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Abstract—Target detection and tracking encompasses a vari-
ety of problems such as coverage, search, patrolling, observing,
pursuit-evasion, etc. These problems are studied by several
communities, that tackle them using diverse formulations, hy-
potheses and approaches. This variety and the fact that target
related robotics problems are pertinent for a large spectrum
of applications has motivated a large amount of contributions,
which have mostly been surveyed according to one or another
viewpoint. In this article, our objective is to go beyond the
frontiers of specific communities and specific problems, and to
enlarge the scope of prior surveys. We define classes of missions
and problems, and relate the results from various communities
according to a unifying taxonomy, and propose a transverse
analysis of the approaches, models and lacks that are common
through all the tackled problems, and isolate the current main
research directions.

I. MOTIVATIONS

Detecting, localizing or following targets is at the core of
numerous robotic applications, in both adversarial and cooper-
ative contexts. Much work has been devoted in various research
communities to such problems, which are often referred to as
“pursuit-evasion” problems. This very evocative term actually
encompasses a variety of scenarios that pertain either to mono-
or multi-robot contexts, considering either a single or multiple
targets, and whose objective is either to detect, to capture or
to track them. On the other hand, other similar problems are
named differently and make use of specific vocabulary, e.g.,
surveillance, search or tracking. This is partly explained by the
different application contexts considered (industrial, civilian
or military), and by the fact that different communities tackle
them with different standpoints (e.g., sensor data processing,
symbolic or geometric task planning, task allocation, game
theory, etc.)

The variety of target related robotics problems and pro-
posed approaches has motivated a vast amount of contribu-
tions, and several surveys focused on specific problems are
available [1], [2], [3], [4], [5], [6]. In this article, our objective
is to go beyond the frontiers of specific communities and
specific problems, and to enlarge the scope of prior surveys.
Target detection and target tracking, the two broad classes
of scenarios related to targets, have a priori little to do one
with another (and similarly the approaches to solve them), and
are often executed in sequence. But in actual applications,
these scenarios must be achieved by the same robots, and
are sometimes tackled simultaneously: hence we believe it is
relevant to analyse them together.

This article introduces a coarse taxonomy and the asso-
ciated vocabulary of the various robotics missions related to

targets (Section II), so as to explicit how the researches carried
on in different communities relate. It transversely analyses the
approaches and models that are common through the various
work related to the tackled problems (Section III), and it finally
highlights open areas of research (Section IV). Note that due
to a lack of space, this paper does not review the main work
in each defined area – the interested reader may refer to [7].

II. TAXONOMY

Typical robotics target related scenarios are automated
surveillance of secured areas, frontier patrolling, secured area
clearing, target tracking or chasing, inter alia. In all these
scenarios, the environment is mostly known, and exploring the
environment is not considered. However, the availability of a
prior map is not mandatory (although it could be a side effect
of another condition, for instance in coverage), and the map
criterion does not appear in our taxonomy. Besides, the targets
may either be mobile or fixed, but we focus in this article on
mobile targets, which are more challenging.

The taxonomy is summarized in Figure 1. It is organized
as a tree, in which each branching is defined by a specific
criterion. Each leaf refers to a class of problems, including
possible variations in the formulation or assumptions. It de-
fines coherent notations and definitions of the problems used
throughout the article. Note that even though we try to comply
with widely accepted vocabulary, there may be conflicts with
definitions used by some authors. The names and definitions
of the various problems are indeed not standardised, especially
when considered in different communities: the same word may
refer to different problems in the literature, and so we stick to
the taxonomy vocabulary throughout the paper.

The first branching criterion of the taxonomy relates to
prior knowledge on the target position, and yields the two main
classes of problems, that often occur in sequence: detecting
targets on the one hand, and tracking detected targets on the
other hand.

A. Target Detection

Target detection problems consist in finding (detecting) a
target in a given environment. They may concern one or several
targets and may be tackled with one or multiple sensors, either
by actively sweeping the environment with mobile sensors, or
by monitoring signals emitted from fixed static sensors.

We refer to this later class of problems as coverage: they
mainly involve sensor positioning strategies, which often come
to partition the environment and accordingly distribute sensors
within this environment.
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Fig. 1. Proposed taxonomy of the target management problems. Branchings correspond to criteria, here denoted by questions, each red leaf correspond to a
specific problem analysed in the following sections.

When mobile sensors are exploited, the problem is strongly
related to path planning, and we refer to it as mobile search.
Such problems can be addressed either locally or globally.
Depending on the models, the assumptions and the approaches,
some authors try to provide worst-case guarantees for the
performance (capture), whereas some provide probabilistic
guarantees (probabilistic search) and others do not provide any
guarantee at all (hunting). The search may have a cyclic aspect
(patrolling), although this presents no interest for capture or
hunting. Note that for each of these problems, a variant that
consists in “surrounding” the target in order to prevent its
evasion is sometimes considered, instead of merely watching
it, or catching it.

a) Coverage: In coverage, the environment is necessar-
ily known and the objective is to optimally position a set of
fixed sensors. The traditional form of coverage is the famous
Art Gallery problem which has been well studied and for
which numerous results have been obtained [1]. Variants of
coverage include mobile sensors, but the proposed solutions
always focus on the sensor placement aspect (where to set the
sensors?), and not on path planning (how to reach the selected
positions?).

b) Capture: In the capture problem, optimality and
completeness are essential characteristics. The goal is to clear
a given known area while providing a worst-case guarantee,
meaning that if a target is inside the considered area, it will
be found, no matter what. There is no prior knowledge or
assumption on the target location, targets may even have “super
abilities” (like infinite speed), and pursuers try to surround
them. Capture is often referred to as a pursuit-evasion, but
also as search and secure, or as the cops and robbers game,
mostly when the solution rely on graph clearing [3]. Work on
this subject usually has strong mathematical foundations, and
are developed following two main approaches [2], [3]: stating
the problem as a graph clearing one, or as a purely geometric
one, within 2D polygonal environments. Often, the objective is
to assess the minimal number of pursuers required to provide
a worst-case guarantee.

c) Probabilistic Search: The main difference between
capture and probabilistic search is the absence of worst-case
guarantee in the latter, in which probabilities of detection are
assessed [6]. The reason is mainly a lack of resources (robots
or time) to tackle the worst-case problem, but it can also
be a compromise between efficiency and the probability of
occurrence of particularly difficult situations.

Probabilistic Search exploits probability distributions over
the model of the environment (of the target presence, of the
target visibility, etc.) Most authors try to provide bounds on the
probability of detecting/catching the target. The target model
may either be adversarial or not, the latter being usually easier
to deal with because of its lower algorithmic complexity. The
non-adversarial target model is widely used in search and
rescue scenarios, for which emergency and time constraints
usually prevent performing an exhaustive search and impose
priorities – which is well handled by probabilistic models.

d) Patrolling: When the mobile search is cyclic, it is
denoted by patrolling. Patrolling may be seen as a cyclic
version of probabilistic search, as it involves analyses of
statistical performance over time, and especially the time
elapsed between two visits to the same point. It is a rather
recent area of research, whose interest has risen over the
last decade [4]. The continuous formulation is related to the
watchman route problem (WRP), which consists in finding the
shortest closed path in a given polygon such that all points of
this polygon are visible from at least one point in the path.

e) Hunting: There are finally some cases where no
guarantee at all is provided for detection or capture of the
target, which we refer to as hunting. The absence of guarantee
comes from the lack of resources (robots, time) or information
– in the absence of which no useful probability models for the
target location can be exploited, for instance. Hunting is often
considered within a multi-robot context.



B. Target Tracking

The second major class of problems, target tracking, corre-
sponds to the tasks that arise when one or several targets have
been detected or assigned – often following the success of
target detection tasks. Here, coping with a target may imply
keeping it in sight, to provide information on it (mainly to
localise it over time, but identifying it can also be an objective),
or to catch it. In all cases tracker robots need to stay “close” to
the targets, the required distance being zero when it comes to
catch the targets. Coping with a single target may require one
or more robots, depending on the context. It is for instance
preferable to have multiple vantage points on each target to
refine their locations. We refer to this latter class of problems
as target localization problems. We also distinguish the one
vs. one problems (following) from the multi-robot multi-target
problems (observation).

f) Target Localization: The target localization prob-
lem consists in tracking a target with several robots in order to
improve knowledge about the target, in particular the precision
of its estimated position. It is most often a multi-robot problem,
in which case solutions involve selecting different points of
view to maximize the information gain. Of course, data fusion,
cooperation, communication and multi-robot localization are
issues to be considered. Several targets may be involved,
and several observation points of view on each target are
often required. Multi-robot target localization has naturally
gained interest with the development of research on multi-
robot systems.

g) Following: The class of following problems is the
traditional form of pursuit-evasion. [5] present a survey and
the history of the related work. Early work pertained to naval
conflict scenarios, and the traditional pursuit problem is also
known as Lion and Man. In the original version, a single
purser (the Lion) is chasing a single evader (the Man) with the
same speed. Many different versions of the problem have been
defined, with different speeds, environment models, visibility
conditions, etc. Following embraces all these variations, which
are tracking problems involving only one pursuer and one
evader.

h) Observation: The observation problem is stated as
follows: given several robots and several (moving) targets, how
to control the robots in order to simultaneously observe all the
targets, and if not possible, how to minimize the time during
which any target is not observed by at least one of the robots.
This problem has been rigorously specified by Parker in 1997
[8], who refers to it as the CMOMMT problem (Cooperative
Multi-robot Observation of Multiple Moving Targets). One of
the main challenges is to correctly allocate targets to robots and
to decide how and when the observers should trade targets.

III. COMMON MODELS AND APPROACHES

Through the whole variety of problems gathered by our
taxonomy, there are many comparable aspects, be it simi-
lar approaches, models, assumptions, validation processes, or
flaws. Here, we try to highlight the ones which we consider
important, namely the world and agents models, the main
approaches, the current trends, and validation processes. This
part relates to both the left and the right parts of our taxonomy,
as similar platforms, formalisms and models are common to

both the detection and tracking problems. In actual scenarios,
the tracking may indeed directly follow the detection phase,
or be performed in parallel: in a multi-robot context, once
a target is detected, some robots track it while the others
continue the detection task. Note that there is a large variety of
models and approaches, but at the end results and the validation
processes assess their validity a posteriori: we also discuss
these validation processes.

A. Models

Models that represent the environment and the agents
(the robots and the targets) are at the core of the decision
process, and are required whichever the chosen approach. The
combination of environment and agents models yields the
ability to predict the outcome of the agents actions, i.e., what
the agents are able to do and the expected consequences of the
possible actions. Most of the encountered models are rather
simple, and in our opinion often too simple. They provide a
limited expressiveness, and if they ease the way to solve the
problem (somehow by reducing its complexity), they are a
too coarse abstraction of the reality, hardening the integration
issues, and thus minimizing the realistic validation of the
proposed approaches.

1) The environment:

a) Beyond 2D models: Most of the authors use a 2D
single-layer representation of the world, be it a grid [9],
[10], [11] or more continuous models (using tessellation [12],
[13], [14], [15] or not [16], [17]). This implies that obstacles
to motions and observations are the same. Hence, realistic
situations like areas that are obstacles for AGVs (Autonomous
Ground Vehicles) but not for their sensors (e.g., ground holes
or water ponds), or where AAVs (Autonomous Aerial Vehicles)
can fly over but not observe under (e.g., undergrowth) can not
be represented.

Along with the growing computation power, more complex
models (2.5D [18], 3D [19], or multi-layered models [10],
[11]) have recently been proposed. Such models embody
more information and are hence more realistic, allowing finer
strategies. For instance, one is able to take advantage of
higher vantage points to observe a larger viewshed [18] or
to distinguish areas that block motions from areas that block
observations [11].

Besides these more realistic models, some authors exploit
highly abstract representations, as in [20]. This often eases the
finding of solutions, and allows to rigorously assess algorith-
mic complexity. However, the loss of information induced by
the abstraction may impede the validity of the solutions when
confronted to the real world.

b) Discrete Worlds: The discrete grid or tessellation
models are widely used, as they straightforwardly define
graphs, upon which algorithms exploiting graph theory can be
built [21], [15]. However, it is difficult to transform a metrical
model of the world into a meaningful topological model [22],
and only few authors provide means to do so [23]: some
directly assume that the graph is available (e.g., handmade
[24]) while others use “random” sampling as a compromise
between the continuous world and a discrete model.



Discretization is also a workaround for the computational
complexity of continuous numerical models, even when the
algorithms are theoretically valid with continuous models [13].
As stated by Bhattacharya “While discretization invariably
implies a certain level of approximation and deviation from the
original metric space, in order to make any continuous problem
computationally feasible it is an indispensable trade-off.” [25].
As a matter of fact, continuous models are mostly used for
local reactive control or greedy decisions [16], [17]. On the
contrary, discrete models are often used for mathematical
proofs in abstract representations [21], [20]. The assumption
of continuity is appealing and eases guarantees and proofs,
but it raises an issue: indeed there are discontinuities in the
real world that impact both motions and visibility and that
continuous abstract models may not handle [26].

c) Space-time manifold: Apart from the space represen-
tation, time representation is crucial, and can actually hardly
be decorrelated from the space representation, especially in
discretized models. Note that discrete time can be used with
continuous space models [17], but continuous time representa-
tions are also used [20]. Time discretization is typically used
to define a countable number of states, and as highlighted by
LaValle [27], “the next state xk+1 will usually not lie exactly
at a discretized value” (be it temporal or spatial). This means
that discretization will probably reduce the coherence between
the real state and the modeled state, and one has to ensure that
the algorithms are robust to such incoherences.

However, to ease the mathematical proofs, the “one space
unit travelled per one time unit” hypothesis is convenient, and
often does not lead to any loss of generality [13]. But it may
impact the quality of the resulting solutions. As a matter of
fact, the relation between space and time is really sensitive
when accurate coordination is required or assumed, or when a
robot cannot “wait” for the others, for instance when pursuing
a target [11], [28]. In both cases, experiments will validate or
not the assumptions about time, and therefore, one has to take
a great care about how this validation step is led.

d) Environmental constraints: The environment of the
missions can challenge the algorithms by compromising some
assumptions or by constraining or even preventing some ac-
tions. For instance, some algorithms take for granted that
one can mark the environment in a way or an other [29],
[30]. In this case, one has to pay attention to the feasibility
of such markings – and to their cost. The recent advent of
RFIDs (Radio-Frequency Identification) offers an interesting
technical solution to mark the environment [31], but they can
hardly be used in every context – a difficulty overlooked by
most simulators where marking can be easily emulated. As
asserted by Glad et al., “Robotic systems come with their own
hypotheses that are more restrictive than in simulation.” Here,
again, only realistic experiments should validate the approach.
For instance, the RFID detection distance range can largely
impact the performances [32].

While most reviewed work tackle simple environments,
i.e., 2D grounds or volumes with only no fly zones for AAVs,
some authors tackle more challenging environments like
water, which strongly impact the sensing, communication and
motion abilities [33].

2) The agents: The term “agent” stands here for the robots
and the targets. For the scenarios considered in this article,
the considered actions are the motions, the observations and
the communications. A model of each of these capacities is
required, and its choice is obviously strongly related to the
choice of the environment model, as both are combined to
assess the outcome of the actions.

a) Motion model: The model accuracy of the motion
capacities, and especially the kinematics and dynamic con-
straints, varies a lot. The more the world model is abstract, the
more the motion model is. With graphs, the motion model only
describes if a given node (area) can be reached by the agent
or not, possibly with a cost (e.g., distance, time, energy...).
It is largely assumed that this cost estimate is good, and
how the agent should or will effectively move is not of the
concern of the motion model in use. This assumption may
be presumptuous, and only validation processes can assess
its realism. Nowadays, accurate pattern-based motion models
are used for (winged-)AAVs, and more rarely for AGVs [9].
Information on the environment geometry may also help to
refine or constrain the agents motions [10]. However, a precise
or realistic motion model is not always required, especially
for the target. For instance, assuming an infinite speed for
the target yields the definition of conservative worst-case-
guaranteed strategies [3].

b) Sensor model: The sensor models are mainly used
for the robots, except in the case of stealth tracking [17] or
when the authors also consider the evader point of view [34].
Sensor models may be very basic: most often only distance
matters. However, some authors explicitly consider the field
of view and visibility constraints [16], [14], [35], with an
orientation, a maximum angle, and a distance. Finer models
may also represent 2.5D or 3D information [18], [19], or a
multi-layered world [11]. Most considered sensors are light-
based sensors, be it cameras or LIDARs and so most of
visibility constraints are line-of-sight.

c) Communication model: Although communication
may be intuitively considered as very similar to sensing (when
there is a visibility link, one may reasonably assume that there
is a communication link), most of the authors use the full
connectivity assumption. However convenient this assumption
is, its realism is questionable and may strongly impact the
efficiency of the approach. Indeed, accurate communication
models are complex and expensive [36]. This explains why
some authors build their approaches upon the communication
requirements and issues [37], or specifically study its impact
[32].

d) Expected behaviour: Apart from the models of ac-
tions (motion, sensing, communicating), one may want to
model the expected behaviour of the target or the other team-
mates. The target model is often a probabilistic motion model,
be it random walk [28], [38], [37] or more elaborate Bayesian
or Markovian models [9], [24], [39]. Predicting the target’s
behaviour and motion allows elaborating more sophisticated
or less conservative strategies. Indeed, in the adversarial case,
the target behaviour can be more accurately modeled with the
game theory [15], [40], [41]. Various target models are also
used as a metric to compare algorithms [42]. Indeed, the model
of the target’s behaviour does matter, as finer strategies are



possible when the model is correct, but they can turn to be
counter-productive when the model is not adequate [9].

Modeling the teammates behaviour is also relevant: the
main motivation is to reduce the need for communication, as
implicit coordination built on the prediction of others motions
can be achieved [43]. The models may be hard coded or
learned [44].

B. Approaches

Robotics being at the crossroads of numerous disciplines,
the state of the art contains a large variety of approaches
tackling similar – if not identical – problems. Among the
numerous criteria that define an approach, we distinguish (a)
the theoretical and analytical results from the experimental
results, (b) the centralized systems from the decentralized
ones, (c) the cooperative patterns from the “selfish” ones,
considering both implicit and explicit cooperation, (d) the
consideration of uncertainties, especially through probabilistic
models, and (e) the planning processes from the optimization
processes. Note that the selection of an approach obviously
comes with the definition of the chosen models.

a) Theory vs. Practice: Among every problem defined
by our taxonomy, one can distinguish two trends: a large part
of the contributions are focused on experimental results [45],
[17], [28], while others provide theoretical results [46], [47].
This is a coarse partition, and some papers propose both kinds
of results [37], however we believe that this distinction does
matter.

Theoretical results are essential as they light the way to
efficient and practical solutions. Numerous theoretical results
usefully state the complexity of a given class of problems [37],
[40], [48], [24], [49]: in case of NP-difficult problems, one
should probably focus on off-line computation, or suboptimal
online solutions. Some papers also give hints on the solutions:
for instance, LaPaugh proved that “recontamination” does not
help for solving the capture problem [46].

Besides theoretical milestones, most analytical approaches
are not applicable in real conditions considering the compu-
tational constraints. As stated by Parker about observation:
“analytical techniques have been developed for solving this
problem in complex geometrical environments. However, these
previous approaches are very computationally expensive –
at least exponential in the number of robots – and cannot
be implemented on robots operating in real-time” [38]. This
statement endorses experimental results, i.e., “solutions that
works for real”.

Although the approaches focusing on integration and ex-
periments can be criticized, we stand for the importance of
such work, that addresses what matters in the end: solutions
that effectively solve real world problems. These approaches
often rely on local considerations, and result in efficient and
sometimes elegant systems [17], [16], [43]. The associated
algorithms are most of the time supported by validation
processes, on which we comment further below.

b) Centralized and decentralized systems: The target
related problems considered in the literature are mainly multi-
robot problems, hence the question of centralized and decen-
tralized systems arises. Many centralized algorithms have been

proposed over the years: they are more convenient to provide
global optimality. However, they face strong constraints in the
real world: they often require full connectivity, are sensitive
to dynamic environments, especially when solutions are com-
puted off-line, and most of them hardly scale up, in particular
with the number of robots [22].

Most target related problems are at least NP-hard, and
one can face computational issues with centralized algo-
rithms. Centralized approaches usually provide optimal or
near-optimal solutions, where the computational requirements
are not the issues. Otherwise, one should instead focus on the
benefits brought by decentralized systems [37]. The latter are
more robust, generally scale well with the number of robots,
and are more adapted to real world constraints (dynamic
environment, communication constraints, etc.), easing the inte-
gration process [50], [45]. Decentralized approaches generally
provide suboptimal solutions with only local optimality [29].
Still, they provide interesting performances, especially under
realistic constraints, and constitute the current main research
trend [8], [29].

c) The need for cooperation: Most of the surveyed
problems require several robots to be solved adequately, and
the quality of the solutions is generally improved as a team of
robots allows more flexibility in the strategies. But there are
many ways to organize robot teams. The robots may cooperate
or simply perform their tasks independently, following a prior
task allocation. The latter case is well illustrated by both the
cycle- and partition-based patrolling schemes [4] whose main
advantage is that they do not require any communication,
avoiding the associated issues. Their drawback is their weaker
robustness to robot failures or changes in the environment of
the mission definition, as they cannot modify the team strategy
globally.

Online cooperation helps to solve problems efficiently,
and is even required for some problems which required tight
coordination (capture), or dynamic adaptation to the incoming
data such as target observation (observation, target localiza-
tion, probabilistic search). The benefits of coordination are
tightly related to the structure of the environment: highly
structured worlds like office environment benefit less from a
tight coordination than open environments [51].

The cooperation can either be implicit or explicit. The latter
allows to finely control the resulting system, because every
decision and action are discussed and broadcasted through
the whole team (or at least the surroundings agents). How-
ever, there are issues with the communication load and the
combinatorial complexity of the decision processes. Explicit
cooperation is often made through task allocation, where the
goal is to allocate a set of tasks between several agents
to optimize various criteria. The large literature about task
allocation is beyond the scope of this article, but it is worth
noticing that the target detection problem has often been used
to compare or benchmark allocation algorithms [52], [45].

d) Uncertain and dynamic environments: Robots face
many uncertainties: sensors are prone to a variety of errors and
noise, the agents behaviour can hardly be predicted accurately
as results of actions are affected by sources of uncertainty,
communications fail, inter alia. Ignoring these uncertainties
will likely result in a defective system when facing the real



world. Two main strategies, which can be coupled, help to
prevent this: taking into account uncertainties at the modeling
level, and re-planning on-line when the gap between the
modeled state and the real state is too large.

Probabilistic models have gained interested over the past
20 years in all robotic problems, including the ones considered
here. This is explained by the need to improve the models
on which planning rely and by the advent of computing
performances which allows to handle these models. The trendy
probabilistic models are, in a rough chronological order,
classical probabilities [22], [28], Bayesian models [9], [24],
[53], Markovian models (MDP) [9], and partially observed
Markovian models (POMDP) [33], [24], [39]. The latter are
the more appealing but their extensive computational cost
has prevented their application to large instances of problems
[39]. Yet recent improvements on decentralized POMDP using
separability conditions increase considerably the scalability
[54]. Probabilistic solutions tend to yield finer strategies but
at a significant computational cost, and most importantly
they remain sensitive to the modeling phase. For instance,
determining the best order of Markovian models has a strong
influence on performance, but is not trivial to achieve [9].

Numerous problems tackled here are NP-hard at least, and
the computational cost is heavy with probabilistic models,
which explains why many solutions are computed off-line for
problem instances of reasonable size [25], [48], [22]. However,
the real world is rarely static, and one often has to react
to external events (like target motion) without being able to
precompute strategies for each and every possible state (the
state space being globally intractable). In such cases, on-line
computing is required. It brings robustness as one is able to
recompute a valid solution on demand, when needed. However,
on-line computing often comes with local considerations and
thus suboptimality. This dilemma is well illustrated by the
following problem, which has been shown to be entirely
decidable, but is NP-complete [40]. This is why the efficient
state-of-the-art solutions consider only local information and
are computed on-line [16], [39]. They are not optimal, but
perform well, even in difficult environments.

e) Planning vs. Optimization: The detection and track-
ing problems tackled here roughly come to determine who does
what, when, and where. Most of them are formulated either
as planning problems or as optimization problems. While the
underlying problem remains the same, the formulation differs
a lot, and so do the solutions and the results.

Planning comes to simulate actions and their effects in
order to decide the actions sequence to perform to reach a
given state. Several formalisms exist to implement planners,
and the critical stage is the modeling of the action space, the
action effects and the world states. One of the many available
planners will provide a solution on the basis of these models.

In the formalism of optimization, an objective function
to optimize with respects to some constraints is defined.
More than the choice of a solver, the critical stages are the
quantification of the world states and actions, and the definition
of the objective function.

One key difference is that optimization requires numer-
ical values, while traditional planning work with qualitative
statements. Correctly evaluating these numerical values may

be straightforward (for instance when trying to minimise the
idleness in patrolling), but also more complex for others
(like capture). Optimization is close to raw data and com-
mands while traditional planning is semantically expressive
and allows a higher level of abstraction in the models, easing
hierarchical planning (e.g., the Hierarchical Task Networks
(HTN) [55]). Besides, a hierarchical decomposition allows to
mix both traditional planning (e.g., to roughly define tasks) and
optimization (to refine the local solution). Recently, thanks to
the increase of computing power, stochastic optimization has
been proven to be efficient in solving complex problems.

C. Results and validation process

Apart from the theoretical results, most papers propose one
or several algorithms and associated models to solve a given
problem. The algorithms may come with theoretical guarantees
(complexity, optimality), but experiments are required to assess
their applicability. For instance, Eaton and Zadeh “solved” the
following problem in 1962 [47], but the proposed solution
is actually not applicable, and to the best of our knowledge
not been implemented on-board any robot: it operates in an
abstract space which is not correlated to the real world –
or at least no one provided a valid transformation between
the real world and this abstract space. There have been much
work on following since then: several approaches have good
performances, but are far from Zadeh’s solution.

This illustrates that algorithms can only be validated with
integration: only testing them on-board robots in an actual
context will assess that they can cope with the challenging
issues that are uncertainties, non-determinism, asynchronous
systems, etc. Not considering these common issues yields
solutions that are not robust.

Yet, most papers lack actual validation. Of course authors
usually try to provide a fair description of their experimental
protocol (parameters, number of runs, description of the simu-
lator, etc.) but very few present realistic testing environments.
The proposed approaches are mostly validated with ad hoc
simulations [18], [49], [29], [35], i.e., simulations that neglect
to represent most of real world characteristics. These simulated
worlds are often discretized in time and space by construction,
and there are no or few uncertainties. In this context, the initial
assumptions and simplifications that lead to the algorithms are
introduced into the simulators, which can hardly exhibit the
solution flaws. Experiments on-board robots may present the
same limits when they twist the reality to fit the models (e.g.,
restraining the agents movements to an artificial grid-based
space [9], [53] or artificially enforcing the time discretization
[28]). This gap between models and reality have been spotted
and studied by several authors [50], [30], [53].

The validation process often present other flaws as the
lack of state-of-the-art comparisons – algorithms are often
“benchmarked” against trivial solutions like random walkers
or brute-force solutions [49], [26] –, or the lack of “culture of
statistics” – results are rarely statistically significant. Some of
these flaws are understandable: thorough validations call for a
lot of engineering, numerous tests and a logistic out of reach
of most researchers. Also, fair comparisons are restrained by
the variety of robots and testing environments between teams
and labs.



Nevertheless, some authors provide nice state-of-the-art
comparisons [29], [34], [35] and others have recently in-
troduced better statistic analysis [42], [51] with standard
deviations and p-values (Wilcoxon test, Shapiro-Wilk test).
Besides, in real practical experiments, it is hard to obtain
enough significant results to make a statistical evaluation.
Efforts have also been made to homogenize the testing plat-
forms or to reuse past testing environments or simulators
to fairly compare algorithms [28]. Challenges like RoboCup
(including the Rescue Virtual Robot Competition [56], [57])
play an important role to validate and compare the systems
in similar environments and setups. Some papers also present
benchmarks of various algorithms and compare them through
a set of metrics [57], [42], which offer references in the
considered domains. Making the code publicly available to
foster experimental reproducibility and comparison is also a
good practice for the validation process.

We believe that realistic simulations is a key to tackle
the validation issues, as they provide common testing envi-
ronments with realistic conditions, while easing statistically
significant experiments. They also ease the transfer of the
results across different approaches without performing all the
experiments again. Realistic simulators differ from ad hoc
ones in the way they model reality: the simulated space and
time are continuous, and they generally embed a physical
engine which properly models the robots’ dynamics. Sensors
are at least geometrically modeled (e.g., ray-tracing), and noise
can be introduced. The development of realistic simulators
requires engineering efforts, but fortunately one can now easily
find off-the-shelf open source simulators (e.g., Morse [58],
Gazebo [59], or USARSim [56]). These simulators come with
various robot models and environments, and using a common
framework and a modular architecture (like ROS [60]) would
even allow to compare running strategies against one another
(e.g., a pursuer strategy against an evader strategy elaborated
by another team). Validations that involve open source codes
and scenarios defined in realistic simulators can provide both
reproducible experiments and statistically significant results
and comparisons, and would also pool efforts in the commu-
nities.

IV. CONCLUDING REMARKS

This paper presents a unifying taxonomy of the various
target related robotics problems. It goes beyond the frontiers of
specific communities and specific problems, and enlarges the
scope of prior surveys. We have identified transverse models
and approaches that are common through all the tackled
problems. From this overall analysis, we believe the three
most important points on which one should put efforts are
the modelling, the development of decentralized approaches,
and the validation.

The finest models that have been recently been proposed
embrace probabilistic considerations, multi-layered world
models and hierarchical representations. These improved mod-
els are now tractable thanks to advances in sensing and increas-
ing computational power. They meet the need in robotics to fill,
or at least to reduce the gap between models and reality. The
first results given by these finer models are promising, and one
may wish and expect that they become the new state-of-the-
art standard. Communications remain however to be modeled

(and considered) in a more realistic manner to allow valid
approaches.

Besides, considering that many analysed problems are
NP-hard at least, we think suboptimal yet efficient real-time
algorithms are the key to solve the real cases scenarios while
handling online the dynamics changes. One should focus on
decentralized algorithms that scales well. Anytime algorithms
may be a bridge between efficiency and optimality [23],
especially when time matters as in search and rescue scenar-
ios. Yet, most of the time only experimental bounds on the
performances are given, and we yearn to see more theoretical
bounds on the suboptimality of the resulting solutions.

Finally, there should be drastic changes in the validation
processes of the proposed approaches. Following Portugal and
Rocha’s statement, “it is the authors belief that research in this
field should be more oriented towards effective solutions with
applicability in the real world” [53]. Yet too many papers pro-
vide unrealistic test conditions which prevent the evaluation of
such applicability. True validation should involve reproducible
results, with a statistical analysis and a fair comparison to other
state-of-the-art solutions. Modular architectures combined to
realistic simulators as a validation platform, and used with
common datasets, can provide all the tools required by a solid
validation process. This would also ease the development of
new algorithms and the adoption of breakthroughs from related
communities.
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