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SPECTRAL ANALYSIS OF THE SCHRÖDINGER OPERATOR ON BINARY TREE-SHAPED

NETWORKS AND APPLICATIONS

KAÏS AMMARI, DENIS MERCIER, AND VIRGINIE RÉGNIER

Abstract. In this paper we analyse the spectrum of the dissipative Schrödinger operator on binary tree-shaped net-

works. As applications, we study the stability of the Schrödinger system using a Riesz basis as well as the transfer
function associated to the system.
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2 KAÏS AMMARI, DENIS MERCIER, AND VIRGINIE RÉGNIER

1. Introduction

First of all, we introduce some notation needed to formulate the problem under consideration, which is simply that of
[20]. We refer to [20] for more details.
To construct the binary tree T which will be considered in the following, we need some definitions (recall that a tree
is a planar connected graph without paths).
A multi-index ᾱ is a k-tuple (α1, . . . , αk) if k lies in N− {0} and it is empty if k = 0. For a fixed integer n, we choose
for I the set of multi-indices ᾱ, with length k in {0, 1, . . . , n}, such that, if k 6= 0, αj ∈ {1; 2}, for all j in {1, . . . , k}.
Then the set of vertices V of the tree T is V := (∪ᾱ∈IOᾱ) ∪ {R} where R is an additional vertex which will be the
root of the tree T .
The edges are denoted by eᾱ with ᾱ in I. Note that the number of edges is the cardinal of I and it holds:
|I| = N = 2n+1 − 1.
Define, for any non-empty multi-indices ᾱ = (α1, ..., αk) and β̄ = (β1, ..., βm), the multi-index ᾱ◦β̄ := (α1, ..., αk, β1, ..., βm)
of length (k +m). Then, for a non-empty multi-index ᾱ = (α1, ..., αk), the edge eᾱ is chosen to have the extremities
Oᾱ and Oᾱ′ with ᾱ = ᾱ′ ◦ (αk) and the edge e (corresponding to the case ᾱ = ∅) has the extremities R and O.

See Figure 1 for a representation in the case n = 2.

By the multiplicity of a vertex of T we mean the number of edges that branch out from that vertex. If the mul-
tiplicity is equal to one, the vertex is called exterior. Otherwise, it is said to be interior. We denote by Int the set of
the interior vertices of the tree T and by Dir the set of the exterior vertices, except R, which has a particular status
in our problem. Dir is chosen for Dirichlet (see the problem below). A dissipation law is imposed at the root R which
explains why it is isolated from the other exterior vertices.
Define

IInt = {ᾱ; Oᾱ ∈ Int}, IDir = {ᾱ; Oᾱ ∈ Dir}
which are the sets of the indices of the interior and exterior vertices, except R, respectively.
Note that the multiplicity of each interior point of the tree T is equal to 3 and that the integer (n+ 1) represents the
maximum level of the binary tree T .

Furthermore, the length of the edge eᾱ is equal to 1. Then, eᾱ will be parametrized by its arc length by means
of the functions πᾱ, defined in [0, 1] such that πᾱ(0) = Oᾱ and πᾱ(1) is the other vertex of this edge. This choice
seems unconventional but it is made for technical reasons.

In this paper, we study the dissipative Schrödinger operator under the tree-shaped network T introduced above.
The case N ≥ 3 is the one we are interested in: it corresponds to n ≥ 1. The case N = 1 is well-known. See [24] and
[20] concerning the model.
More precisely, we consider the following initial and boundary value problem:

(1.1)
∂uᾱ
∂t

(x, t) + i
∂2uᾱ
∂x2

(x, t) = 0, 0 < x < 1, t > 0, ᾱ ∈ I,

(1.2) i u(1, t) +
∂u

∂x
(1, t) = 0, uᾱ(0, t) = 0, ᾱ ∈ IDir, t > 0,

(1.3) uᾱ◦(β)(1, t) = uᾱ(0, t), t > 0, β = 1, 2, ᾱ ∈ IInt,

(1.4)

2
∑

β=1

∂uᾱ◦(β)
∂x

(1, t) =
∂uᾱ
∂x

(0, t), t > 0, ᾱ ∈ IInt,

(1.5) uᾱ(x, 0) = (uᾱ)0 (x), 0 < x < 1, ᾱ ∈ I,

where uᾱ : [0, 1] × (0,+∞) → R, ᾱ ∈ I, is the transverse displacement of the edge eᾱ. These functions allow us to
identify the network with its rest graph. In this sense, the vertices of T are called nodes and the edges are called
branches.

Note that in the problem above, (1.1) is the Schrödinger equation imposed on all the branches of the tree, (1.2)
concerns the root and the other exterior nodes (recall that u = uᾱ with ᾱ = ∅ and that this empty multi-index is
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Figure 1. A Tree-Shaped network

chosen for the edge containing the root R). A dissipation law is imposed at the root while Dirichlet conditions are
put at the other exterior nodes. At last, (1.3) and (1.4) are transmission conditions.

In the last few years various physical models of multi-link flexible structures consisting of finitely many interconnected
flexible elements such as strings, beams, plates, shells have been of great interest. See the references by Ali Mehmeti,
von Below and Nicaise in [27] as well as [19], [20], [24] and the references therein. The spectral analysis of such
structures has some applications to control or stabilization problems (cf. [24]).
For interconnected strings (corresponding to a second-order operator on each string), a lot of results have been ob-
tained: the asymptotic behaviour of the eigenvalues (see the references by Ali Mehmeti, von Below and Nicaise in [27]
as well as [2]), the relationship between the eigenvalues and algebraic theory (cf. papers by von Below, Nicaise and
[24]), qualitative properties of solutions (see papers by von Below cited in [27] for example) etc...
For interconnected beams (corresponding to a fourth-order operator on each beam), some results on the asymptotic
behaviour of the eigenvalues and on the relationship between the eigenvalues and algebraic theory were obtained by
Nicaise and Dekoninck with different kinds of connections using the method developed by von Below in [16] to get the
characteristic equation associated to the eigenvalues.
Mercier and Régnier used the same method in [26] to compute the spectrum for a hybrid system of N flexible beams
connected by n vibrating point masses. This type of structure was studied by Castro and Zuazua in many papers (see
[18] and the papers by the same authors cited in [27] as well as one by Castro and Hansen also cited there).
In another paper (see [27]), Mercier and Régnier used the technique of exterior matrices due to W. H. Paulsen (pre-
sented for other purposes in [29]) which D. Mercier had already used in the same type of context in [25]. The aim of
these papers was to establish controllability.
Later on, they have investigated the same problem as in [19]. In that paper, Chen and al. have established the
exponential stability of the problem but with an assumption on the material constants. They seem to think that the
exponential stability can not hold without this assumption. Mercier and Régnier prove, using another method (that
of the exterior matrices - Chen and al. had used a moment method), that in fact, the exponential stability always holds.

In this paper a feedback stabilization problem for Schrödinger equations in networks is studied. See [4]-[11], [24].
In [13], Banica and Ignat consider the Schrödinger equation on a network formed by a tree with the last generation
of edges formed by infinite strips. They prove dispersive estimates which are useful for solving the linear Schrödinger
equation.
Let us also cite [33], a paper in which Zhang and Xu study the stability of wave networks. They give recursive expres-
sions that can be used to establish the stability of any given tree-shaped network. The geometry of their problem is
close to ours but we give a general result of stability on binary trees with the Schrödinger equation and not the wave
equation.

This paper is organized as follows:
In Section 2, the proper functional setting for system (1.1)-(1.5) is given: in particular a dissipative operator is defined.
The system is proved to be well-posed. A notion of energy is defined by (2.11) and the energy of the solution of the
system is proved to be a non-increasing function of the variable t.
In Section 3, the spectrum of the Schrödinger operator associated to the dissipative system (1.1)-(1.5) is studied. The
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families of eigenvalues and the dimension of the corresponding eigenspaces are given for the dissipative operator as well
as for the associated conservative operator. The localization and the asymptotic behaviour of the large eigenvalues
are also studied. All the properties of the spectrum developed in this section are useful for the applications.
In Section 4, some of the eigenfunctions of the dissipative operator associated to system (1.1)-(1.5) are proved to form
a Riesz basis of the space they span.
The rewriting of the solution in this Riesz basis allows to prove, in Section 5, that the energy of the solution decreases
exponentially to a non-vanishing value depending on the initial datum. The decay rate is explicitly given in Theorem
5.1.
Section 6 is dedicated to the transfer function of the dissipative operator associated to system (1.1)-(1.5).

We study, in Section 7, the stabilization result for (7.65)-(7.70) (which is system (1.1)-(1.5) with another feedback
law) by the frequency domain technique. The explicit decay rate of the energy of the solution is given.

2. Well-posedness of the system

In order to study system (1.1)-(1.5) we need a proper functional setting. We define the following space

H =
∏

ᾱ∈I

L2(0, 1)

equipped with the inner product

(2.6) < u, ũ >H=
∑

ᾱ∈I

∫ 1

0

uᾱ(x) ¯̃uᾱ(x) dx.

It is well-known that system (1.1)-(1.5) may be rewritten as the first order evolution equation

(2.7)

{

u′ = Adu,
u(0) = u0,

where the operator Ad : D(Ad) ⊂ H → H (the index d is for dissipative) is defined by

Adu := (−i ∂2xuᾱ)ᾱ∈I ,

with

D(Ad) :=

{

u ∈
∏

ᾱ∈I

H2(0, 1) : satisfies (2.8) to (2.10) hereafter

}

,

(2.8) i u(1) +
du

dx
(1) = 0, uᾱ(0) = 0, ᾱ ∈ IDir,

(2.9) uᾱ◦(β)(1) = uᾱ(0), β = 1, 2,

(2.10)

2
∑

β=1

duᾱ◦(β)
dx

(1) =
duᾱ
dx

(0), ᾱ ∈ IInt.

The natural energy E(t) of a solution u = (uᾱ)ᾱ∈I of (1.1)-(1.5) is defined by:

(2.11) E(t) =
1

2

∑

ᾱ∈I

∫ 1

0

|uᾱ(x, t)|2 dx.

Proposition 2.1. (i) For an initial datum u0 ∈ H, there exists a unique solution u ∈ C([0, +∞), H) to problem
(2.7). Moreover, if u0 ∈ D(Ad), then

u ∈ C([0, +∞), D(Ad)) ∩ C1([0, +∞), H).

(ii) The solution u of (1.1)-(1.5) with initial datum in D(Ad) satisfies the dissipation law:

(2.12) E′(t) = −
∣

∣u(1, t)
∣

∣

2 ≤ 0,

(recall that u = uᾱ with ᾱ = ∅ and that this empty multi-index is chosen for the edge containing the root R).

Therefore the energy is a non-increasing function of the time variable t.
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Proof. (i) By Lumer-Phillips’ theorem (see [30, 32]), it suffices to show that Ad is dissipative and maximal.

We first prove that Ad is dissipative. Take u ∈ D(Ad). Then

〈Adu, u〉H =
∑

ᾱ∈I

∫ 1

0

−i ∂2xuᾱ(x)uᾱ(x)dx.

By integration by parts and using the transmission and boundary conditions, it holds:

(2.13) ℜ (〈Adu, u〉H) = − |u(1)|2 ≤ 0.

This shows the dissipativeness of Ad (recall that u(1) is the value of the solution at the root R).

Let us now prove that Ad is maximal, i.e. that λI −Ad is surjective for some λ > 0.

Let f ∈ H. We look for u ∈ D(Ad) solution of

(2.14) (λI −Ad)u = f,

or equivalently

(2.15) λuᾱ + i ∂2xuᾱ = fᾱ, ∀ᾱ ∈ I.

Multiplying this identity by a test function φ, integrating in space and using integration by parts, it follows, since
u ∈ D(Ad),

(2.16)
∑

ᾱ∈I

∫ 1

0

(

λuᾱ(x)φᾱ(x) + i ∂xuᾱ(x)∂xφᾱ(x)
)

dx+ u(1)φ(1) =
∑

ᾱ∈I

∫ 1

0

fᾱ(x)φᾱ(x) dx.

This problem has a unique solution

u ∈ V :=

{

u ∈
∏

ᾱ∈I

H1(0, 1) : uᾱ(0) = 0, ᾱ ∈ IDir, and satisfies (2.9)

}

by Lax-Milgram’s lemma, because the left-hand side of (2.16) is coercive on V . If we consider φ ∈
∏

ᾱ

D(0, 1) ⊂ V ,

then u satisfies
λuᾱ + i ∂2xuᾱ = fᾱ in D′(0, 1), ᾱ ∈ I.

This directly implies that u ∈ V ∩
∏

ᾱ∈I

H2(0, 1). Coming back to (2.16) and integrating by parts lead to:

∑

ᾱ∈I

(

i ∂xuᾱ(1)φᾱ(1)− i ∂xuᾱ(0)φᾱ(0)
)

+ u(1)φ(1) = 0.

Consequently, by taking particular test functions φ, we obtain

i u(1) +
du

dx
(1) = 0,

2
∑

β=1

duᾱ◦(β)
dx

(1) =
∂uᾱ
∂x

(0), ᾱ ∈ IInt.

In summary we have found u ∈ D(Ad) satisfying (2.14), which finishes the proof of (i).

(ii) To prove (ii), it suffices to derive the energy (2.11) for regular solutions and to use system (1.1)-(1.5). The
calculations are analogous to those of the proof of the dissipativeness of Ad in (i), and then, are left to the reader. �

3. Spectral analysis

The goal of this section is to look for the eigenvalues and eigenvectors of the dissipative operator Ad as well as those
of the associated conservative operator A0. To that end, the operator Aǫ is defined like Ad in Section 2 except for
equation (2.8) which is replaced by:

(3.17) iǫ u(1) +
du

dx
(1) = 0, uᾱ(0) = 0, ᾱ ∈ IDir.

Thus A0 and Ad are Aǫ with ǫ = 0 and ǫ = 1 respectively.

The main result (which is proved at the end of the section) is the following one:
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Theorem 3.1. (Spectra of A0 and Ad)
i) Let σ(0) be the spectrum of the conservative operator A0, then

(3.18) σ(0) = σ
(0)
1 ∪ σ(0)

2 ,

where

σ
(0)
1 = {i(kπ)2 : k ∈ Z

∗} ∪
{

i
(

kπ +
π

2

)2

: k ∈ Z

}

,

and, if n is even,

σ
(0)
2 =

{

i

(

kπ +
1

2
arg(z

(n)
A,j)

)2

: j = 2, ..., n+ 1, k ∈ Z

}

if n is odd,

σ
(0)
2 =

{

i

(

kπ +
1

2
arg(z

(n)
A,j)

)2

: j = 1, ..., n+ 1, k ∈ Z, n odd

}

where z
(n)
A,j , j = 1, ..., n+ 1 is the family of the complex roots of the polynomial PA,n defined in Proposition 3.4.

ii) Let σ be the spectrum of the dissipative operator Ad, then

(3.19) σ = σ1 ∪ σ2 ∪ σ̃2,

where σ1 = σ
(0)
1 , σ̃2 = {(λk)k∈S : S is finite, ℜ(λk) < 0} and

σ2 = {i(ωj,k)
2 : j = 1, ..., n+ 1, k ∈ Z, |k| ≥ k0},

k0 being an integer.
Moreover

ℜ(i(ωj,k)
2) < 0, ∀i(ωj,k)

2 ∈ σ2,

and the following asymptotic behaviour holds:

(3.20) i(ωj,k)
2 = i

(

k2π2 + kπ arg(z
(n)
A,j) +

(arg(z
(n)
A,j))

2

4

)

+ 2πγj + o(1)

where γj is a real negative number (its expression is given by (3.36)). The polynomial PA,n defined in Proposition 3.4

admits n+ 1 distinct complex roots z
(n)
A,j 6= 1, j = 1, ..., n+ 1 with modulus equal to 1.

Note that when n is even, (−1) is a root of PA,n which is denoted by z
(n)
A,1 (cf. Lemma 3.6). Since kπ + 1

2 arg(z
(n)
A,1) =

kπ + π
2 , when n is even, the index j starts from 2 in the definition of σ

(0)
2 . This ensures σ

(0)
1 ∩ σ(0)

2 = ∅ for any value
of n ≥ 1.

3.1. The characteristic equation. In order to prove Theorem 3.1, we establish the characteristic equation.

Proposition 3.2. (The characteristic equation)

Define, for ω ∈ C, M(ω) and T the matrices M(ω) :=

(

0 1
−ω2 0

)

and T :=

(

1 0
0 2

)

.

The complex λ = iω2 (ω ∈ C
∗, ω 6= kπ, k ∈ Z and ω 6= (π/2) + kπ, k ∈ Z) is an eigenvalue of the operator Aǫ defined

at the beginning of the section on the binary tree T with level (n+ 1) (constructed in the introduction) if and only if

(3.21) (iǫ 1)eM(ω)T . . . eM(ω)TeM(ω)TeM(ω)

(

0
1

)

= 0

with (n+ 1) matrices eM(ω) in the product.
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Proof. First, the vector Fᾱ(x) :=

(

φᾱ(x)
∂xφᾱ(x)

)

is introduced to reduce the order of the eigenvalue problem which

reads: λ = iω2 (ω ∈ C) is an eigenvalue of Aǫ with associated eigenvector φ ∈ D(Aǫ) if and only if φ satisfies the
transmission and boundary conditions (3.17), (2.9) and (2.10) of Section 2 and

(EP ) : F ′
ᾱ(x) =M(ω)Fᾱ(x) on (0, 1), ∀ᾱ ∈ I.

In the following, ω is supposed to be different from 0 (0 is not an eigenvalue, cf. the proof of Theorem 3.3). Thus

Fᾱ(x) = eM(ω)xFᾱ(0) where e
M(ω)x =

(

cos(ωx)
sin(ωx)

ω
−ω sin(ωx) cos(ωx)

)

.

For simplicity, the computations to establish the characteristic equation are first presented in the case IDir =
{(1, 1); (1, 2); (2, 1); (2, 2)} (n = 2, see Figure 1. The results will then be generalized to any tree defined as in the
introduction.

The Dirichlet condition at the exterior vertices (except the root, see the second part of (3.17) for ᾱ ∈ IDir) im-

plies Fᾱ(0) =

(

0
∂xφᾱ(0)

)

for ᾱ ∈ IDir. Then Fᾱ(1) = eM(ω)Fᾱ(0) i.e. Fᾱ(1) = φ′ᾱ(0)

(

sin(ω)

ω
cos(ω)

)

, for ᾱ ∈ IDir

and ω 6= 0.
Now the continuity at the interior vertices O1 and O2 (condition (2.9)) implies:

(3.22) φ′j,1(0) ·
sin(ω)

ω
= φ′j,2(0) ·

sin(ω)

ω
for j = 1 and j = 2.

Either ω = kπ with k ∈ Z
∗ (first family of eigenvalues which is studied in the proof of Theorem 3.3) or the following

condition is imposed:

(3.23) φ′j,1(0) = φ′j,2(0) for j = 1 and j = 2.

Then the second transmission condition at the interior vertices O1 and O2 (condition (2.10)) implies, for j = 1 and
j = 2:

Fj(0) = φ′j,1(0)

(

sin(ω)

ω
2 cos(ω)

)

.

Once more, this vector is multiplied by eM(ω) and it follows from the continuity at the vertex O: either ω =
π

2
+ kπ,

k ∈ Z (second family of eigenvalues which is studied in the proof of Theorem 3.3) or

(3.24) φ′1,1(0) = φ′2,1(0).

Using the diagonal matrix T , it can be written as:

(3.25) F (1) = φ′1,1(0)e
M(ω)TeM(ω)TeM(ω)

(

0
1

)

.

At last, for ω ∈ C
∗, ω 6= kπ, k ∈ Z and ω 6= (π/2) + kπ, k ∈ Z, the dissipation law (first part of condition (3.17))

imposed at the root R gives the characteristic equation:

(3.26) (iǫ 1)eM(ω)TeM(ω)TeM(ω)

(

0
1

)

= 0.

And for a general tree as described in the introduction, the characteristic equation is:

(3.27) (iǫ 1)eM(ω)T . . . eM(ω)TeM(ω)TeM(ω)

(

0
1

)

= 0.
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with (n + 1) matrices eM(ω) in the product where (n + 1) is the maximum level of the binary tree T defined in the
introduction.
Note that the cases ω = kπ, k ∈ Z

∗ and ω = (π/2) + kπ, k ∈ Z are treated in next section where the dimension of the
associated eigenspace is computed. For the other values of ω, the condition ∂xφᾱ(0) = ∂xφγ̄(0) for any ᾱ and γ̄ in
IDir is imposed. Thus the dimension of the corresponding eigenspace is one.

�

3.2. The families of eigenvalues. This section is devoted to the characterization of the different types of eigenvalues
for both the conservative and the dissipative operators defined at the beginning of this section. The geometric
multiplicity of each eigenvalue is also computed.

Theorem 3.3. (Families of eigenvalues of A0 and Ad)

The operators A0 and Ad are defined in Section 3.1 on the binary tree T with level (n + 1) constructed in the
introduction.

(1) The complex λ = iω2 (ω ∈ C) is an eigenvalue of the operator A0 if and only if
• either ω = kπ, k ∈ Z

∗ and the dimension of the corresponding eigenspace is equal to: 2n − 1,

• or ω = (π/2) + kπ, k ∈ Z and the dimension of the corresponding eigenspace is equal to:
1

3
2n +

2

3
if n is

even and
1

3
(2n − 2) if n is odd,

• or ω = ((arg(z
(n)
A,j)/2) + kπ, k ∈ Z where z

(n)
A,j (j = 1, . . . , n if n is odd, j = 2, . . . , n if n is even) is the

family of the roots of the polynomial PA,n defined in Proposition 3.4 below (if n is even, the first root

z
(n)
A,1 = −1 is excluded). The dimension of the eigenspace associated to each eigenvalue is one.

(2) The complex λ = iω2 (ω ∈ C) is an eigenvalue of the operator Ad if and only if
• either ω = kπ, k ∈ Z

∗ and the dimension of the corresponding eigenspace is equal to: 2n − 1,

• or ω = (π/2) + kπ, k ∈ Z and the dimension of the corresponding eigenspace is equal to:
1

3
(2n − 1) if n

is even and
1

3
(2n − 2) if n is odd,

• or ω satisfies ω 6= kπ, ω 6= (π/2) + kπ, k ∈ Z and

(3.28) PA,n(z) +
PB,n(z)

ω
= 0.

where z = e2iω and the polynomials PA,n and PB,n are defined in Proposition 3.4 below. The localization
of the corresponding eigenvalues is studied in Proposition 3.1. The dimension of the eigenspace associated
to each eigenvalue is one.

Note that the first two families of eigenvalues of Aǫ lie on the imaginary axis. The third one also lies on the imaginary
axis for the conservative operator.
The third family of eigenvalues of the dissipative operator lies on the half-plane of complex numbers with a negative
real part.

Proof. Let us begin by proving that λ = 0 is not an eigenvalue. If 0 is an eigenvalue associated to the eigenvector
u = (uᾱ)ᾱ∈I , then

0 = 〈Adu, u〉H =
∑

ᾱ∈I

∫ 1

0

−i ∂2xuᾱ(x)uᾱ(x)dx.

By integration by parts and using the transmission and boundary conditions, it holds

(3.29) 0 = −i|u(1)|2 −
∑

ᾱ∈IDir

∂xuᾱ(0)uᾱ(0)−
∑

ᾱ∈I

∫ 1

0

|∂xuᾱ(x)|2dx.

Since uᾱ(0) = 0 for any ᾱ ∈ IDir, u(1) = 0 and ∂xuᾱ ≡ 0 for any ᾱ ∈ I. It follows uᾱ ≡ 0 for any ᾱ ∈ I which is a
contradiction with the fact that 0 is an eigenvalue associated to the eigenvector u.
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The characteristic equation is established in the latest section and studied in Section 3.3. We are interested only
in the dimension properties here.

(1) First case ω = kπ, k ∈ Z
∗:

We use here the notation introduced in Proposition 3.2 and its proof.
The matrix eM(ω) is (−1)kI where I is for the 2 × 2 identity matrix. The ”eigenvector” Fᾱ for ᾱ in IDir is:

Fᾱ(x) :=

(

0
fᾱ

)

= fᾱ

(

0
1

)

with fᾱ = ∂xφᾱ(0). Recall that IDir contains 2
n elements. Then condition (2.9)

is satisfied at all the interior nodes since the multiplication by (−1)kI does not change the first component of Fᾱ

which is always zero. The other transmission condition (2.10) at the interior nodes is translated into a sum of
the second components. At last the dissipation law at the root leads to one equation: (−1)k(n+1)

∑

ᾱ∈IDir
fᾱ =

0 hence the announced dimension.
(2) Second case ω = (π/2) + kπ, k ∈ Z:

There are 2n degrees of freedom as in the first case (cardinal of IDir) but the number of constraints increases.

The ”eigenvector” Fᾱ for ᾱ in IDir is still: Fᾱ(0) := fᾱ

(

0
1

)

with fᾱ = ∂xφᾱ(0). But the matrix eM(ω) is

not diagonal any more. It is: eM(ω) := (−1)k
(

0 ω−1

−ω 0

)

.

Thus, for ᾱ in IDir (i.e. for any ᾱ ∈ I such that |ᾱ| = n), Fᾱ(1) = eM(ω)Fᾱ(0) = (−1)kω−1fᾱ

(

1
0

)

.

Step n− 1: The continuity at the interior nodes Oᾱ where the length |ᾱ| is equal to n − 1 implies the 2n−1

independent equations:

fᾱ◦(1) = fᾱ◦(2) for any ᾱ ∈ I such that |ᾱ| = n− 1.

Then the value fᾱ◦(1) is renamed fᾱ and Fᾱ(1) = eM(ω)Fᾱ(0) = −fᾱ
(

0
1

)

.

Step n− 2: At the next 2n−2 interior nodes, no continuity condition is needed and the other transmission
condition is translated into a sum at each node:

Fᾱ(0) = fᾱ

(

0
1

)

, where −(fᾱ◦(1)+fᾱ◦(2)) is renamed fᾱ and |ᾱ| = n−2. Then Fᾱ(1) = (−1)k
1

ω
fᾱ

(

1
0

)

.

The process continues. Two cases are to be envisaged:
(a) Case of an even n. The number of equations is: 21 + 23 + . . . + 2n−1 = 2(1 + 22 + . . . + 2n−2) =

2(40 + 41 + . . .+ 4n/2−1) = 2

(

4n/2 − 1

3

)

=
2

3
(2n − 1).

At last, for ᾱ ∈ I, such that |ᾱ| = 0, F (0) = f

(

0
1

)

where −(f(1) + f(2)) is renamed f and F (1) =

(−1)k
1

ω
f

(

1
0

)

. This means, by definition, that φ(1) = −f (−1)k

ω
and ∂xφ(1) = 0 where φᾱ is the

eigenfunction.
For the conservative operator A0, the dissipation law (3.17) is then satisfied since ǫ = 0. Thus the

dimension of the corresponding eigenspace is: 2n − 2

3
(2n − 1) =

1

3
2n +

2

3
.

For the dispersive operator Ad (ǫ = 1), the dissipation law is satisfied if f = 0. Thus the dimension of
the corresponding eigenspace is:

2n −
(

1 +
2

3
(2n − 1)

)

=
1

3
2n − 1

3
.

(b) Case of an odd n. The number of equations is: 20 + 22 + . . .+ 2n−1 =
4(n−1)/2+1 − 1

3
=

2n+1 − 1

3
.

At last, for ᾱ ∈ I, such that |ᾱ| = 0, F (0) = (−1)k
1

ω
f

(

1
0

)

where f(1) = f(2) is renamed f and

F (1) = −f
(

0
1

)

. This means, by definition, that φ(1) = 0 and ∂xφ(1) = −f .
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For both operators A0 and Ad, the dissipation law is satisfied if f = 0. Thus the dimension of the
corresponding eigenspace is:

2n −
(

1 +
2n+1 − 1

3

)

=
1

3
2n − 2

3
.

Note that the constraints are always independent from one another. This can be proved by iteration on p
for the two separate cases n = 2p and n = 2p+ 1.

(3) Third case: it is treated in next section. Cf. the end of the proof of Proposition 3.2 for the dimension of the
corresponding eigenspace.

�

3.3. Iterative study of the characteristic equation.

•R •
O

•
O1

•

O2

•

O1

•
O2

•

O1,1

•

O1,2

•

O2,2

•

O2,1

Figure 2. Iterative strategy for analysing the spectrum

Proposition 3.4. (Iterative rewriting of the characteristic equation)
The complex λ = iω2 (ω ∈ C

∗, ω 6= kπ, k ∈ Z and ω 6= (π/2) + kπ, k ∈ Z) is an eigenvalue of the operator Aǫ defined
in Section 3.1 on the binary tree T with level (n+ 1) (constructed in the introduction) if and only if

(3.30) PA,n(z) + ǫ
PB,n(z)

ω
= 0.

where z = e2iω and the polynomials PA,n and PB,n are defined by:

(3.31) PA,m+1(z) = 2(z + 1)PA,m(z) + (z − 1)PB,m(z), ∀m ∈ N,

(3.32) PB,m+1(z) = 2(z − 1)PA,m(z) + (z + 1)PB,m(y), ∀m ∈ N,

(3.33) PA,0(z) = z + 1, PB,0(z) = z − 1.

Proof. The iterative procedure follows from the rewriting of the product eM(ω)T with z = e2iω. Indeed, if s = eiω,
using the classical trigonometric formulae leads to:

eM(ω)T =
1

2









s+
1

s
−2i

ω

(

s− 1

s

)

iω

(

s− 1

s

)

2

(

s+
1

s

)









and eM(ω)

(

0
1

)

=
1

2









− i

ω

(

s− 1

s

)

(

s+
1

s

)









.

Since z = s2, it is also:

eM(ω)T =
1

2s

(

z + 1 −2i

ω
(z − 1)

iω(z − 1) 2(z + 1)

)

and eM(ω)

(

0
1

)

=
1

2s

(

− i

ω
(z − 1)

z + 1

)

Now, for m = 0, the characteristic equation reads:
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(iǫ 1)eM(ω)

(

0
1

)

= 0 or (z + 1) +
ǫ

ω
(z − 1) = 0,

which is the announced result. By iteration, the rest follows.

�

The rewriting of the characteristic equation as (3.30) gives the expression of the eigenvalues of both operators as well
as their asymptotic behaviour: the conservative one, A0 and the dissipative one, Ad, using Rouché’s Theorem. Hence
Theorem 3.1 announced at the beginning of Section 3 which is proved in the following.

Proof. i) Let ω be a solution of (3.30) then ℑ(ω) is bounded from below. Indeed, the characteristic equation involves

the matrix eM(ω) =

(

cos(ω)
sin(ω)

ω
−ω sin(ω) cos(ω)

)

.

If ω = x+ iy with y tending to −∞, it follows

eM(ω)

(

0
1

)

=
e−y

2





−1

y
eix + o(1/y)

eix + o(1)





and

eM(ω)T =
e−y

2





eix + o(1)
−2

y
eix + o(1/y)

−yeix + o(y) 2eix + o(1)





and

eM(ω)TeM(ω)

(

0
1

)

=
e−2y

4

(

e2ix(−3/y) + o(1/y)
3e2ix + o(y)

)

.

By iteration the characteristic equation (3.27) is:

e−(n+1)y

2n+1
(3n · e−i(n+1)x + o(1)) = 0

when y tends to −∞. This is a contradiction with the behaviour of the exponential function.
So we have proved that ℑ(ω) is bounded from below.

ii) First asymptotic behaviour of the solution of (3.30).

Let us define the complex-valued functions f and g, respectively by: f(ω) = PA(e
2iω) and g(ω) =

PB(e
2iω)

ω
. From

the previous step, the solutions ω of (3.30) such that |ω| → ∞ satisfy lim|ω|→∞ g(ω) = 0. Moreover the large roots of

f are w0
j,k = kπ +

1

2
arg(z

(n)
A,j), j = 1, ..., n, k ∈ Z, |k| → ∞. Thus, we can apply Rouché’s Theorem to the functions f

and g as follows: we fix j and k large enough and we consider the disk Γk with center ω0
j,k and radius rk =

1
√

|k|
.

Now we prove that there exist k1 ∈ N and c1 > 0 such that for all |k| ≥ k1 then

(3.34) ∀ω ∈ ∂Γk, |f(ω| > c1 rk.

Indeed, for such a ω it holds

f(w) = PA,n(e
2iw0

j,k+rke
iθ

), θ ∈ [0, 2π].

But e2iw
0
j,k+rke

iθ

= z
(n)
A,je

rke
iθ

= z
(n)
A,j + z

(n)
A,jrke

iθ +O(
1

|k| ). Consequently,

f(w) = PA,n(z
(n)
A,j) + (PA,n)

′(z(n)A,j)rke
iθ +O(

1

|k| ),

and we get (3.34) since PA,n(z
(n)
A,j) = 0 and (PA,n)

′(z(n)A,j) 6= 0 (see Lemma 3.6). Finally, f and f + g have the same
number of zeroes on Γ, where each zero is counted as many times as its multiplicity, since there exist c2 > 0 and
k0 ∈ N, k0 ≥ k1 such that if |k| ≥ k0 then

|g(ω)| ≤ c2
|k| ≤ c1rk < |f(ω)|, ∀ω ∈ Γk.
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Hence we deduce the following asymptotic behaviour of the roots of (3.30):

ωj,k = kπ +
1

2
arg(z

(n)
A,j) + o(1), j = 1, ..., n, k ∈ Z, |k| ≥ k0.

iii) Second asymptotic behaviour of the solution of (3.30).
From the previous step we can write for a fixed j = 1, ..., n :

ωj,k = kπ +
1

2
arg(z

(n)
A,j) + ǫk, lim

|k|→∞
ǫk = 0.

Thus (3.30) gives

0 = PA,n(e
2ikπ+i arg(z

(n)
A,j

)+2iǫk) +
PB,n(e

2ikπ+i arg(z
(n)
A,j

)+2iǫk)

kπ + 1
2 arg(z

(n)
A,j) + ǫk

= PA,n(z
(n)
A,j + 2iz

(n)
A,jǫk + o(ǫk)) +

PB,n(z
(n)
A,j + o(1))

kπ
+ o

(

1

k

)

= 2iz
(n)
A,jǫk(PA,n)

′(z(n)A,j) + o(ǫk) +
PB,n(z

(n)
A,j)

kπ
+ o

(

1

k

)

,

which leads to

(3.35) ωj,k = kπ +
1

2
arg(z

(n)
A,j)− i

γj
k

+ o

(

1

k

)

,

where

(3.36) γj = −
PB,n(z

(n)
A,j)

2πz
(n)
A,j(PA,n)′(z

(n)
A,j)

.

Now, from Property (v) of the following Lemma, γj is real and non-vanishing. Note that (3.35) implies

i(ωj,k)
2 = i

(

k2π2 + kπ arg(z
(n)
A,j) +

(arg(z
(n)
A,j))

2

4

)

+ 2πγj + o(1).

Thus γj is negative since the problem we consider is dissipative. The proof is complete.

�

Remark 3.5. Existence of generalized eigenfunctions. As announced in Theorem 3.3 the dimension of the eigenspace

associated to each eigenvalue of the third family of the eigenvalues of A0 and Ad is one. In other words, if λ ∈ σ
(0)
2

or if λ ∈ σ̃2 ∪ σ2 (see Theorem 3.1 for the notation) then the geometrical multiplicity of λ is one.

Obviously, if λ ∈ σ
(0)
2 , then its algebraic multiplicity is also one since A0 is skew-adjoint.

The part ii) of the previous proof shows that the large eigenvalues of σ2 have an algebraic multiplicity equal to one.
Moreover, without loss of generality, we can assume that all the eigenvalues of σ2 are algebraically simple (see the
definition of σ2 in Theorem 3.1: the integer k0 may be chosen large enough in order that σ2 does not contain any
eigenvalue with an algebraic multiplicity different from one).

On the other hand, the algebraic multiplicity of each eigenvalue of the finite set σ̃2 remains an open question.

For convenience, let us recall that if λ ∈ σ̃2 has an algebraic multiplicity µλ ≥ 2 and since the geometrical multiplicity
is one then there exists a Jordan chain φ0, φ1, ..., φµλ−1

(λI −Ad)φ0 = 0, (λI −Ad)φj = φj−1, j = 1, ..., µλ − 1,

{φ0, φ1, ..., φµλ−1} providing a basis of N [(λI−Ad)
µλ ]. Later on, we will refer to such a family as the set of generalized

eigenfunctions associated to λ.
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Lemma 3.6. (Properties of the polynomials PA and PB)
The polynomials PA,n and PB,n defined in the latter proposition have the following properties:

(i) degPA,n = degPB,n = n+ 1.

(ii) PA,n admits n+ 1 distinct complex roots z
(n)
A,j 6= 1, j = 1, ..., n+ 1 with modulus equal to 1.

(iii) PA,n(−1) = 0 if n is even (this root is chosen to be z
(n)
A,1 in the main Theorem).

(iv) PB,n(z
(n)
A,j) 6= 0, j = 1, ..., n+ 1.

(v) The quotient
PB,n(z

(n)
A,j)

z
(n)
A,jP

′
A,n(z

(n)
A,j)

is a real number different from 0, for j = 1, ..., n+ 1.

Proof. First 1 is not a root of PA,n. The proof is done by descending induction. Using (3.31), it is clear that if 1 is a
root of PA,n+1, it is also a root of PA,n. But 1 is not a root of PA,0. Hence the result.
For the other results, let us construct other sequences of polynomials which are easier to study. The first step is to

use the transformation ϕ defined on (iR) by ϕ(u) =
u+ 1

u− 1
. Then we define the following two sequences:

qA,n(u) = PA,n(ϕ(u)) and qB,n(u) = PB,n(ϕ(u)).

At last the sequences of polynomials rA,n and rB,n are given by:

(3.37)















qA,n(u) =

(

2

u− 1

)n+1

rA,n(u),

qB,n(u) =

(

2

u− 1

)n+1

rB,n(u).

Calculations left to the reader lead to:

(3.38)







rA,0(u) = u, rB,0(u) = 1,
rA,n+1(u) = 2urA,n(u) + rB,n(u),
rB,n+1(u) = 2rA,n(u) + urB,n(u).

Now define the following two sequences of polynomials:

(3.39)

{

QA,n(y) = (−i)n+1rA,n(iy),
QB,n(y) = (−i)nrB,n(iy).

They satisfy the iteration laws:

(3.40)







QA,0(y) = y, QB,0(y) = 1,
QA,n+1(y) = 2yQA,n(y)−QB,n(y),
QB,n+1(y) = 2QA,n(y) + yQB,n(y).

From Lemma 3.7 follow Properties (i), (ii) and (iv).
Property (iii) comes from Property (i.2) of Lemma 3.7 above: n even implies QA,n is odd. Thus QA,n(0) = 0 which
is equivalent to PA,n(−1) = 0.
As for (v), it requires the rewriting of the quotient in terms of QA and QB .

Introduce u
(n)
j := ϕ(z

(n)
A,j), then PB,n(z

(n)
A,j) = qB,n(u

(n)
j ) since the reciprocal function of ϕ is ϕ itself. And

(3.41)
P ′
A,n(z) =

d

dz
(qA,n)(ϕ(z)) = ϕ′(z)(qA,n)

′(ϕ(z))

= − 2

(z − 1)2
(qA,n)

′(ϕ(z)) = − 2

(ϕ(u)− 1)2
(qA,n)

′(u) = −1

2
(u− 1)2(qA,n)

′(u).
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The quotient is:

(3.42)
PB,n(z

(n)
A,j)

z
(n)
A,jP

′
A,n(z

(n)
A,j)

=
qB,n(u

(n)
j )

(−1/2)ϕ(u
(n)
j )(unj − 1)2(qA,n)′(u

(n)
j )

=
−2

((u
(n)
j )2 − 1)

qB,n(u
(n)
j )

(qA,n)′(u
(n)
j )

.

Now, since u
(n)
j lies in (iR), (u

(n)
j )2 − 1 is real and non-positive. Thus the first factor is real and non-negative. It

remains to be seen whether the other factor is well defined, real and non-vanishing. To this end, it is rewritten in
terms of the other sequences of polynomials: QA,n and QB,n.

Since (qA,n)
′(u) =

2n+1

(u− 1)n+1

[

− 1

(n+ 1)(u− 1)
rA,n(u) + (rA,n)

′(u)

]

and since rA,n(u
(n)
j ) = 0 (by definition of u

(n)
j ),

it holds:

(3.43)
qB,n(u

(n)
j )

(qA,n)′(u
(n)
j )

=
rB,n(u

(n)
j )

(rA,n)′(u
(n)
j )

=
QB,n(y

(n)
j )

(QA,n)′(y
(n)
j )

,

where u
(n)
j = iy

(n)
j .

Thus the quotient (3.42) is real since y
(n)
j is real. It is well defined and non-vanishing due to Lemma 3.7 below: the

multiplicity of the roots of QA,n is one and both polynomials QA,n and QB,n have no common root. This ends the
proof. �

Lemma 3.7. (Properties of the polynomials QA and QB)
Let {QA,n}n∈N and {QB,n}n∈N be two sequence of polynomials defined for all y ∈ R as follows:

(3.44) QA,n+1(y) = 2 y QA,n(y)−QB,n(y), ∀n ∈ N,

(3.45) QB,n+1(y) = 2QA,n(y) + y QB,n(y), ∀n ∈ N,

(3.46) QA,0(y) = y, QB,0(y) = 1

Then the following properties hold:

(i)
(i.1) degQA,n = n+ 1 and degQB,n = n.
(i.2) If n is even (resp. odd) then QA,n is odd (resp. even) and QB,n is even (resp. odd).
(i.3) lim

y→+∞
QA,n(y) = lim

y→+∞
QB,n(y) = +∞.

(ii) QA,n admits n+ 1 distinct real roots yA,j , j = 1, ..., n+ 1.

(iii) QB,n admits n distinct real roots yB,j , j = 1, ..., n.

(iv) The roots of QA,n and QB,n are ordered alternately, i.e;

y
(n)
A,1 < y

(n)
B,n,1 < y

(n)
A,2 < y

(n)
B,2 < ... < y

(n)
B,n < y

(n)
A,n+1.

Proof. (i) is easily checked by iteration. We will prove (ii), (iii) (iv) by iteration. For convenience we start the iteration
at n = 1, since n = 0 is a particular case.

For n = 1, QA,1 = 2y2 − 1 and QB,1(y) = 3y so the basis hypothesis is satisfied.

Let n ≥ 1, be fixed and assume that we have the inductive hypothesis, i.e QA,n and QB,n satisfy, (ii),(iii), (iv).

From (3.44) and (iv) we see that the sign of QA,n+1 changes at each root of QA,n and we deduce that QA,n+1 has at

least n distinct real roots y
(n+1)
A,j , j = 2, ..., n+ 1 such that

y
(n)
A,1 < y

(n+1)
A,2 < y

(n)
A,2 < y

(n+1)
A,3 < ... < y

(n+1)
A,n+1 < y

(n)
A,n+1.

Now from (i.3) and (iv) we have QA,n+1(y
(n)
A,n+1) = −QB,n(y

(n)
A,n+1) < 0. Therefore again from (i.3) we see that QA,n+1

admits a supplementary root y
(n+1)
A,n+2 greater than y

(n)
A,n+1 and by symmetry QA,n+1 admits also another root y

(n+1)
A,1
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smaller than y
(n)
A,1. At this step we have proved that QA,n+1 has exactly n+ 2 distinct real roots alternately with the

roots of QA,n, i.e

(3.47) y
(n+1)
A,1 < y

(n)
A,1 < y

(n+1)
A,2 < y

(n)
A,2 < y

(n+1)
A,3 < ... < y

(n+1)
A,n+1 < y

(n)
A,n+1 < y

(n+1)
A,n+2.

Now, for any root y
(n+1)
A,j of QA,n+1, j ∈ {1, ..., n+ 2} we have from (3.44)

0 = 2 y
(n+1)
A,j QA,n(y

(n+1)
A,j )−QB,n(y

(n+1)
A,j ),

therefore from (3.45)

QB,n+1(y
(n+1)
A,j ) = 2

(

1 + (y
(n+1)
A,j )2

)

QA,n(y
(n+1)
A,j ).

From (3.47) we see that the sign of QA,n changes at each root y
(n+1)
A,j of QA,n+1, then the previous identity shows that

the same fact holds also for QB,n+1. Consequently, between two consecutive roots y
(n+1)
A,j and y

(n+1)
A,j+1 of QA,n+1, there

is a root of QB,n+1. Finally the inductive hypothesis is true for n+ 1.

�

Figure 3 represents the polynomials QA,3, QB,3 and QA,4:
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-2 -1 1 2

-40

-20

20

40

QA,3

QB,3QA,4

Figure 3. QA,3(y) = 8y4 − 17y2 + 2, QB,3(y) = 15y3 − 12y, QA,4(y) = 16y5 − 49y3 + 16y.

4. Riesz basis

In this section, it is proved that the generalized eigenfunctions of the dissipative operator Ad associated to the eigen-
values in σ2 ∪ σ̃2 (introduced in Section 2 and Theorem 3.1 for the spectrum) form a Riesz basis of the subspace of H
which they span (denoted by H2 in next section). To this end, we use Theorem 1.2.10 of [1] which is a rewriting of
Guo’s version of Bari Theorem with another proof (see [22]).
The resolvent of the conservative operator A0 restricted to H2 is compact since the domain of A0 is compactly em-

bedded in H. Thus, it is enough to show that the eigenfunctions of A0 associated to the eigenvalues in σ
(0)
2 and those

of the dissipative operator Ad associated to the eigenvalues in σ2 ∪ σ̃2 are quadratically close to one another, except
from a finite number of eigenfunctions.

The parity of n plays a role in the proof: if n is even, one eigenfunction has a different form. It is, for any fixed

value of k in Z, the eigenfunction ϕ0(ω0
1,k, ·). It is associated to ω0

1,k = kπ +
π

2
(i(ω0

1,k)
2 is an eigenvalue in σ

(0)
1

and not in σ
(0)
2 ) and this function has the same form as the eigenfunctions associated to the eigenvalues of σ

(0)
1 . See

Theorem 3.1 for the notation of the spectra and the proof of Theorem 3.3 for the construction of the eigenfunctions.

Theorem 4.1. (Riesz basis for the operator Ad)

The notation of Theorem 3.1 for the spectra of both operators A0 and Ad is kept here.

Denote by ω0 the number ω0
j,k := kπ +

1

2
arg(z

(n)
A,j) which is such that i(ω0)2 ∈ σ

(0)
2 (except from the case n = 2 and

j = 1: i(ω0
1,k)

2 is an eigenvalue in σ
(0)
1 ).

Denote by ω := ωj,k the value which is such that i(ωj,k)
2 ∈ σ2 ∪ σ̃2. The indices j and k are dropped for simplicity

since they are fixed here.
Denote by ϕ0(ω0, ·) (resp. ϕ(ω, ·)) the eigenfunction of A0 (resp. Ad) associated to the eigenvalue i(ω0)2 (resp. iω2).

For an odd n and any i = 1, . . . , n, there exists an integer k0 such that, for any j = 1, . . . , n:

∑

|k|>k0

‖ϕi(ωj,k, ·)− ϕ0
i (ω

0
j,k, ·)‖22 <∞.

The index i comes from an indexation based on the level of the vertices of the tree which is read from the leaves to the
root here and not the other way round as before (see the proof).

For an even n and any i = 1, . . . , n, there exists an integer k0 such that, for any j = 2, . . . , n:

∑

|k|>k0

‖ϕi(ωj,k, ·)− ϕ0
i (ω

0
j,k, ·)‖22 <∞.

For an even n and any ᾱ ∈ I, there exists an integer k0 such that:
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∑

|k|>k0

‖ϕn−|ᾱ|+1(ω1,k, ·)− ϕ0
ᾱ(ω

0
1,k, ·)‖22 <∞.

For an even n, the eigenfunction ϕ0(ω0
1,k, ·) associated to ω0

1,k = kπ+
π

2
in σ

(0)
1 has the same form as the eigenfunctions

associated to the eigenvalues of σ
(0)
1 (cf. Proof of Theorem 3.3 and the proof of this Theorem). The index is ᾱ as in

the preceding sections.

Proof. For both operators, the ”eigenvector” Fᾱ for ᾱ in IDir is: Fᾱ(0) := f

(

0
1

)

with f = ∂xφᾱ(0) for any ᾱ ∈ IDir

(cf. the beginning of the proof of Proposition 3.2 for the definition of Fᾱ and the end for its form in this case). Let
us rename Fᾱ(0) the vector ω(1/f)× Fᾱ(0) which is denoted by F0, for simplicity.

For ᾱ in IDir (i.e. for any ᾱ ∈ I such that |ᾱ| = n), Fᾱ(x) = eM(ω)xF0 which can be denoted by F1(x) since it does

not depend on ᾱ. Likewise F 0
1 (x) := eM(ω0)xF0.

Then F2(x) = eM(ω)xTF1(1) with F2(x) := Fᾱ(x) for any ᾱ ∈ I such that |ᾱ| = n − 1 and T defined in Proposition
3.2. Idem for F 0

2 (x) with ω
0 instead of ω. And so on...

The first component of Fi(x) (resp. F
0
i (x)) gives the expression of the eigenfunction ψᾱ(x) of the dissipative operator

Ad on the adequate branch (resp. φᾱ(x), eigenfunction of the conservative operator A0 on the appropriate branch)
with the new indexation. Let call them respectively ϕi(x) and ϕ

0
i (x).

Since eM(ω)x =

(

cos(ωx)
sin(ωx)

ω
−ω sin(ωx) cos(ωx)

)

, it holds:

(4.48) ϕi(ω, x) = cos(ωx)qi(ω) +
sin(ωx)

ω
hi(ω)

(4.49) ϕ0
i (ω

0, x) = cos(ω0x)qi(ω
0) +

sin(ω0x)

ω0
hi(ω

0)

and the construction of ϕi has been done in such a way that the sequences qi and hi are defined iteratively by:

(4.50) qi+1(ω) = cos(ω)qi(ω) +
sin(ω)

ω
hi(ω), ∀i ∈ N,

(4.51) hi+1(ω) = −2ω sin(ω)qi(ω) + 2 cos(ω)hi(ω), ∀i ∈ N,

(4.52) q1(ω) = 0, h1(ω) = ω.

Denoting by Qi(ω) :=

(

qi(ω)
hi(ω)

ω

)

, equations (4.50), (4.51) and (4.52) are equivalent to:

(4.53) Qi+1(ω) = TR(ω)Qi(ω), ∀i ∈ N,

(4.54) Q1(ω) =

(

0
1

)

with T defined as in Proposition 3.2 and R(ω) the rotation matrix: R(ω) :=

(

cos(ω) sin(ω)
− sin(ω) cos(ω)

)

.

Denote by Q0
i (ω) := Qi(ω

0). Using Lemma 4.2 below ends the proof except for the particular case n even and j = 1.
Indeed, with the notation introduced in the Theorem

‖ϕi(ωj,k, ·)− ϕ0
i (ω

0
j,k, ·)‖2 ≤ ‖ cos(ω·)(qi(ω)− qi(ω

0))‖2 + ‖(cos(ω·)− cos(ω0·))qi(ω0)‖2
+‖ sin(ω·)(hi(ω)/ω − hi(ω

0)/ω0)‖2 + ‖hi(ω0)/ω0)(sin(ω·)− sin(ω0·)‖2.
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Note that both the norms of ϕi(ωj,k, ·) and ϕ0
i (ω

0
j,k, ·) in H are bounded from above and below by a constant number

independent of k.

Now, when n is even, the dimension of the eigenspace for the conservative operator is different from that of the
eigenspace for the dispersive operator. Let us construct an eigenfunction for A0 which is not an eigenfunction for

Ad. We start as in the beginning of this proof. The ”eigenvector” F 0
ᾱ for ᾱ in IDir is: F 0

ᾱ(0) := fᾱ

(

0
1

)

with

fᾱ = ∂xφᾱ(0). Let us rename F 0
ᾱ(0) the vector ω0 × Fᾱ(0). Thus, for any ᾱ ∈ IDir, F

0
ᾱ(x) = eM(ω0)xfᾱ

(

0
ω0

)

i.e.

(4.55) ϕ0
ᾱ(ω

0, x) =
hᾱ(ω

0)

ω0
sin(ω0x) where

hᾱ(ω
0)

ω0
= 1, if |ᾱ| = n.

Using the transmission conditions and denoting by qᾱ and hᾱ the new resulting coefficients as we have done in the
proof of Theorem 3.3 lead to:

ϕ0
ᾱ(ω

0, x) = qᾱ(ω
0) cos(ω0x) +

hᾱ(ω
0)

ω0
sin(ω0x)

with qᾱ(ω
0) = 0 when |ᾱ| is even and hᾱ(ω

0) = 0 when |ᾱ| is odd. Thus the particular case n even and j = 1 is
treated as soon as we have proved Lemma 4.3 below. �

Lemma 4.2. Let A and B be real numbers. The notation A . B means the existence of a positive constant C, which
is independent of A and B such that A ≤ CB. Then it holds:

(1) |qi(ω)−qi(ω0)|, |hi(ω)/ω−hi(ω0)/ω0|, ‖ cos(ω·)−cos(ω0·)‖2 and ‖ sin(ω·)−sin(ω0·)‖2 have the same asymptotic

behaviour when k tends to infinity: |qi(ω)− qi(ω
0)| . 1

k
(idem for the other expressions).

(2) |qi(ω0)| and |hi(ω0)/ω0| have the same asymptotic behaviour when k tends to infinity: |qi(ω0)| . 1 (idem for
the second expression).

(3) |ϕ0
n+1(ω

0, 1)| . 1.

Proof. It is equivalent to prove that |Q0
i | . 1 and |Qi −Q0

i | .
1

k
where Qi and Q

0
i have been introduced in the latest

proof (all these expressions depend on ω that we drop for simplicity). The proof is done by induction.

• Base case: Since |Q1 −Q0
1| = 0 and since |Q0

1| does not depend on ω (and thus on k), both assertions hold for
i = 1.

• Inductive step: Suppose the statement holds for some natural number i, then for i+1: |Q0
i+1| = |TR0Q0

i | . 1

since T does not depend on k and the terms of R0 := R(ω0) are bounded with respect to k.
Now |Qi+1 − Q0

i+1| = |TR(ω)Qi − TR(ω0)Q0
i | = |T (R(ω) − R(ω0))Qi + TR(ω0)(Qi − Q0

i )|. Since |Qi| . 1,

|R(ω0)| . 1 and |Qi −Q0
i | .

1

k
, it remains to prove: |R(ω)−R(ω0)| . 1

k
.

Recall the dependence of ω with respect to k:

(4.56) ω := ωj,k = kπ +
1

2
arg(z

(n)
A,j)− i

γj
k

+ o

(

1

k

)

= ω0 − i
γj
k

+ o

(

1

k

)

.

Using the classical trigonometric difference identities for the sine and cosine functions, it holds, for any
x ∈ [0; 1]:

‖ cos(ω·)− cos(ω0·)‖2 .
1

k
and ‖ sin(ω·)− sin(ω0·)‖2 .

1

k
.

Hence the result.

�

Lemma 4.3. Suppose that n is even and choose the particular value ω0 = ω0
1,k = kπ+

π

2
. Then, with the notation of

Lemma 4.2:
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(1) |qi(ω)| for an odd i, |hi(ω)/ω| for an even i, |hi(ω)/ω − hᾱ(ω
0)/ω0| for an odd i and |ᾱ| = n − i + 1 and

|qi(ω0) − qᾱ(ω
0)| for an even i and |ᾱ| = n − i + 1, have the same asymptotic behaviour when k tends to

infinity: |qi(ω)| .
1

k
(idem for the other expressions).

(2) |qi(ω)| for an even i and |hᾱ(ω0)/ω0| for an odd |ᾱ| have the same asymptotic behaviour when k tends to
infinity: |qi(ω)| . 1 (idem for the second expression).

Proof. (1) First the fact that |qi(ω)| for an odd i and |hi(ω)/ω| for an even i are both bounded from above by a
constant times (1/k) follows from Lemma 4.2 and qi(ω

0) = 0 for an odd i and hi(ω
0)/ω0 = 0 for an even i

and ω0 = kπ +
π

2
(the latest property is proved by induction, using cos(ω0) = 0).

Now, to prove that |hi(ω)/ω − hᾱ(ω
0)/ω0| . (1/k) for an odd i and |qi(ω0) − qᾱ(ω

0)| . (1/k) for an even i
(where |ᾱ| = n − i + 1), we proceed by induction on i. The base case is i = 1 for h and i = 2 for q. Both
differences are equal to |1− fᾱ|.
It is enough to choose the fᾱ’s such that |1−fᾱ| . (1/k), for any ᾱ, such that |ᾱ| = n. Indeed the construction
procedure explained in the proof of Theorem 4.1 for an even n guarantees that it is sufficient to get the desired
estimate.
To explicit this iterative procedure, let us detail the example n = 4: there are 6 independent eigenfunc-
tions (cf. Theorem 3.3 for the dimension). Choose f1,1,1, f1,1,2, f1,2,1, f2,1,1, f2,1,2 and f2,2,1 all satisfying
|1− fᾱ| . (1/k), then if |ᾱ| = 4, there exists β̄ and j in {1; 2} such that |β̄| = 3 and ᾱ = β̄ ◦ (j). Then choose
fᾱ := fβ̄ and f1,2,2 := f1,1,1 + f1,1,2 − f1,2,1 and f2,2,2 := f2,1,1 + f2,1,2 − f2,2,1. At last f1 := f1,1,1 + f1,1,2 and
f2 := f2,1,1 + f2,1,2.
Moreover qᾱ(ω

0) = 0 when |ᾱ| is even and qᾱ(ω
0) = (−1)k|fᾱ| when |ᾱ| is odd whereas hᾱ(ω

0) = 0 when |ᾱ| is
odd. When |ᾱ| = 4, hᾱ(ω

0) = fβ̄ω
0 where ᾱ = β̄◦(j), j = 1; 2 and when |ᾱ| = 2, hᾱ(ω

0) = −(fᾱ◦(1)+fᾱ◦(2))ω
0.

Now q1(ω
0) = 0, h1(ω

0) = ω0, q2(ω
0) = sin(ω0) = (−1)k, h2(ω

0) = 2ω0 cos(ω0) = 0, q3(ω
0) = 0,

h3(ω
0) = −2ω0, q4(ω

0) = −2(−1)k, h4(ω
0) = 0.

Thus, for i = 2 and so |ᾱ| = 3, |q2(ω0) − qᾱ(ω
0)| = |1 − fᾱ| . (1/k) and for i = 4 and so |ᾱ| = 1,

|q4(ω0)− qᾱ(ω
0)| = | − 2− fj | . (1/k), since fj := fj,1,1 + fj,1,2, j = 1; 2.

And, for i = 1 and so |ᾱ| = 4, |h1(ω)/ω − hᾱ(ω
0)/ω0| ≤ |h1(ω)/ω − h1(ω

0)/ω0|+ |h1(ω0)/ω0 − hᾱ(ω
0)/ω0| =

|h1(ω)/ω − h1(ω
0)/ω0| + |1 − fβ̄ | . (1/k), due to Lemma 4.2. At last, for i = 3 and so |ᾱ| = 2, |h3(ω)/ω −

hᾱ(ω
0)/ω0| ≤ |h3(ω)/ω − h3(ω

0)/ω0|+ |h3(ω0)/ω0 − hᾱ(ω
0)/ω0| = |h3(ω)/ω − h3(ω

0)/ω0|+ | − 2 + (fᾱ◦(1) +
fᾱ◦(2))| . (1/k), due to Lemma 4.2.

(2) Since hᾱ(ω
0)/ω0 = 0 for an odd |ᾱ| (cf. Proof of Theorem 4.1), it is bounded from above by a constant

independent of k.
For an even i, |qi(ω)| is proved to satisfy the same property by induction on m where i = 2m. It is enough to
assume that both |q2m(ω)| and |h2m(ω)/ω| are bounded from above by a constant independent of k and to use
the recursive definition of qi and hi twice to compute the same expressions with indices 2m + 1 and 2m + 2
((4.50) and (4.51)).

�

5. Energy decreasing

Using the Riesz basis constructed in the latest section, the energy is proved to decrease exponentially to a non-vanishing
value depending on the initial datum. The decay rate is explicitly given at the end of Theorem 5.1 below since the
ω’s satisfying iω2 ∈ (σ2 ∪ σ̃2) are the solutions of (3.28). For any fixed value of n, the constant C is computable
numerically. Its value is given for n = 2.

5.1. Energy decreasing using the Riesz basis.

Theorem 5.1. (Energy decreasing of the solution)
Let E(t) be the energy defined by (2.11) in the introduction and H the Hilbert space introduced at the beginning of
Section 2. Keeping the notation of Theorem 3.1, let H1 (respectively H2) be the subspace of H spanned by the ψ1(ω, ·)’s
(resp. ψ2(ω, ·)’s), which are the normalized (in H) eigenfunctions of Ad associated to the eigenvalues iω2 in σ1 (resp.
σ2 ∪ σ̃2).

(1) H1 is orthogonal to H2.
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(2) Let u0 in H be the initial condition of the boundary value problem given in the introduction and u10 its orthogonal
projection onto H1.
Then E(t) decreases exponentially to E1(0) := ‖u10‖2H when t tends to +∞. More precisely

(5.57) E(t) ≤ E1(0) + e−2CtE2(0)

where −C := supiω2∈(σ2∪σ̃2) ℜ(iω2) < 0.

Proof. First part: Above all, it is easy to see that the operator A∗
d is obtained by changing i by −i in Ad. Thus, if

Adψ
1(ω, .) = λψ1(ω, .), with λ = iω2 then A∗

dψ
1(ω, .) = −λψ1(ω, .).

Now, to prove that H1 is orthogonal to H2, it suffices to check that any generalized eigenfunction ψ2(ω′, .) of H2 is

orthogonal to any eigenfunction ψ1(ω, .) of H1.

First we assume that ψ2(ω′, .) is an eigenfunction, i.e

Adψ
2(ω′, .) = λ′ψ2(ω′, .)

with λ′ = iω′2. Therefore, since λ is purely imaginary,

λ′ < ψ2(ω′, .), ψ1(ω, .) >H = < Adψ
2(ω′, .), ψ1(ω, .) >H

= < ψ2(ω′, .),A∗
dψ

1(ω, .) >H

= − < ψ2(ω′, .),Adψ
1(ω, .) >H

= −λ < ψ2(ω′, .), ψ1(ω, .) >H

= λ < ψ2(ω′, .), ψ1(ω, .) >H .

Consequently < ψ2(ω′, .), ψ1(ω, .) >H= 0.

Secondly, we assume that λ′ is not simple. Let ψ2(ω′, .) be an associated generalized eigenfunction of order p ≥ 2, in
the sense that

(Ad − λ′)pψ2(ω′, .) = 0, (Ad − λ′)p−1ψ2(ω′, .) 6= 0.

Setting ψ = (Ad − λ′)ψ2(ω′, .), then ψ is a generalized eigenfunction associated to λ′ of order p − 1, so arguing by

iteration with respect to the order p we can assume that < ψ,ψ1(ω, .) >H= 0.

Therefore
λ′ < ψ2(ω′, .), ψ1(ω, .) >H = < Adψ

2(ω′, .) + ψ, ψ1(ω, .) >H

= < Adψ
2(ω′, .), ψ1(ω, .) >H

= λ < ψ2(ω′, .), ψ1(ω, .) >H ,

as previously. Consequently < ψ2(ω′, .), ψ1(ω, .) >H= 0.

Second part: the spectrum of the dissipative operator Ad is the union of σ1 - set of the purely imaginary eigen-
values and σ2 ∪ σ̃2 - set of the other eigenvalues (see Theorem 3.1).
The initial condition u0 :=

(

(uᾱ)ᾱ∈I

)

0
is written as a sum of two terms:

u0 :=
∑

iω2∈σ1

u10(ω, ·)ψ1(ω, ·) +
∑

iω2∈(σ2∪σ̃2)

u20(ω, ·)ψ2(ω, ·)

where ψ1(ω, ·) (respectively ψ2(ω, ·)) is a normalized (in H) eigenfunction of Ad associated to the eigenvalue iω2 in
σ1 (resp. σ2). Note that the sum takes into account the multiplicities of the eigenvalues here.
Thus the solution of the boundary value problem given in the introduction is:

u(t) :=
∑

iω2∈σ1

u10(ω, ·)eiω
2tψ1(ω, ·) +

∑

iω2∈(σ2∪σ̃2)

u20(ω, ·)eiω
2tψ2(ω, ·).

The energy, defined in the introduction, by (2.11) is: E(t) = E1(t) + E2(t) with
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E1(t) :=
∑

iω2∈σ1

∥

∥u10(ω, ·)
∥

∥

2

H
|eiω2t|2, E2(t) :=

∑

iω2∈(σ2∪σ̃2)

∥

∥u20(ω, ·)
∥

∥

2

H
|eiω2t|2.

Now, since σ1 contains only purely imaginary eigenvalues (see Theorem 3.1), |e2iω2t| = 1, for any ω such that iω2 ∈ σ1
and any t > 0. Thus E1(t) = E1(0) for any t > 0.
The real part of iω2 is a non-positive real number if ω is such that iω2 ∈ (σ2 ∪ σ̃2) (see Theorem 3.1). In the proof of
Theorem 3.1, this real part is proved to be equal to 2γjπ with γj independent of k if iω2 ∈ σ2. Since σ̃2 is a finite set
and since j belongs to a finite set, there exists C > 0 such that, for any ω such that iω2 ∈ (σ2∪ σ̃2): −ℜ(iω2) ≥ C > 0.
It holds |E2(t)| ≤ e−2CtE2(0). Thus E2(t) decreases exponentially to 0 when t tends to +∞ and the total energy E(t)
decreases exponentially to E1(0) when t tends to +∞. �

5.2. Energy decreasing: a numerical example. Let us explicit the case n = 2 which corresponds to Figure 1.
The polynomials PA,2 and PB,2 defined in Proposition 3.4 are:

PA,2(z) = 9z3 + 7z2 + 7z + 9, PB,2(z) = 9z3 + z2 − z − 9.

The polynomial PA,2 has 3 roots which are:

z
(2)
A,1 = −1 = eiπ, z

(2)
A,2 =

1

9
(1− 4i

√
5) = e−i arctan(4

√
5), z

(2)
A,3 =

1

9
(1 + 4i

√
5) = ei arctan(4

√
5).

Thus the spectrum of the conservative operator A0 introduced at the beginning of Section 3 is given by (3.18) with

σ
(0)
2 = {i(kπ ± arctan(4

√
5))2 : k ∈ Z}.

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3

20

40
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80

100
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Figure 4. n = 2 : the spectrum σ2 ∪ σ̃2.

The values of γj defined by (3.36) are: γ1 = − 2

5π
, γ2 = γ3 = − 3

10π
.

Then the set σ2 which is a part of the spectrum of the dissipative operator Ad (see the beginning of Section 3 and
Theorem 3.1) has two vertical asymptots:

ℜ(λ) = 2πγ1 = −4

5
, ℜ(λ) = 2πγ2 = 2πγ3 = −3

5
,

which is consistent with the numerical computation of the spectrum (see Figure 4).

At last, numerically the eigenvalue of Ad with the largest real part is λ ≈ −0.37459+0.873125i. Hence the approximate
value for the decay rate: C ≈ 0.37459.
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6. Transfer function analysis

The transfer function of the conservative operator A0 introduced at the beginning of Section 3 is proved to be bounded
from above. Let us recall the definition of this operator: A0 : D(A0) ⊂ H → H is defined by

A0u := (−i ∂2xuᾱ)ᾱ∈I ,

with

D(A0) :=

{

u ∈
∏

ᾱ∈I

H2(0, 1) : satisfies (6.58) to (6.60) hereafter

}

,

(6.58)
du

dx
(1) = 0, uᾱ(0) = 0, ᾱ ∈ IDir,

(6.59) uᾱ◦(β)(1) = uᾱ(0), β = 1, 2, ᾱ ∈ IInt,

(6.60)

2
∑

β=1

duᾱ◦(β)
dx

(1) =
duᾱ
dx

(0), ᾱ ∈ IInt

and B =











δ1
0
...
0











∈ L(CN ,D(A0)
′), where the duality is obtained by means of the inner product in H.

Theorem 6.1. (Estimate of the transfer function)
Let A0 : D(A0) ⊂ H → H and B be the operators defined above. The transfer function is given by:

H(λ) = B∗(λI +A0)
−1B ∈ L(CN ), λ ∈ C+ = {λ ∈ C; ℜλ > 0} .

It satisfies sup
ℜλ=γ

|H(λ)| <∞, γ > 0.

Proof. In order to compute the transfer function and to prove that it satisfies sup
ℜλ=γ

|H(λ)| < ∞, γ > 0, we solve the

following problem: z(1) = H(λ)g, g ∈MN,1(C), i.e.,

(6.61)







































λzᾱ + i
d2zᾱ
dx2

= 0, (0, 1), ᾱ ∈ I,

dz

dx
(1) = g, zᾱ(0) = 0, ᾱ ∈ IDir,

zᾱ◦(β)(1) = zᾱ(0), β = 1, 2, ᾱ ∈ IInt,
2
∑

β=1

dzᾱ◦(β)
dx

(1) =
dzᾱ
dx

(0), ᾱ ∈ IInt.

We denote
ψ
λ
= (λI +A0)

−1Bg.

We consider the decomposition, for an even n (an odd value for n leads to a similar expression and this case is left to
the reader):

ψ
λ

=
∑

k∈Z∗

2n−1
∑

l=1

ak,l(λ)φ
0

k,l
(kπ, ·) +

∑

k∈Z

(2n+2)/3
∑

l=1

bk,l(λ)φ
0

k,l
(kπ +

π

2
, ·)

+
∑

k∈Z

n
∑

j=2

cj,k(λ)φ
0

k
(ωj,k, ·)

where the φ0
k,l
(kπ, ·)’s (respectively φ0

k,l
(kπ + π

2 , ·)’s and the φ0
k
(ωj,k, ·)’s) are the normalized (in H) eigenfunctions of

A0 with the corresponding eigenvalues λk = i(ωk)
2 with ωk ∈ σ0

1 (resp. λj,k = i(ωj,k)
2 ∈ σ0

2). See Theorems 3.1 and
3.3 for the details and note that, for simplicity, the same notation is used for eigenfunctions which do not have the
same form.

Now the above coefficients in the decomposition of ψ
λ
are equal to:
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ak,l(λ) =
< Bg, φ0

k,l
(kπ, ·) >D(A0)′,D(A0)

λ+ λk
=
< g,B∗φ0

k,l
(kπ, ·) >CN

λ+ λk
, ∀ k ∈ Z

∗

bk,l(λ) =
< Bg, φ0

k,l
(kπ + π

2 , ·) >D(A0)′,D(A0)

λ+ λk
=
< g,B∗φ0

k,l
(kπ + π

2 , ·) >CN

λ+ λk
, ∀ k ∈ Z

cj,k(λ) =
< Bg, φ0

k
(ωj,k, ·) >D(A0)′,D(A0)

λ+ λj,k
=
< g,B∗φ0

k
(ωj,k, ·) >CN

λ+ λj,k
, ∀ k ∈ Z, j = 2, · · · , n

Which implies that

H(λ)g =
∑

i(ω0)2∈σ(0)

ϕ0
n+1(ω

0, 1)

λ+ i(ω0)2
g,

where ϕ0
n+1(ω

0, ·) is defined by (4.49). It holds

H(λ) =

(

∑

k∈Z

ϕ0
n+1(ω

0, 1)

λ+ λk
0 ... 0

)

, ∀λ such thatℜλ = γ.

sup
ℜλ=γ

|H(λ)| = sup
ℜλ=γ

∣

∣

∣

∣

∣

∣

∑

i(ω0)2∈σ(0)

ϕ0
n+1(ω

0, 1)

λ+ i(ω0)2

∣

∣

∣

∣

∣

∣

≤
√
2 sup

ℜλ=γ

∑

i(ω0)2∈σ(0)

∣

∣ϕ0
n+1(ω

0, 1)
∣

∣

γ + |(ω0)2 + ℑ(λ)| .

It is known that |ϕ0
n+1(ω

0, 1)| . 1 (cf. Lemma 4.2). The spectrum of A0 can be split into a finite union of sets of the

form
{

i(kπ + θ)2
}

k∈Z∗ or k∈Z
, where θ is a real number, (cf. Theorem 3.1) and the multiplicity of the eigenvalues is

uniformly bounded. Thus, if we set λ = γ + iy, it suffices to show

(6.62) sup
y∈R

∑

k∈N

∣

∣

∣

∣

1

γ + |(kπ + θ)2 + y|

∣

∣

∣

∣

<∞.

First we consider the case y ≥ 0 and we set Σ(y) =
∑

k∈N

∣

∣

∣

∣

1

γ + |(kπ + θ)2 + y|

∣

∣

∣

∣

. Then

(6.63) Σ(y) ≤
∑

k∈N

∣

∣

∣

∣

1

(kπ + θ)2

∣

∣

∣

∣

<∞, y ≥ 0.

Now, we assume that y < 0 and we set y = −Y 2, Y > 0. If Y ≥ |θ|, we have

Σ(y) = Σ1(Y ) +

∣

∣

∣

∣

∣

∣

∣

1

γ + (E[
Y − θ

π
]π + θ)2 − Y 2

∣

∣

∣

∣

∣

∣

∣

+Σ2(Y ),

where

Σ1(Y ) =
∑

k≤E[
Y − θ

π
]−1

1

γ + Y 2 − (kπ + θ)2
, Σ2(Y ) =

∑

k≥E[
Y − θ

π
]+1

1

γ + (kπ + θ)2 − Y 2
.

First, we have

(6.64) Σ(y) ≤ Σ1(Y ) +
1

γ
+Σ2(Y ),

and the following estimates for Σi(Y ), i = 1, 2 :
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Σ1(Y ) ≤
∑

k≤E[
Y − θ

π
]−1

1

Y 2 − (kπ + θ)2
,

=
∑

k≤E[
Y − θ

π
]−1

1

π(
Y − θ

π
− k)(Y + kπ + θ)

,

≤ 1

π

∑

k≤E[
Y − θ

π
]−1

1

Y
,

. 1,

Σ2(Y ) ≤
∑

k≥E[
Y − θ

π
]+1

1

(kπ + θ)2 − Y 2

=
∑

k∈N

1

((k + E[
Y − θ

π
] + 1)π + θ)2 − Y 2

=
∑

k∈N

1
(

(k + E[
Y − θ

π
] + 1)π + θ − Y

)(

(k + E[
Y − θ

π
] + 1)π + θ + Y

)

≤
∑

k∈N

1
(

(k +
Y − θ

π
)π + θ − Y

)

× kπ

=
π

6
.

So, we have proved that Σ(y) is uniformly bounded for large values of |y|, consequently (6.62) holds with a continuity
argument.

�

7. Application to feedback stabilization with another feedback law

This section is dedicated to some stability properties of the solutions of system (7.65)-(7.70). We obtain an exponential
stability result in the energy space.

•R •
O

•

O1

•
O2

•

O1,1

•

O2,2

•

O1,2

•

O2,1

❉✐ss✐♣❛t✐♦♥ ❧❛✇ ❉✐r✐❝❤❧❡t ❜♦✉♥❞❛r② ❝♦♥❞✐t✐♦♥

❉✐ss✐♣❛t✐♦♥ ❧❛✇

Figure 5. A Tree-Shaped network with exponential stabilizing feedback

Let ᾱ∗ be an arbitrary element of IDir. We consider the following initial and boundary value problem :

(7.65)
∂uᾱ
∂t

(x, t) + i
∂2uᾱ
∂x2

(x, t) = 0, 0 < x < 1, t > 0, ᾱ ∈ I,

(7.66) i u(1, t) +
∂u

∂x
(1, t) = 0, i uᾱ(0, t)−

∂uᾱ
∂x

(0, t) = 0, ᾱ ∈ IDir, ᾱ 6= ᾱ∗, t > 0,
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(7.67) uᾱ∗(0, t) = 0, t > 0,

(7.68) uᾱ◦β(1, t) = uᾱ(0, t), t > 0, β = 1, 2, ᾱ ∈ IInt,

(7.69)

2
∑

β=1

∂uᾱ◦β
∂x

(1, t) =
∂uᾱ
∂x

(0, t), t > 0, ᾱ ∈ IInt,

(7.70) uᾱ(x, 0) = (uᾱ)0(x), 0 < x < 1, ᾱ ∈ I.

It is well-known that system (7.65)-(7.70) may be rewritten as the first order evolution equation

(7.71)

{

u′ = Adu,
u(0) = u0,

where the operator Ad : D(Ad) ⊂ H → H is defined by

Adu := (−i ∂2xuᾱ)ᾱ∈I ,

with

D(Ad) :=

{

u ∈
∏

ᾱ∈I

H2(0, 1) : satisfies (7.72) to (7.75) hereafter

}

,

(7.72) i u(1) +
du

dx
(1) = 0, i uᾱ(0)−

duᾱ
dx

(0) = 0, ᾱ ∈ IDir, ᾱ 6= ᾱ∗,

(7.73) uᾱ∗(0) = 0,

(7.74) uᾱ◦β(1) = uᾱ(0), β = 1, 2, ᾱ ∈ IInt,

(7.75)

2
∑

β=1

duᾱ◦β
dx

(1) =
duᾱ
dx

(0), ᾱ ∈ IInt.

As in Section 2, the operator Ad generates a C0 semigroup of contractions on H.

In this section, we show that the semigroup etAd decays to the null steady state with an exponential decay rate.
To obtain this, our technique is based on a frequency domain approach method and combines a contradiction argu-
ment with the multiplier technique to carry out a special analysis for the resolvent.

Theorem 7.1. There exist constants C, τ > 0 such that the semigroup etAd satisfies the following estimate

(7.76)
∥

∥etAd
∥

∥

L(H)
≤ C e−τt, ∀ t > 0.

We will employ from [31, 23] the following frequency domain theorem for uniform stability of a C0 semigroup of
contractions on a Hilbert space:

Lemma 7.2. A C0 semigroup etL on a Hilbert space H satisfies

||etL||L(H) ≤ C e−τt,

for some constant C > 0 and for τ > 0 if and only if

(7.77) ρ(L) ⊃
{

iβ
∣

∣ β ∈ R
}

≡ iR,

and

(7.78) lim sup
|β|→∞

‖(iβI − L)−1‖L(H) <∞,

where ρ(L) denotes the resolvent set of the operator L.
Lemma 7.3. The spectrum of Ad contains no point on the imaginary axis.
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Proof. Since the resolvent of Ad is compact, its spectrum σ(Ad) only consists of eigenvalues of Ad. We will show that
the equation

(7.79) AdZ = iβZ

with Z ∈ D(Ad) and β 6= 0 has only the trivial solution.
By taking the inner product of (7.79) with Z and using

(7.80) ℜ (< AdZ,Z >H) = − |z(1)|2 −
∑

ᾱ∗ 6=ᾱ∈IDir

|zᾱ(0)|2 ,

we obtain that z(1) = 0, zᾱ(0) = 0, ᾱ∗ 6= ᾱ ∈ IDir. Next, we get the following ordinary differential equation:

(7.81)















































i βzᾱ(x) + i
d2zᾱ
dx2

(x) = 0, x ∈ (0, 1), ᾱ ∈ I,

z(1) =
dz

dx
(1) = 0, zᾱ(1) =

dzᾱ
dx

(1) = 0, ᾱ∗ 6= ᾱ ∈ IDir,

zᾱ∗(0) = 0,
zᾱ◦β(1) = zᾱ(0), β = 1, 2, ᾱ ∈ IInt,
2
∑

β=1

dzᾱ◦β
dx

(1) =
dzᾱ
dx

(0), ᾱ ∈ IInt.

And the above system has only the trivial solution. �

Proof of Theorem 7.1. By Lemma 7.2, it suffices to show that Ad satisfies the following two conditions:

(7.82) ρ(Ad) ⊃
{

i β
∣

∣ β ∈ R
}

≡ iR,

and

(7.83) lim sup
|β|→∞

‖(iβ −Ad)
−1‖L(H) <∞,

where ρ(Ad) denotes the resolvent set of the operator Ad.

By Lemma 7.3 the condition (7.82) is satisfied. Suppose that condition (7.83) is false. By the Banach-Steinhaus
Theorem (see [17]), there exist a sequence of real numbers βn → ∞ and a sequence of vectors Zn ∈ D(Ad) with
‖Zn‖H = 1 such that

(7.84) ||(iβnI −Ad)Zn||H → 0 as n→ ∞,

i.e.,

(7.85) iβnzᾱ,n + i
d2zᾱ,n
dx2

≡ fᾱ,n → 0 in L2(0, 1), ᾱ ∈ I.

Our goal is to derive from (7.84) that ||Zᾱ,n||H converges to zero. Thus there will be a contradiction.

We notice that from (7.80), it holds:

(7.86) ||(iβnI −Ad)Zn||H ≥ |ℜ (〈(iβnI −Ad)Zn, Zn〉H) | = |zn(1)|2 +
∑

ᾱ∗ 6=ᾱ∈IDir

|zᾱ,n(0)|2 .

Then, by (7.84)

(7.87) zn(1) → 0, zᾱ,n(0) → 0, ᾱ∗ 6= ᾱ ∈ IDir

and

(7.88)
dzn
dx

(1),
dzᾱ,n
dx

(0) → 0, ᾱ∗ 6= ᾱ ∈ IDir.

First we assume that the sequence (or a subsequence) of βn converges towards +∞. According to (7.85):

zᾱ,n = Aᾱ,n sin
√

βnx+Bᾱ,n cos
√

βnx−

(7.89) i

∫ x

0

sin
√
βn(x− y)√
βn

fᾱ,n(y) dx, x ∈ (0, 1), ᾱ ∈ I,
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where Aᾱ,n and Bᾱ,n are constants.

Moreover, for ᾱ = ᾱ∗,

(7.90) zᾱ∗,n = Aᾱ∗,n sin
√

βnx− i

∫ x

0

sin
√
βn(x− y)√
βn

fᾱ∗,n(y) dx, x ∈ (0, 1).

According to (7.87)-(7.88), it holds for ᾱ∗ 6= ᾱ ∈ IDir,

(7.91)

{

Aᾱ sin
√
βn +Bᾱ cos

√
βn → 0

Aᾱ

√
βn cos

√
βn −√

βnBᾱ sin
√
βn → 0,

which implies that, for ᾱ∗ 6= ᾱ ∈ IDir,

(7.92) Aᾱ,n, Bᾱ,n → 0

and that

(7.93) zᾱ,n → 0, inL2(0, 1), ᾱ∗ 6= ᾱ ∈ IDir.

By using the continuity and transmission conditions, we deduce by iteration and by the same way as above:

zᾱ,n → 0, inL2(0, 1), ᾱ ∈ I.

Which contradicts the fact that ‖Zn‖H = 1.

Now, we assume that no subsequence of βn converges towards +∞, (i.e limn→∞ βn = −∞). Since zᾱ satisfies the first
equality of (7.81), we multiply it by zᾱ, and then integrating by parts, summing over all ᾱ ∈ I, using the boundary
and transmission conditions as well as (7.86) and (7.88), we get

iβn‖Zn‖2H − i
∑

ᾱ∈I

∫ 1

0

|dzᾱ
dx

|2dx+ o(1) = 0,

which also contradicts the fact that ‖Zn‖H = 1.

�
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