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Abstract. The solutions to the one dimensional focusing nonlinear Schrödinger equation
(NLS) can be written as a product of an exponential depending on t by a quotient of two
polynomials of degree N(N + 1) in x and t. These solutions depend on 2N − 2 parameters :
when all these parameters are equal to 0, we obtain the famous Peregrine breathers which we
call PN breathers. Between all quasi-rational solutions of the rank N fixed by the condition
that its absolute value tends to 1 at infinity and its highest maximum is located at the point
(x = 0, t = 0), the PN breather is distinguished by the fact that PN (0, 0) = 2N + 1.
We construct Peregrine breathers of the rank N explicitly for N ≤ 11. We give figures of
these PN breathers in the (x; t) plane; plots of the solutions PN(0; t), PN (x; 0), never given for
6 ≤ N ≤ 11 are constructed in this work. It is the first time that the Peregrine breather of
order 11 is explicitly constructed.

PACS numbers :
33Q55, 37K10, 47.10A-, 47.35.Fg, 47.54.Bd

1. Introduction

After the first results concerning the NLS equation obtained by Zakharov and Shabat in 1972
who solved it using the inverse scattering method [1, 2] a lot of studies have been realized.
The first quasi rational solutions to NLS equation were constructed in 1983 by Peregrine [3].
Akhmediev, Eleonski and Kulagin obtained in 1986 in particular the first higher order analogue
of the Peregrine breather [4, 5]. Other analogues of the Peregrine breathers of order 3 and 4 were
constructed in a series of articles by Akhmediev et al. [6, 7] using Darboux transformations.
Rational solutions to the NLS equation were written in 2010 as a quotient of two wronskians
in [8]. Another representation of the solutions to the NLS equation in terms of a ratio of two
wronskians of even order 2N composed of elementary functions using truncated Riemann theta
functions in 2011 has been given in [9]. In 2013 rational solutions in terms of determinants which
do not involve limits were given in [10].
We recall the representation of the solutions to the NLS equation in terms quasi rational solu-
tions depending a priori on 2N−2 parameters at order N as a ratio of two polynomials of degree
N(N + 1) of x and t multiplied by an exponential depending on t. The present paper presents
Peregrine breathers as particular case of multi-parametric families of quasi rational solutions to
NLS of order N depending on 2N − 2 real parameters : Peregrine breather PN of order N are
obtained when all the parameters are equal to 0.



2. Families of solutions to NLS equation depending on 2N − 2 parameters and PN
breathers

We consider the focusing NLS equation

ivt + vxx + 2|v|2v = 0. (1)

Then we get the following result [9, 10] :

Theorem 2.1 The function v defined by

v(x, t) = exp(2it− iϕ) ×
det((njk)j,k∈[1,2N]

)

det((djk)j,k∈[1,2N]
)

(2)

is a quasi-rational solution to the NLS equation (1)

ivt + vxx + 2|v|2v = 0,

quotient of two polynomials N(x, t) and D(x, t) depending on 2N − 2 real parameters ãj and b̃j,
1 ≤ j ≤ N − 1.
N and D are polynomials of degrees N(N + 1) in x and t, where

nj1 = ϕj,1(x, t, 0), 1 ≤ j ≤ 2N njk =
∂2k−2ϕj,1

∂ǫ2k−2 (x, t, 0),

njN+1 = ϕj,N+1(x, t, 0), 1 ≤ j ≤ 2N njN+k =
∂2k−2ϕj,N+1

∂ǫ2k−2 (x, t, 0),

dj1 = ψj,1(x, t, 0), 1 ≤ j ≤ 2N djk =
∂2k−2ψj,1

∂ǫ2k−2 (x, t, 0),

djN+1 = ψj,N+1(x, t, 0), 1 ≤ j ≤ 2N djN+k =
∂2k−2ψj,N+1

∂ǫ2k−2 (x, t, 0),
2 ≤ k ≤ N, 1 ≤ j ≤ 2N

The functions ϕ and ψ are defined in (3),(4), (5), (6).

ϕ4j+1,k = γ4j−1
k sinXk, ϕ4j+2,k = γ4j

k cosXk,

ϕ4j+3,k = −γ4j+1
k sinXk, ϕ4j+4,k = −γ4j+2

k cosXk,
(3)

for 1 ≤ k ≤ N , and

ϕ4j+1,N+k = γ2N−4j−2
k cosXN+k, ϕ4j+2,N+k = −γ2N−4j−3

k sinXN+k,

ϕ4j+3,N+k = −γ2N−4j−4
k cosXN+k, ϕ4j+4,N+k = γ2N−4j−5

k sinXN+k,
(4)

for 1 ≤ k ≤ N .

ψ4j+1,k = γ4j−1
k sinYk, ψ4j+2,k = γ4j

k cos Yk,

ψ4j+3,k = −γ4j+1
k sinYk, ψ4j+4,k = −γ4j+2

k cos Yk,
(5)

for 1 ≤ k ≤ N , and

ψ4j+1,N+k = γ2N−4j−2
k cos YN+k, ψ4j+2,N+k = −γ2N−4j−3

k sinYN+k,

ψ4j+3,N+k = −γ2N−4j−4
k cos YN+k, ψ4j+4,N+k = γ2N−4j−5

k sinYN+k,
(6)

for 1 ≤ k ≤ N .
The arguments Yk and Yk are defined by

Xν = κνx/2 + iδνt− ix3,ν/2 − ieν/2,
Yν = κνx/2 + iδνt− ix1,ν/2 − ieν/2,



for 1 ≤ ν ≤ 2N .
These terms are defined by means of λν such that −1 < λν < 1, ν = 1, . . . , 2N ,

−1 < λN+1 < λN+2 < . . . < λ2N < 0 < λN < λN−1 < . . . < λ1 < 1
λN+j = −λj, j = 1, . . . , N.

(7)

κν , δν and γν are defined by

κj = 2
√

1 − λ2
j , δj = κjλj , γj =

√

1−λj

1+λj
,

κN+j = κj , δN+j = −δj, γN+j = 1/γj , j = 1 . . . N.
(8)

The parameters aj and bj in the form

aj =
N−1
∑

k=1

ãkj
2k+1ǫ2k+1, bj =

N−1
∑

k=1

b̃kj
2k+1ǫ2k+1, 1 ≤ j ≤ N. (9)

Complex numbers eν 1 ≤ ν ≤ 2N are defined by

ej = iaj − bj , eN+j = iaj + bj , 1 ≤ j ≤ N, a, b ∈ R. (10)

The terms xr,ν (r = 3, 1) are defined by

xr,ν = (r − 1) ln γν−i
γν+i , 1 ≤ j ≤ 2N. (11)

In particular we have the following structure for the PN breathers

Theorem 2.2 The function v0 defined by

v0(x, t) = exp(2it− iϕ) ×

(

det((njk)j,k∈[1,2N ])

det((djk)j,k∈[1,2N ])

)

(ãj=b̃j=0, 1≤j≤N−1)

(12)

is the Peregrine breather of order N solution to the NLS equation (1) whose highest amplitude
in module is equal to 2N + 1.

3. Peregrine breathers PN of order N
Wa have already constructed in [9, 11, 12, 13, 14, 15, 16, 17] solutions for the cases N = 1 until
N = 10.
Because of the length of the expressions of polynomials N and D of the solutions v to the NLS
equation defined by

v(x, t) =
N(x, t)

D(x, t)
exp(2it− iϕ),

we cannot give it in this paper. We only give figure in the (x; t) plane and plots of the solutions
v(0; t), v(x; 0).

Figure 1. Solution to NLS, N=1, to the left v(x, 0); in the center v(0, t); to the right v(x, t).



Figure 2. Solution to NLS, N=2, to the left v(x, 0); in the center v(0, t); to the right v(x, t).

Figure 3. Solution to NLS, N=3, to the left v(x, 0); in the center v(0, t); to the right v(x, t).

Figure 4. Solution to NLS, N=4, to the left v(x, 0); in the center v(0, t); to the right v(x, t).

Figure 5. Solution to NLS, N=5, to the left v(x, 0); in the center v(0, t); to the right v(x, t).

Figure 6. Solution to NLS, N=6, to the left v(x, 0); in the center v(0, t); to the right v(x, t).

Figure 7. Solution to NLS, N=7, to the left v(x, 0); in the center v(0, t); to the right v(x, t).



Figure 8. Solution to NLS, N=8, to the left v(x, 0); in the center v(0, t); to the right v(x, t).

Figure 9. Solution to NLS, N=9, to the left v(x, 0); in the center v(0, t); to the right v(x, t).

Figure 10. Solution to NLS, N=10, to the left v(x, 0); in the center v(0, t); to the right v(x, t).

Figure 11. Solution to NLS, N=11, to the left v(x, 0); in the center v(0, t); to the right v(x, t).

It is important to say that, contrary to the P1 breather, all higher ranks PN breathers can
be deformed thus generating the multi-rogue-waves (MRW) solutions.
Actually N = 11 is a greatest rank for which this work is completed and this is one of the results
of this article. We postpone to give a more precise study of this eleventh Peregrine breather to
another publication.

4. Conclusion

The method described in the present paper provides a powerful tool to get explicit solutions to
the NLS equation and to understand the behavior of rogue waves. It is the first time that the
Peregrine breather order 11 is explicitly constructed; the complete expression as a quotient of
polynomials of order 132 in x and t is too long to be presented here. Moreover, the studies for
the initial conditions x = 0 and t = 0, in the cases N = 6 until N = 10 are completely new,
having never yet been presented.
We hope that several promising applications may be a result of this theoretical study. Recently,
the notion of the rogue wave has been transferred into the realm of nonlinear optics. Experimen-
tal studies have shown that continuous-wave laser radiation in optical fibers splits into separate



pulses and those pulses can reach very high amplitudes [18]. This kind of solution has been
observed in plasma [19], Bose-Einstein condensates [20], fiber optics [21] or on a water surface
[22, 23]. In the case of nonlinear optics and hydrodynamics, the results were checked until order
5.
This study leads to a better understanding of the phenomenon of rogue waves, and it would be
relevant to go on with more higher orders.
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