advanced

Space Technologies for Robotics and Automation, Noordwijk (The

Netherlands), 2013.
[6] G. Echeverria, S. Lemaignan, A. Degroote, S. Lacroix, M. Karg,

P. Koch, C. Lesire, and S. Stinckwich, “Simulating complex robotic
scenarios with morse,” in SIMPAR, pp. 197–208, 2012.

[7] J. I. Nieto, J. E. Guivant, and E. M. Nebot, “The hybrid metric
maps (hymms): A novel map representation for denseslam,” in ICRA,
pp. 391–396, 2004.

[8] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing icp
variants on real-world data sets,” Autonomous Robots, vol. 34, no. 3,
pp. 133–148, 2013.


