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First of all, we introduce some notation needed to formulate the problem under consideration, which is simply that of [START_REF] Dáger | Wave propagation, observation and control in 1-d flexible multi-structures[END_REF]. We refer to [START_REF] Dáger | Wave propagation, observation and control in 1-d flexible multi-structures[END_REF] for more details. To construct the binary tree T which will be considered in the following, we need some definitions (recall that a tree is a planar connected graph without paths). A multi-index ᾱ is a k-tuple (α 1 , . . . , α k ) if k lies in N -{0} and it is empty if k = 0. For a fixed integer n, we choose for I the set of multi-indices ᾱ, with length k in {0, 1, . . . , n}, such that, if k = 0, α j ∈ {1; 2}, for all j in {1, . . . , k}. Then the set of vertices V of the tree T is V := (∪ ᾱ∈I O ᾱ) ∪ {R} where R is an additional vertex which will be the root of the tree T . The edges are denoted by e ᾱ with ᾱ in I. Note that the number of edges is the cardinal of I and it holds:

|I| = N = 2 n+1 -1.
Define, for any non-empty multi-indices ᾱ = (α 1 , ..., α k ) and β = (β 1 , ..., β m ), the multi-index ᾱ• β := (α 1 , ..., α k , β 1 , ..., β m ) of length (k + m). Then, for a non-empty multi-index ᾱ = (α 1 , ..., α k ), the edge e ᾱ is chosen to have the extremities O ᾱ and O ᾱ′ with ᾱ = ᾱ′ • (α k ) and the edge e (corresponding to the case ᾱ = ∅) has the extremities R and O.

See Figure 1 for a representation in the case n = 2.

By the multiplicity of a vertex of T we mean the number of edges that branch out from that vertex. If the multiplicity is equal to one, the vertex is called exterior. Otherwise, it is said to be interior. We denote by Int the set of the interior vertices of the tree T and by Dir the set of the exterior vertices, except R, which has a particular status in our problem. Dir is chosen for Dirichlet (see the problem below). A dissipation law is imposed at the root R which explains why it is isolated from the other exterior vertices. Define I Int = {ᾱ; O ᾱ ∈ Int}, I Dir = {ᾱ; O ᾱ ∈ Dir} which are the sets of the indices of the interior and exterior vertices, except R, respectively. Note that the multiplicity of each interior point of the tree T is equal to 3 and that the integer (n + 1) represents the maximum level of the binary tree T . Furthermore, the length of the edge e ᾱ is equal to 1. Then, e ᾱ will be parametrized by its arc length by means of the functions π ᾱ, defined in [0, 1] such that π ᾱ(0) = O ᾱ and π ᾱ [START_REF] Abdallah | Stabilization and approximation of some distributed systems by either dissipative or indefinite sign damping[END_REF] is the other vertex of this edge. This choice seems unconventional but it is made for technical reasons.

In this paper, we study the dissipative Schrödinger operator under the tree-shaped network T introduced above. The case N ≥ 3 is the one we are interested in: it corresponds to n ≥ 1. The case N = 1 is well-known. See [START_REF] Lagnese | Modeling, Analysis of dynamic elastic multi-link structures[END_REF] and [START_REF] Dáger | Wave propagation, observation and control in 1-d flexible multi-structures[END_REF] concerning the model. More precisely, we consider the following initial and boundary value problem:

(1.1) ∂u ᾱ ∂t (x, t) + i ∂ 2 u ᾱ ∂x 2 (x, t) = 0, 0 < x < 1, t > 0, ᾱ ∈ I,

(1.2) i u(1, t) + ∂u ∂x (1, t) = 0, u ᾱ(0, t) = 0, ᾱ ∈ I Dir , t > 0, (1.3) u ᾱ•(β) (1, t) = u ᾱ(0, t), t > 0, β = 1, 2, ᾱ ∈ I Int , (1.4 
)

2 β=1 ∂u ᾱ•(β) ∂x (1, t) = ∂u ᾱ ∂x (0, t), t > 0, ᾱ ∈ I Int ,
(1.5) u ᾱ(x, 0) = (u ᾱ) 0 (x), 0 < x < 1, ᾱ ∈ I, where u ᾱ : [0, 1] × (0, +∞) → R, ᾱ ∈ I, is the transverse displacement of the edge e ᾱ. These functions allow us to identify the network with its rest graph. In this sense, the vertices of T are called nodes and the edges are called branches.

Note that in the problem above, (1.1) is the Schrödinger equation imposed on all the branches of the tree, (1.2) concerns the root and the other exterior nodes (recall that u = u ᾱ with ᾱ = ∅ and that this empty multi-index is In the last few years various physical models of multi-link flexible structures consisting of finitely many interconnected flexible elements such as strings, beams, plates, shells have been of great interest. See the references by Ali Mehmeti, von Below and Nicaise in [START_REF] Mercier | Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses[END_REF] as well as [START_REF] Chen | Modeling, stabilization and control of serially connected beams[END_REF], [START_REF] Dáger | Wave propagation, observation and control in 1-d flexible multi-structures[END_REF], [START_REF] Lagnese | Modeling, Analysis of dynamic elastic multi-link structures[END_REF] and the references therein. The spectral analysis of such structures has some applications to control or stabilization problems (cf. [START_REF] Lagnese | Modeling, Analysis of dynamic elastic multi-link structures[END_REF]). For interconnected strings (corresponding to a second-order operator on each string), a lot of results have been obtained: the asymptotic behaviour of the eigenvalues (see the references by Ali Mehmeti, von Below and Nicaise in [START_REF] Mercier | Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses[END_REF] as well as [START_REF] Ali Mehmeti | Partial differential equations on multi-structures[END_REF]), the relationship between the eigenvalues and algebraic theory (cf. papers by von Below, Nicaise and [START_REF] Lagnese | Modeling, Analysis of dynamic elastic multi-link structures[END_REF]), qualitative properties of solutions (see papers by von Below cited in [START_REF] Mercier | Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses[END_REF] for example) etc... For interconnected beams (corresponding to a fourth-order operator on each beam), some results on the asymptotic behaviour of the eigenvalues and on the relationship between the eigenvalues and algebraic theory were obtained by Nicaise and Dekoninck with different kinds of connections using the method developed by von Below in [START_REF] Below | A characteristic equation associated to an eigenvalue problem on C 2 -networks[END_REF] to get the characteristic equation associated to the eigenvalues. Mercier and Régnier used the same method in [START_REF] Mercier | Spectrum of a network of Euler-Bernoulli beams[END_REF] to compute the spectrum for a hybrid system of N flexible beams connected by n vibrating point masses. This type of structure was studied by Castro and Zuazua in many papers (see [START_REF] Castro | Analyse spectrale et contrôle d'un systèheterme hybride composé de deux poutres connectées par une masse ponctuelle[END_REF] and the papers by the same authors cited in [START_REF] Mercier | Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses[END_REF] as well as one by Castro and Hansen also cited there). In another paper (see [START_REF] Mercier | Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses[END_REF]), Mercier and Régnier used the technique of exterior matrices due to W. H. Paulsen (presented for other purposes in [START_REF] Paulsen | The exterior matrix method for sequentially coupled fourth-order equations[END_REF]) which D. Mercier had already used in the same type of context in [START_REF] Mercier | Spectrum analysis of a serially connected Euler-Bernoulli beams problem[END_REF]. The aim of these papers was to establish controllability. Later on, they have investigated the same problem as in [START_REF] Chen | Modeling, stabilization and control of serially connected beams[END_REF]. In that paper, Chen and al. have established the exponential stability of the problem but with an assumption on the material constants. They seem to think that the exponential stability can not hold without this assumption. Mercier and Régnier prove, using another method (that of the exterior matrices -Chen and al. had used a moment method), that in fact, the exponential stability always holds.

In this paper a feedback stabilization problem for Schrödinger equations in networks is studied. See [START_REF] Ammari | Boundary feedback stabilization of a chain of serially connected strings[END_REF]- [START_REF] Ammari | Stabilization of generic trees of strings[END_REF], [START_REF] Lagnese | Modeling, Analysis of dynamic elastic multi-link structures[END_REF]. In [START_REF] Banica | Dispersion for the Schrödinger equation on networks[END_REF], Banica and Ignat consider the Schrödinger equation on a network formed by a tree with the last generation of edges formed by infinite strips. They prove dispersive estimates which are useful for solving the linear Schrödinger equation. Let us also cite [START_REF] Zhang | A New Approach for the Stability Analysis of Wave Networks[END_REF], a paper in which Zhang and Xu study the stability of wave networks. They give recursive expressions that can be used to establish the stability of any given tree-shaped network. The geometry of their problem is close to ours but we give a general result of stability on binary trees with the Schrödinger equation and not the wave equation.

This paper is organized as follows:

In Section 2, the proper functional setting for system (1.1)-(1.5) is given: in particular a dissipative operator is defined. The system is proved to be well-posed. A notion of energy is defined by (2.11) and the energy of the solution of the system is proved to be a non-increasing function of the variable t. In Section 3, the spectrum of the Schrödinger operator associated to the dissipative system (1.1)-(1.5) is studied. The families of eigenvalues and the dimension of the corresponding eigenspaces are given for the dissipative operator as well as for the associated conservative operator. The localization and the asymptotic behaviour of the large eigenvalues are also studied. All the properties of the spectrum developed in this section are useful for the applications. In Section 4, some of the eigenfunctions of the dissipative operator associated to system (1.1)- (1.5) are proved to form a Riesz basis of the space they span. The rewriting of the solution in this Riesz basis allows to prove, in Section 5, that the energy of the solution decreases exponentially to a non-vanishing value depending on the initial datum. The decay rate is explicitly given in Theorem 5.1. Section 6 is dedicated to the transfer function of the dissipative operator associated to system (1.1)-(1.5).

We study, in Section 7, the stabilization result for (7.65)-(7.70) (which is system (1.1)-(1.5) with another feedback law) by the frequency domain technique. The explicit decay rate of the energy of the solution is given.

Well-posedness of the system

In order to study system (1.1)-(1.5) we need a proper functional setting. We define the following space

H = ᾱ∈I L 2 (0, 1)
equipped with the inner product

(2.6) < u, ũ > H = ᾱ∈I 1 0 u ᾱ(x) ūᾱ (x) dx.
It is well-known that system (1.1)-(1.5) may be rewritten as the first order evolution equation

(2.7) u ′ = A d u, u(0) = u 0 ,
where the operator

A d : D(A d ) ⊂ H → H (the index d is for dissipative) is defined by A d u := (-i ∂ 2 x u ᾱ) ᾱ∈I , with D(A d ) := u ∈ ᾱ∈I H 2 (0, 1) : satisfies (2.8) to (2.10) hereafter , (2.8) i u(1) + du dx (1) = 0, u ᾱ(0) = 0, ᾱ ∈ I Dir , (2.9) u ᾱ•(β) (1) = u ᾱ(0), β = 1, 2,
(2.10)

2 β=1 du ᾱ•(β) dx (1) = du ᾱ dx (0), ᾱ ∈ I Int .
The natural energy E(t) of a solution u = (u ᾱ) ᾱ∈I of (1.1)-(1.5) is defined by:

(2.11)

E(t) = 1 2 ᾱ∈I 1 0 |u ᾱ(x, t)| 2 dx. Proposition 2.1. (i) For an initial datum u 0 ∈ H, there exists a unique solution u ∈ C([0, +∞), H) to problem (2.7). Moreover, if u 0 ∈ D(A d ), then u ∈ C([0, +∞), D(A d )) ∩ C 1 ([0, +∞), H).
(ii) The solution u of (1.1)-(1.5) with initial datum in D(A d ) satisfies the dissipation law:

(2.12)

E ′ (t) = -u(1, t) 2 ≤ 0,
(recall that u = u ᾱ with ᾱ = ∅ and that this empty multi-index is chosen for the edge containing the root R).

Therefore the energy is a non-increasing function of the time variable t.

Proof. (i) By Lumer-Phillips' theorem (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF][START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]), it suffices to show that A d is dissipative and maximal.

We first prove that A d is dissipative. Take u ∈ D(A d ). Then

A d u, u H = ᾱ∈I 1 0 -i ∂ 2 x u ᾱ(x)u ᾱ(x)dx.
By integration by parts and using the transmission and boundary conditions, it holds:

(2.13)

ℜ ( A d u, u H ) = -|u(1)| 2 ≤ 0.
This shows the dissipativeness of A d (recall that u(1) is the value of the solution at the root R).

Let us now prove that A d is maximal, i.e. that λI -A d is surjective for some λ > 0.

Let f ∈ H. We look for u ∈ D(A d ) solution of

(2.14) (λI -A d )u = f , or equivalently (2.15) λ u ᾱ + i ∂ 2 x u ᾱ = f ᾱ, ∀ ᾱ ∈ I.
Multiplying this identity by a test function φ, integrating in space and using integration by parts, it follows, since u ∈ D(A d ), (2.16)

ᾱ∈I 1 0 λu ᾱ(x)φ ᾱ(x) + i ∂ x u ᾱ(x)∂ x φ ᾱ(x) dx + u(1)φ(1) = ᾱ∈I 1 0 f ᾱ(x)φ ᾱ(x) dx.
This problem has a unique solution u ∈ V := u ∈ ᾱ∈I H 1 (0, 1) : u ᾱ(0) = 0, ᾱ ∈ I Dir , and satisfies (2.9) by Lax-Milgram's lemma, because the left-hand side of (2.16) is coercive on (2.16) and integrating by parts lead to:

V . If we consider φ ∈ ᾱ D(0, 1) ⊂ V , then u satisfies λu ᾱ + i ∂ 2 x u ᾱ = f ᾱ in D ′ (0, 1), ᾱ ∈ I. This directly implies that u ∈ V ∩ ᾱ∈I H 2 (0, 1). Coming back to
ᾱ∈I i ∂ x u ᾱ(1)φ ᾱ(1) -i ∂ x u ᾱ(0)φ ᾱ(0) + u(1)φ(1) = 0.
Consequently, by taking particular test functions φ, we obtain

i u(1) + du dx (1) = 0, 2 β=1 du ᾱ•(β) dx (1) = ∂u ᾱ ∂x (0), ᾱ ∈ I Int .
In summary we have found u ∈ D(A d ) satisfying (2.14), which finishes the proof of (i).

(ii) To prove (ii), it suffices to derive the energy (2.11) for regular solutions and to use system (1.1)-(1.5). The calculations are analogous to those of the proof of the dissipativeness of A d in (i), and then, are left to the reader.

Spectral analysis

The goal of this section is to look for the eigenvalues and eigenvectors of the dissipative operator A d as well as those of the associated conservative operator A 0 . To that end, the operator A ǫ is defined like A d in Section 2 except for equation (2.8) which is replaced by:

(3.17) iǫ u(1) + du dx (1) = 0, u ᾱ(0) = 0, ᾱ ∈ I Dir .

Thus A 0 and A d are A ǫ with ǫ = 0 and ǫ = 1 respectively.

The main result (which is proved at the end of the section) is the following one:

Theorem 3.1. (Spectra of A 0 and A d ) i) Let σ (0) be the spectrum of the conservative operator A 0 , then

(3.18) σ (0) = σ (0) 1 ∪ σ (0)
2 , where

σ (0) 1 = {i(kπ) 2 : k ∈ Z * } ∪ i kπ + π 2 2 : k ∈ Z ,
and, if n is even,

σ (0) 2 = i kπ + 1 2 arg(z (n) A,j ) 2 : j = 2, ..., n + 1, k ∈ Z if n is odd, σ (0) 
2 = i kπ + 1 2 arg(z (n) A,j ) 2 : j = 1, ..., n + 1, k ∈ Z, n odd where z (n)
A,j , j = 1, ..., n + 1 is the family of the complex roots of the polynomial P A,n defined in Proposition 3.4.

ii) Let σ be the spectrum of the dissipative operator A d , then

(3.19) σ = σ 1 ∪ σ 2 ∪ σ2 ,
where

σ 1 = σ (0) 1 , σ2 = {(λ k ) k∈S : S is finite, ℜ(λ k ) < 0} and σ 2 = {i(ω j,k ) 2 : j = 1, ..., n + 1, k ∈ Z, |k| ≥ k 0 }, k 0 being an integer. Moreover ℜ(i(ω j,k ) 2 ) < 0, ∀i(ω j,k ) 2 ∈ σ 2 ,
and the following asymptotic behaviour holds:

(3.20) i(ω j,k ) 2 = i k 2 π 2 + kπ arg(z (n) A,j ) + (arg(z (n) A,j )) 2 4 + 2πγ j + o(1)
where γ j is a real negative number (its expression is given by (3.36)). The polynomial P A,n defined in Proposition 3.4 admits n + 1 distinct complex roots z (n)

A,j = 1, j = 1, ..., n + 1 with modulus equal to 1.

Note that when n is even, (-1) is a root of P A,n which is denoted by z (n)

A,1 (cf. Lemma 3.6). Since kπ + 1 2 arg(z

(n) A,1 ) = kπ + π
2 , when n is even, the index j starts from 2 in the definition of σ and T := 1 0 0 2 .

The complex λ = iω 2 (ω ∈ C * , ω = kπ, k ∈ Z and ω = (π/2) + kπ, k ∈ Z) is an eigenvalue of the operator A ǫ defined at the beginning of the section on the binary tree T with level (n + 1) (constructed in the introduction) if and only if (3.21) (iǫ 1)e M (ω) T . . . e M (ω) T e M (ω) T e M (ω) 0 1 = 0 with (n + 1) matrices e M (ω) in the product.

Proof. First, the vector

F ᾱ(x) := φ ᾱ(x) ∂ x φ ᾱ(x)
is introduced to reduce the order of the eigenvalue problem which reads: λ = iω 2 (ω ∈ C) is an eigenvalue of A ǫ with associated eigenvector φ ∈ D(A ǫ ) if and only if φ satisfies the transmission and boundary conditions (3.17), (2.9) and (2.10) of Section 2 and (EP ) : F ′ ᾱ(x) = M (ω)F ᾱ(x) on (0, 1), ∀ᾱ ∈ I. In the following, ω is supposed to be different from 0 (0 is not an eigenvalue, cf. the proof of Theorem 3.3). Thus F ᾱ(x) = e M (ω)x F ᾱ(0) where e M (ω)x = cos(ωx) sin(ωx) ω -ω sin(ωx) cos(ωx) .

For simplicity, the computations to establish the characteristic equation are first presented in the case I Dir = {(1, 1); (1, 2); (2, 1); (2, 2)} (n = 2, see Figure 1. The results will then be generalized to any tree defined as in the introduction.

The Dirichlet condition at the exterior vertices (except the root, see the second part of (3.17

) for ᾱ ∈ I Dir ) im- plies F ᾱ(0) = 0 ∂ x φ ᾱ(0) for ᾱ ∈ I Dir . Then F ᾱ(1) = e M (ω) F ᾱ(0) i.e. F ᾱ(1) = φ ′ ᾱ(0) sin(ω) ω cos(ω)
, for ᾱ ∈ I Dir and ω = 0. Now the continuity at the interior vertices O 1 and O 2 (condition (2.9)) implies:

(3.22) φ ′ j,1 (0) • sin(ω) ω = φ ′ j,2 (0) • sin(ω) ω for j = 1 and j = 2.
Either ω = kπ with k ∈ Z * (first family of eigenvalues which is studied in the proof of Theorem 3.3) or the following condition is imposed:

(3.23) φ ′ j,1 (0) = φ ′ j,2 (0) for j = 1 and j = 2.
Then the second transmission condition at the interior vertices O 1 and O 2 (condition (2.10)) implies, for j = 1 and j = 2:

F j (0) = φ ′ j,1 (0) sin(ω) ω 2 cos(ω)
. Once more, this vector is multiplied by e M (ω) and it follows from the continuity at the vertex O:

either ω = π 2 + kπ, k ∈ Z (second family of eigenvalues which is studied in the proof of Theorem 3.3) or (3.24) φ ′ 1,1 (0) = φ ′ 2,1 (0). 
Using the diagonal matrix T , it can be written as:

(3.25) F (1) = φ ′ 1,1 (0)e M (ω) T e M (ω) T e M (ω) 0 1 . At last, for ω ∈ C * , ω = kπ, k ∈ Z and ω = (π/2) + kπ, k ∈ Z, the dissipation law (first part of condition (3.17))
imposed at the root R gives the characteristic equation:

(3.26) (iǫ 1)e M (ω) T e M (ω) T e M (ω) 0 1 = 0.
And for a general tree as described in the introduction, the characteristic equation is:

(3.27) (iǫ 1)e M (ω) T . . . e M (ω) T e M (ω) T e M (ω) 0 1 = 0.
with (n + 1) matrices e M (ω) in the product where (n + 1) is the maximum level of the binary tree T defined in the introduction.

Note that the cases ω = kπ, k ∈ Z * and ω = (π/2) + kπ, k ∈ Z are treated in next section where the dimension of the associated eigenspace is computed. For the other values of ω, the condition ∂ x φ ᾱ(0) = ∂ x φ γ (0) for any ᾱ and γ in I Dir is imposed. Thus the dimension of the corresponding eigenspace is one.

3.2.

The families of eigenvalues. This section is devoted to the characterization of the different types of eigenvalues for both the conservative and the dissipative operators defined at the beginning of this section. The geometric multiplicity of each eigenvalue is also computed. The operators A 0 and A d are defined in Section 3.1 on the binary tree T with level (n + 1) constructed in the introduction.

(1) The complex λ = iω 2 (ω ∈ C) is an eigenvalue of the operator A 0 if and only if

• either ω = kπ, k ∈ Z * and the dimension of the corresponding eigenspace is equal to:

2 n -1,
• or ω = (π/2) + kπ, k ∈ Z and the dimension of the corresponding eigenspace is equal to:

1 3 2 n + 2 3 if n is even and 1 3 (2 n -2) if n is odd,
• or ω = ((arg(z

(n) A,j )/2) + kπ, k ∈ Z where z (n) A,j (j = 1, . . . , n if n is odd, j = 2, . . . , n if n is even)
is the family of the roots of the polynomial P A,n defined in Proposition 3.4 below (if n is even, the first root z (n)

A,1 = -1 is excluded). The dimension of the eigenspace associated to each eigenvalue is one.

(2) The complex λ = iω 2 (ω ∈ C) is an eigenvalue of the operator A d if and only if

• either ω = kπ, k ∈ Z * and the dimension of the corresponding eigenspace is equal to: 2 n -1,

• or ω = (π/2) + kπ, k ∈ Z and the dimension of the corresponding eigenspace is equal to:

1 3 (2 n -1) if n is even and 1 3 (2 n -2) if n is odd, • or ω satisfies ω = kπ, ω = (π/2) + kπ, k ∈ Z and (3.28) P A,n (z) + P B,n (z) ω = 0.
where z = e 2iω and the polynomials P A,n and P B,n are defined in Proposition 3.4 below. The localization of the corresponding eigenvalues is studied in Proposition 3.1. The dimension of the eigenspace associated to each eigenvalue is one.

Note that the first two families of eigenvalues of A ǫ lie on the imaginary axis. The third one also lies on the imaginary axis for the conservative operator. The third family of eigenvalues of the dissipative operator lies on the half-plane of complex numbers with a negative real part.

Proof. Let us begin by proving that λ = 0 is not an eigenvalue. If 0 is an eigenvalue associated to the eigenvector u = (u ᾱ) ᾱ∈I , then

0 = A d u, u H = ᾱ∈I 1 0 -i ∂ 2 x u ᾱ(x)u ᾱ(x)dx.
By integration by parts and using the transmission and boundary conditions, it holds

(3.29) 0 = -i|u(1)| 2 - ᾱ∈I Dir ∂ x u ᾱ(0)u ᾱ(0) - ᾱ∈I 1 0 |∂ x u ᾱ(x)| 2 dx.
Since u ᾱ(0) = 0 for any ᾱ ∈ I Dir , u(1) = 0 and ∂ x u ᾱ ≡ 0 for any ᾱ ∈ I. It follows u ᾱ ≡ 0 for any ᾱ ∈ I which is a contradiction with the fact that 0 is an eigenvalue associated to the eigenvector u.

The characteristic equation is established in the latest section and studied in Section 3.3. We are interested only in the dimension properties here.

(1) First case ω = kπ, k ∈ Z * :

We use here the notation introduced in Proposition 3.2 and its proof.

The matrix e M (ω) is (-1) k I where I is for the 2 × 2 identity matrix. The "eigenvector" F ᾱ for ᾱ in I Dir is:

F ᾱ(x) := 0 f ᾱ = f ᾱ 0 1 with f ᾱ = ∂ x φ ᾱ(0).
Recall that I Dir contains 2 n elements. Then condition (2.9)

is satisfied at all the interior nodes since the multiplication by (-1) k I does not change the first component of F ᾱ which is always zero. The other transmission condition (2.10) at the interior nodes is translated into a sum of the second components. At last the dissipation law at the root leads to one equation: (-1) k(n+1) ᾱ∈I Dir f ᾱ = 0 hence the announced dimension.

(2) Second case ω = (π/2) + kπ, k ∈ Z:

There are 2 n degrees of freedom as in the first case (cardinal of I Dir ) but the number of constraints increases.

The "eigenvector" F ᾱ for ᾱ in I Dir is still:

F ᾱ(0) := f ᾱ 0 1 with f ᾱ = ∂ x φ ᾱ(0). But the matrix e M (ω) is not diagonal any more. It is: e M (ω) := (-1) k 0 ω -1 -ω 0 .
Thus, for ᾱ in I Dir (i.e. for any ᾱ ∈ I such that

| ᾱ| = n), F ᾱ(1) = e M (ω) F ᾱ(0) = (-1) k ω -1 f ᾱ 1 0 .
Step n -1: The continuity at the interior nodes O ᾱ where the length | ᾱ| is equal to n -1 implies the 2 n-1 independent equations:

f ᾱ•(1) = f ᾱ•(2) for any ᾱ ∈ I such that | ᾱ| = n -1.
Then the value

f ᾱ•(1) is renamed f ᾱ and F ᾱ(1) = e M (ω) F ᾱ(0) = -f ᾱ 0 1 .
Step n -2: At the next 2 n-2 interior nodes, no continuity condition is needed and the other transmission condition is translated into a sum at each node:

F ᾱ(0) = f ᾱ 0 1 , where -(f ᾱ•(1) +f ᾱ•(2) ) is renamed f ᾱ and | ᾱ| = n-2. Then F ᾱ(1) = (-1) k 1 ω f ᾱ 1 0 .
The process continues. Two cases are to be envisaged: (a) Case of an even n. The number of equations is:

2 1 + 2 3 + . . . + 2 n-1 = 2(1 + 2 2 + . . . + 2 n-2 ) = 2(4 0 + 4 1 + . . . + 4 n/2-1 ) = 2 4 n/2 -1 3 = 2 3 (2 n -1). At last, for ᾱ ∈ I, such that | ᾱ| = 0, F (0) = f 0 1 where -(f (1) + f (2) ) is renamed f and F (1) = (-1) k 1 ω f 1 0
. This means, by definition, that φ(1) = -f (-1) k ω and ∂ x φ(1) = 0 where φ ᾱ is the eigenfunction.

For the conservative operator A 0 , the dissipation law (3.17) is then satisfied since ǫ = 0. Thus the dimension of the corresponding eigenspace is:

2 n - 2 3 (2 n -1) = 1 3 2 n + 2 3 .
For the dispersive operator A d (ǫ = 1), the dissipation law is satisfied if f = 0. Thus the dimension of the corresponding eigenspace is:

2 n -1 + 2 3 (2 n -1) = 1 3 2 n - 1 3 .
(b) Case of an odd n. The number of equations is:

2 0 + 2 2 + . . . + 2 n-1 = 4 (n-1)/2+1 -1 3 = 2 n+1 -1 3 . At last, for ᾱ ∈ I, such that | ᾱ| = 0, F (0) = (-1) k 1 ω f 1 0 where f (1) = f (2) is renamed f and F (1) = -f 0 1
. This means, by definition, that φ(1) = 0 and ∂ x φ(1) = -f .

For both operators A 0 and A d , the dissipation law is satisfied if f = 0. Thus the dimension of the corresponding eigenspace is:

2 n -1 + 2 n+1 -1 3 = 1 3 2 n - 2 3 .
Note that the constraints are always independent from one another. This can be proved by iteration on p for the two separate cases n = 2p and n = 2p + 1.

(3) Third case: it is treated in next section. Cf. the end of the proof of Proposition 3.2 for the dimension of the corresponding eigenspace.

3.3.

Iterative study of the characteristic equation. where z = e 2iω and the polynomials P A,n and P B,n are defined by:

• R • O • O1 • O2 • O1 • O2 • O1,1 • O1,2 • O2,2 • O2,1
(3.31) P A,m+1 (z) = 2(z + 1) P A,m (z) + (z -1) P B,m (z), ∀m ∈ N, (3.32) P B,m+1 (z) = 2(z -1) P A,m (z) + (z + 1) P B,m (y), ∀m ∈ N, (3.33) P A,0 (z) = z + 1, P B,0 (z) = z -1.
Proof. The iterative procedure follows from the rewriting of the product e M (ω) T with z = e 2iω . Indeed, if s = e iω , using the classical trigonometric formulae leads to:

e M (ω) T = 1 2     s + 1 s - 2i ω s - 1 s iω s - 1 s 2 s + 1 s     and e M (ω) 0 1 = 1 2     - i ω s - 1 s s + 1 s     .
Since z = s 2 , it is also:

e M (ω) T = 1 2s z + 1 - 2i ω (z -1) iω(z -1) 2(z + 1) and e M (ω) 0 1 = 1 2s - i ω (z -1) z + 1
Now, for m = 0, the characteristic equation reads:

(iǫ 1)e M (ω) 0 1 = 0 or (z + 1) + ǫ ω (z -1) = 0,
which is the announced result. By iteration, the rest follows.

The rewriting of the characteristic equation as (3.30) gives the expression of the eigenvalues of both operators as well as their asymptotic behaviour: the conservative one, A 0 and the dissipative one, A d , using Rouché's Theorem. Hence Theorem 3.1 announced at the beginning of Section 3 which is proved in the following.

Proof. i) Let ω be a solution of (3. By iteration the characteristic equation (3.27) is: 1)) = 0 when y tends to -∞. This is a contradiction with the behaviour of the exponential function. So we have proved that ℑ(ω) is bounded from below.

e -(n+1)y 2 n+1 (3 n • e -i(n+1)x + o(
ii) First asymptotic behaviour of the solution of (3.30).

Let us define the complex-valued functions f and g, respectively by: f (ω) = P A (e 2iω ) and g(ω) = P B (e 2iω ) ω . From the previous step, the solutions ω of (3.30) such that |ω| → ∞ satisfy lim |ω|→∞ g(ω) = 0. Moreover the large roots of

f are w 0 j,k = kπ + 1 2 arg(z (n) 
A,j ), j = 1, ..., n, k ∈ Z, |k| → ∞. Thus, we can apply Rouché's Theorem to the functions f and g as follows: we fix j and k large enough and we consider the disk Γ k with center ω 0 j,k and radius r k = 1 |k| .

Now we prove that there exist k 1 ∈ N and c 1 > 0 such that for all |k| ≥ k 1 then

(3.34) ∀ω ∈ ∂Γ k , |f (ω| > c 1 r k .
Indeed, for such a ω it holds

f (w) = P A,n (e 2iw 0 j,k +r k e iθ ), θ ∈ [0, 2π]. But e 2iw 0 j,k +r k e iθ = z (n) A,j e r k e iθ = z (n) A,j + z (n) A,j r k e iθ + O( 1 |k| 
). Consequently,

f (w) = P A,n (z (n) A,j ) + (P A,n ) ′ (z (n) A,j )r k e iθ + O( 1 |k| ),
and we get (3.34) since P A,n (z

(n) A,j ) = 0 and (P A,n ) ′ (z (n) 
A,j ) = 0 (see Lemma 3.6). Finally, f and f + g have the same number of zeroes on Γ, where each zero is counted as many times as its multiplicity, since there exist c 2 > 0 and

k 0 ∈ N, k 0 ≥ k 1 such that if |k| ≥ k 0 then |g(ω)| ≤ c 2 |k| ≤ c 1 r k < |f (ω)|, ∀ω ∈ Γ k .
Hence we deduce the following asymptotic behaviour of the roots of (3.30):

ω j,k = kπ + 1 2 arg(z (n) A,j ) + o(1), j = 1, ..., n, k ∈ Z, |k| ≥ k 0 .
iii) Second asymptotic behaviour of the solution of (3.30).

From the previous step we can write for a fixed j = 1, ..., n :

ω j,k = kπ + 1 2 arg(z (n) A,j ) + ǫ k , lim |k|→∞ ǫ k = 0.
Thus (3.30) gives 0 = P A,n (e 2ikπ+i arg(z (n) A,j )+2iǫ k ) + P B,n (e 2ikπ+i arg(z (n) A,j )+2iǫ k ) kπ + 1 2 arg(z

(n) A,j ) + ǫ k = P A,n (z (n) A,j + 2iz (n) A,j ǫ k + o(ǫ k )) + P B,n (z (n) A,j + o(1)) kπ + o 1 k = 2iz (n) A,j ǫ k (P A,n ) ′ (z (n) A,j ) + o(ǫ k ) + P B,n (z (n) A,j ) kπ + o 1 k , which leads to (3.35) ω j,k = kπ + 1 2 arg(z (n) A,j ) -i γ j k + o 1 k , where (3.36) γ j = - P B,n (z (n) A,j ) 2πz (n) A,j (P A,n ) ′ (z (n) A,j )
. Now, from Property (v) of the following Lemma, γ j is real and non-vanishing. Note that (3.35) implies

i(ω j,k ) 2 = i k 2 π 2 + kπ arg(z (n) A,j ) + (arg(z (n) A,j )) 2 4 + 2πγ j + o(1).
Thus γ j is negative since the problem we consider is dissipative. The proof is complete. or if λ ∈ σ2 ∪ σ 2 (see Theorem 3.1 for the notation) then the geometrical multiplicity of λ is one.

Obviously, if λ ∈ σ (0)
2 , then its algebraic multiplicity is also one since A 0 is skew-adjoint. The part ii) of the previous proof shows that the large eigenvalues of σ 2 have an algebraic multiplicity equal to one. Moreover, without loss of generality, we can assume that all the eigenvalues of σ 2 are algebraically simple (see the definition of σ 2 in Theorem 3.1: the integer k 0 may be chosen large enough in order that σ 2 does not contain any eigenvalue with an algebraic multiplicity different from one).

On the other hand, the algebraic multiplicity of each eigenvalue of the finite set σ2 remains an open question.

For convenience, let us recall that if λ ∈ σ2 has an algebraic multiplicity µ λ ≥ 2 and since the geometrical multiplicity is one then there exists a Jordan chain φ 0 , φ 1 , ..., φ µ λ -1

(λI -A d )φ 0 = 0, (λI -A d )φ j = φ j-1 , j = 1, ..., µ λ -1, {φ 0 , φ 1 , ..., φ µ λ -1 } providing a basis of N [(λI -A d ) µ λ ].
Later on, we will refer to such a family as the set of generalized eigenfunctions associated to λ. Lemma 3.6. (Properties of the polynomials P A and P B ) The polynomials P A,n and P B,n defined in the latter proposition have the following properties:

(i) deg P A,n = deg P B,n = n + 1.
(ii) P A,n admits n + 1 distinct complex roots z (n) A,j = 1, j = 1, ..., n + 1 with modulus equal to 1.

(iii) P A,n (-1) = 0 if n is even (this root is chosen to be z (n) A,1 in the main Theorem).

(iv) P B,n (z

(n) A,j ) = 0, j = 1, ..., n + 1. (v) The quotient P B,n (z (n) A,j ) z (n) A,j P ′ A,n (z (n) A,j )
is a real number different from 0, for j = 1, ..., n + 1.

Proof. First 1 is not a root of P A,n . The proof is done by descending induction. Using (3.31), it is clear that if 1 is a root of P A,n+1 , it is also a root of P A,n . But 1 is not a root of P A,0 . Hence the result.

For the other results, let us construct other sequences of polynomials which are easier to study. The first step is to use the transformation ϕ defined on (iR) by ϕ(u) = u + 1 u -1 . Then we define the following two sequences:

q A,n (u) = P A,n (ϕ(u)) and q B,n (u) = P B,n (ϕ(u)).

At last the sequences of polynomials r A,n and r B,n are given by:

(3.37)

       q A,n (u) = 2 u -1 n+1 r A,n (u), q B,n (u) = 2 u -1 n+1 r B,n (u).
Calculations left to the reader lead to:

(3.38)    r A,0 (u) = u, r B,0 (u) = 1, r A,n+1 (u) = 2ur A,n (u) + r B,n (u), r B,n+1 (u) = 2r A,n (u) + ur B,n (u).
Now define the following two sequences of polynomials:

(3.39) Q A,n (y) = (-i) n+1 r A,n (iy), Q B,n (y) = (-i) n r B,n (iy).
They satisfy the iteration laws:

(3.40)    Q A,0 (y) = y, Q B,0 (y) = 1, Q A,n+1 (y) = 2yQ A,n (y) -Q B,n (y), Q B,n+1 (y) = 2Q A,n (y) + yQ B,n (y).
From Lemma 3.7 follow Properties (i), (ii) and (iv). Property (iii) comes from Property (i.2) of Lemma 3.7 above: n even implies Q A,n is odd. Thus Q A,n (0) = 0 which is equivalent to P A,n (-1) = 0. As for (v), it requires the rewriting of the quotient in terms of

Q A and Q B . Introduce u (n) j := ϕ(z (n) A,j ), then P B,n (z (n) A,j ) = q B,n (u (n) j ) since the reciprocal function of ϕ is ϕ itself. And (3.41) P ′ A,n (z) = d dz (q A,n )(ϕ(z)) = ϕ ′ (z)(q A,n ) ′ (ϕ(z)) = - 2 (z -1) 2 (q A,n ) ′ (ϕ(z)) = - 2 (ϕ(u) -1) 2 (q A,n ) ′ (u) = - 1 2 (u -1) 2 (q A,n ) ′ (u).
The quotient is:

(3.42) P B,n (z (n) A,j ) z (n) A,j P ′ A,n (z (n) A,j ) = q B,n (u (n) j ) (-1/2)ϕ(u (n) j )(u n j -1) 2 (q A,n ) ′ (u (n) j ) = - 2 
((u (n) j ) 2 -1)
q B,n (u

(n) j ) (q A,n ) ′ (u (n) j )
. Now, since u (n) j lies in (iR), (u (n) j ) 2 -1 is real and non-positive. Thus the first factor is real and non-negative. It remains to be seen whether the other factor is well defined, real and non-vanishing. To this end, it is rewritten in terms of the other sequences of polynomials: Q A,n and Q B,n .

Since (q A,n ) ′ (u) = 2 n+1 (u -1) n+1 - 1 (n + 1)(u -1)
r A,n (u) + (r A,n ) ′ (u) and since r A,n (u

(n) j ) = 0 (by definition of u (n) j ), it holds: (3.43) q B,n (u (n) j ) (q A,n ) ′ (u (n) j ) = r B,n (u (n) j ) (r A,n ) ′ (u (n) j ) = Q B,n (y (n) j ) (Q A,n ) ′ (y (n) j )
, where u

(n) j = iy (n) j .
Thus the quotient (3.42) is real since y (n) j is real. It is well defined and non-vanishing due to Lemma 3.7 below: the multiplicity of the roots of Q A,n is one and both polynomials Q A,n and Q B,n have no common root. This ends the proof.

Lemma 3.7. (Properties of the polynomials Q A and Q B ) Let {Q A,n } n∈N and {Q B,n } n∈N be two sequence of polynomials defined for all y ∈ R as follows:

(3.44) Q A,n+1 (y) = 2 y Q A,n (y) -Q B,n (y), ∀n ∈ N, (3.45) Q B,n+1 (y) = 2 Q A,n (y) + y Q B,n (y), ∀n ∈ N, (3.46) Q A,0 (y) = y, Q B,0 (y) = 1
Then the following properties hold:

(i) (i.1) deg Q A,n = n + 1 and deg Q B,n = n. (i.
2) If n is even (resp. odd) then Q A,n is odd (resp. even) and Q B,n is even (resp. odd).

(i.3) lim y→+∞ Q A,n (y) = lim y→+∞ Q B,n (y) = +∞.
(ii) Q A,n admits n + 1 distinct real roots y A,j , j = 1, ..., n + 1.

(iii) Q B,n admits n distinct real roots y B,j , j = 1, ..., n.

(iv) The roots of Q A,n and Q B,n are ordered alternately, i.e;

y (n) A,1 < y (n) B,n,1 < y (n) A,2 < y (n) B,2 < ... < y (n) B,n < y (n) A,n+1 .
Proof. (i) is easily checked by iteration. We will prove (ii), (iii) (iv) by iteration. For convenience we start the iteration at n = 1, since n = 0 is a particular case.

For n = 1, Q A,1 = 2y 2 -1 and Q B,1 (y) = 3y so the basis hypothesis is satisfied.

Let n ≥ 1, be fixed and assume that we have the inductive hypothesis, i.e Q A,n and Q B,n satisfy, (ii),(iii), (iv).

From (3.44) and (iv) we see that the sign of Q A,n+1 changes at each root of Q A,n and we deduce that Q A,n+1 has at least n distinct real roots y (n+1)

A,j , j = 2, ..., n + 1 such that

y (n) A,1 < y (n+1) A,2 < y (n) A,2 < y (n+1) A,3 < ... < y (n+1) A,n+1 < y (n) A,n+1 .
Now from (i.3) and (iv) we have Q A,n+1 (y

(n) A,n+1 ) = -Q B,n (y (n) 
A,n+1 ) < 0. Therefore again from (i.3) we see that Q A,n+1 admits a supplementary root y (n+1) A,n+2 greater than y (n) A,n+1 and by symmetry Q A,n+1 admits also another root y (n+1) A,1 smaller than y (n) A,1 . At this step we have proved that Q A,n+1 has exactly n + 2 distinct real roots alternately with the roots of Q A,n , i.e (3.47) y

(n+1) A,1 < y (n) A,1 < y (n+1) A,2 < y (n) A,2 < y (n+1) A,3 < ... < y (n+1) A,n+1 < y (n) A,n+1 < y (n+1) 
A,n+2 .

Now, for any root y (n+1)

A,j of Q A,n+1 , j ∈ {1, ..., n + 2} we have from (3.44)

0 = 2 y (n+1) A,j Q A,n (y (n+1) A,j ) -Q B,n (y (n+1)
A,j ), therefore from (3.45)

Q B,n+1 (y (n+1) A,j ) = 2 1 + (y (n+1) A,j ) 2 Q A,n (y (n+1)
A,j ). From (3.47) we see that the sign of Q A,n changes at each root y (n+1) A,j of Q A,n+1 , then the previous identity shows that the same fact holds also for Q B,n+1 . Consequently, between two consecutive roots y (n+1) A,j and y

(n+1) A,j+1 of Q A,n+1
, there is a root of Q B,n+1 . Finally the inductive hypothesis is true for n + 1. [START_REF] Ammari | Boundary feedback stabilization of a chain of serially connected strings[END_REF] (y) = 16y 5 -49y 3 + 16y.

Q A,3 Q B,3 Q A,4 Figure 3. Q A,3 (y) = 8y 4 -17y 2 + 2, Q B,3 (y) = 15y 3 -12y, Q A,

Riesz basis

In this section, it is proved that the generalized eigenfunctions of the dissipative operator A d associated to the eigenvalues in σ 2 ∪ σ2 (introduced in Section 2 and Theorem 3.1 for the spectrum) form a Riesz basis of the subspace of H which they span (denoted by H 2 in next section). To this end, we use Theorem 1.2.10 of [START_REF] Abdallah | Stabilization and approximation of some distributed systems by either dissipative or indefinite sign damping[END_REF] which is a rewriting of Guo's version of Bari Theorem with another proof (see [START_REF] Guo | Riesz basis approach to the stabilization of a flexible beam with a tip mass[END_REF]). The resolvent of the conservative operator A 0 restricted to H 2 is compact since the domain of A 0 is compactly embedded in H. Thus, it is enough to show that the eigenfunctions of A 0 associated to the eigenvalues in σ (0) 2 and those of the dissipative operator A d associated to the eigenvalues in σ 2 ∪ σ2 are quadratically close to one another, except from a finite number of eigenfunctions.

The parity of n plays a role in the proof: if n is even, one eigenfunction has a different form. It is, for any fixed value of k in Z, the eigenfunction ϕ 0 (ω

0 1,k , •). It is associated to ω 0 1,k = kπ + π 2 (i(ω 0 1,k ) 2 is an eigenvalue in σ (0) 1
and not in σ

(0)
2 ) and this function has the same form as the eigenfunctions associated to the eigenvalues of σ 

(n) A,j ) which is such that i(ω 0 ) 2 ∈ σ (0) 2
(except from the case n = 2 and

j = 1: i(ω 0 1,k ) 2 is an eigenvalue in σ (0)
1 ). Denote by ω := ω j,k the value which is such that i(ω j,k ) 2 ∈ σ 2 ∪ σ2 . The indices j and k are dropped for simplicity since they are fixed here. Denote by ϕ 0 (ω 0 , •) (resp. ϕ(ω, •)) the eigenfunction of A 0 (resp. A d ) associated to the eigenvalue i(ω 0 ) 2 (resp. iω 2 ).

For an odd n and any i = 1, . . . , n, there exists an integer k 0 such that, for any j = 1, . . . , n:

|k|>k0 ϕ i (ω j,k , •) -ϕ 0 i (ω 0 j,k , •) 2 2 < ∞.
The index i comes from an indexation based on the level of the vertices of the tree which is read from the leaves to the root here and not the other way round as before (see the proof ).

For an even n and any i = 1, . . . , n, there exists an integer k 0 such that, for any j = 2, . . . , n:

|k|>k0 ϕ i (ω j,k , •) -ϕ 0 i (ω 0 j,k , •) 2 2 < ∞.
For an even n and any ᾱ ∈ I, there exists an integer k 0 such that:

|k|>k0 ϕ n-| ᾱ|+1 (ω 1,k , •) -ϕ 0 ᾱ(ω 0 1,k , •) 2 2 < ∞.
For an even n, the eigenfunction ϕ

0 (ω 0 1,k , •) associated to ω 0 1,k = kπ+ π 2 in σ (0)
1 has the same form as the eigenfunctions associated to the eigenvalues of σ (0) 1 (cf. Proof of Theorem 3.3 and the proof of this Theorem). The index is ᾱ as in the preceding sections.

Proof. For both operators, the "eigenvector" F ᾱ for ᾱ in I Dir is: F ᾱ(0) := f 0 1 with f = ∂ x φ ᾱ(0) for any ᾱ ∈ I Dir (cf. the beginning of the proof of Proposition 3.2 for the definition of F ᾱ and the end for its form in this case). Let us rename F ᾱ(0) the vector ω(1/f ) × F ᾱ(0) which is denoted by F 0 , for simplicity.

For ᾱ in I Dir (i.e. for any ᾱ ∈ I such that | ᾱ| = n), F ᾱ(x) = e M (ω)x F 0 which can be denoted by F 1 (x) since it does not depend on ᾱ. Likewise F 0 1 (x) := e M (ω 0 )x F 0 . Then F 2 (x) = e M (ω)x T F 1 (1) with F 2 (x) := F ᾱ(x) for any ᾱ ∈ I such that | ᾱ| = n -1 and T defined in Proposition 3.2. Idem for F 0 2 (x) with ω 0 instead of ω. And so on... The first component of F i (x) (resp. F 0 i (x)) gives the expression of the eigenfunction ψ ᾱ(x) of the dissipative operator A d on the adequate branch (resp. φ ᾱ(x), eigenfunction of the conservative operator A 0 on the appropriate branch) with the new indexation. Let call them respectively ϕ i (x) and ϕ 0 i (x).

Since e M (ω)x = cos(ωx) sin(ωx) ω -ω sin(ωx) cos(ωx) , it holds:

(4.48) ϕ i (ω, x) = cos(ωx)q i (ω) + sin(ωx) ω h i (ω) (4.49) ϕ 0 i (ω 0 , x) = cos(ω 0 x)q i (ω 0 ) + sin(ω 0 x) ω 0 h i (ω 0 )
and the construction of ϕ i has been done in such a way that the sequences q i and h i are defined iteratively by: (4.50) q i+1 (ω) = cos(ω)q i (ω) + sin(ω)

ω h i (ω), ∀i ∈ N, (4.51) h i+1 (ω) = -2ω sin(ω)q i (ω) + 2 cos(ω)h i (ω), ∀i ∈ N, (4.52) q 1 (ω) = 0, h 1 (ω) = ω.
Denoting by

Q i (ω) := q i (ω) h i (ω) ω
, equations (4.50), (4.51) and (4.52) are equivalent to:

(4.53) Q i+1 (ω) = T R(ω)Q i (ω), ∀i ∈ N, (4.54) Q 1 (ω) = 0 1
with T defined as in Proposition 3.2 and R(ω) the rotation matrix: R(ω) := cos(ω) sin(ω) sin(ω) cos(ω) .

Denote by Q 0 i (ω) := Q i (ω 0 ). Using Lemma 4.2 below ends the proof except for the particular case n even and j = 1. Indeed, with the notation introduced in the Theorem

ϕ i (ω j,k , •) -ϕ 0 i (ω 0 j,k , •) 2 ≤ cos(ω•)(q i (ω) -q i (ω 0 )) 2 + (cos(ω•) -cos(ω 0 •))q i (ω 0 ) 2 + sin(ω•)(h i (ω)/ω -h i (ω 0 )/ω 0 ) 2 + h i (ω 0 )/ω 0 )(sin(ω•) -sin(ω 0 •) 2 .
Note that both the norms of ϕ i (ω j,k , •) and ϕ 0 i (ω 0 j,k , •) in H are bounded from above and below by a constant number independent of k. Now, when n is even, the dimension of the eigenspace for the conservative operator is different from that of the eigenspace for the dispersive operator. Let us construct an eigenfunction for A 0 which is not an eigenfunction for A d . We start as in the beginning of this proof. The "eigenvector" F 0 ᾱ for ᾱ in I Dir is:

F 0 ᾱ(0) := f ᾱ 0 1 with f ᾱ = ∂ x φ ᾱ(0).
Let us rename F 0 ᾱ(0) the vector ω 0 × F ᾱ(0). Thus, for any ᾱ ∈ I Dir , F 0 ᾱ(x) = e M (ω 0 )x f ᾱ 0 ω 0 i.e.

(4.55)

ϕ 0 ᾱ(ω 0 , x) = h ᾱ(ω 0 ) ω 0 sin(ω 0 x) where h ᾱ(ω 0 ) ω 0 = 1, if | ᾱ| = n.
Using the transmission conditions and denoting by q ᾱ and h ᾱ the new resulting coefficients as we have done in the proof of Theorem 3.3 lead to:

ϕ 0 ᾱ(ω 0 , x) = q ᾱ(ω 0 ) cos(ω 0 x) + h ᾱ(ω 0 ) ω 0 sin(ω 0 x)
with q ᾱ(ω 0 ) = 0 when | ᾱ| is even and h ᾱ(ω 0 ) = 0 when | ᾱ| is odd. Thus the particular case n even and j = 1 is treated as soon as we have proved Lemma 4.3 below.

Lemma 4.2. Let A and B be real numbers. The notation A B means the existence of a positive constant C, which is independent of A and B such that A ≤ CB. Then it holds:

(1)

|q i (ω)-q i (ω 0 )|, |h i (ω)/ω-h i (ω 0 )/ω 0 |, cos(ω•)-cos(ω 0 •) 2
and sin(ω•)-sin(ω 0 •) 2 have the same asymptotic behaviour when k tends to infinity:

|q i (ω) -q i (ω 0 )| 1 k
(idem for the other expressions).

(2) |q i (ω 0 )| and |h i (ω 0 )/ω 0 | have the same asymptotic behaviour when k tends to infinity:

|q i (ω 0 )| 1 (idem for the second expression). (3) |ϕ 0 n+1 (ω 0 , 1)| 1. Proof. It is equivalent to prove that |Q 0 i | 1 and |Q i -Q 0 i | 1 k
where Q i and Q 0 i have been introduced in the latest proof (all these expressions depend on ω that we drop for simplicity). The proof is done by induction.

• Base case: Since |Q 1 -Q 0 1 | = 0 and since |Q 0 1 | does not depend on ω (and thus on k), both assertions hold for i = 1.

• Inductive step: Suppose the statement holds for some natural number i, then for i + 1:

|Q 0 i+1 | = |T R 0 Q 0 i | 1 since T does not depend on k and the terms of R 0 := R(ω 0 ) are bounded with respect to k. Now |Q i+1 -Q 0 i+1 | = |T R(ω)Q i -T R(ω 0 )Q 0 i | = |T (R(ω) -R(ω 0 ))Q i + T R(ω 0 )(Q i -Q 0 i )|. Since |Q i | 1, |R(ω 0 )| 1 and |Q i -Q 0 i | 1 k , it remains to prove: |R(ω) -R(ω 0 )| 1 k .
Recall the dependence of ω with respect to k:

(4.56) ω := ω j,k = kπ + 1 2 arg(z (n) A,j ) -i γ j k + o 1 k = ω 0 -i γ j k + o 1 k .
Using the classical trigonometric difference identities for the sine and cosine functions, it holds, for any x ∈ [0; 1]:

cos(ω•) -cos(ω 0 •) 2 1 k and sin(ω•) -sin(ω 0 •) 2 1 k .
Hence the result.

Lemma 4.3. Suppose that n is even and choose the particular value

ω 0 = ω 0 1,k = kπ + π 2 .
Then, with the notation of Lemma 4.2:

(1) |q i (ω)| for an odd i, |h i (ω)/ω| for an even i, |h i (ω)/ωh ᾱ(ω 0 )/ω 0 | for an odd i and | ᾱ| = ni + 1 and |q i (ω 0 )q ᾱ(ω 0 )| for an even i and | ᾱ| = ni + 1, have the same asymptotic behaviour when k tends to infinity:

|q i (ω)| 1 k
(idem for the other expressions).

(2) |q i (ω)| for an even i and |h ᾱ(ω 0 )/ω 0 | for an odd | ᾱ| have the same asymptotic behaviour when k tends to infinity: |q i (ω)| 1 (idem for the second expression).

Proof.

(1) First the fact that |q i (ω)| for an odd i and |h i (ω)/ω| for an even i are both bounded from above by a constant times (1/k) follows from Lemma 4.2 and q i (ω 0 ) = 0 for an odd i and h i (ω 0 )/ω 0 = 0 for an even i and ω 0 = kπ + π 2 (the latest property is proved by induction, using cos(ω 0 ) = 0). Now, to prove that |h i (ω)/ωh ᾱ(ω 0 )/ω 0 | (1/k) for an odd i and |q i (ω 0 )q ᾱ(ω 0 )| (1/k) for an even i (where | ᾱ| = ni + 1), we proceed by induction on i. The base case is i = 1 for h and i = 2 for q. Both differences are equal to |1f ᾱ|.

It is enough to choose the f ᾱ's such that |1-f ᾱ| (1/k), for any ᾱ, such that | ᾱ| = n. Indeed the construction procedure explained in the proof of Theorem 4.1 for an even n guarantees that it is sufficient to get the desired estimate.

To explicit this iterative procedure, let us detail the example n = 4: there are 6 independent eigenfunctions (cf. Theorem 3.3 for the dimension). Choose

f 1,1,1 , f 1,1,2 , f 1,2,1 , f 2,1,1 , f 2,1,2 and f 2,2,1 all satisfying |1 -f ᾱ| (1/k), then if | ᾱ| = 4
, there exists β and j in {1; 2} such that | β| = 3 and ᾱ = β • (j). Then choose

f ᾱ := f β and f 1,2,2 := f 1,1,1 + f 1,1,2 -f 1,2,1 and f 2,2,2 := f 2,1,1 + f 2,1,2 -f 2,2,1 . At last f 1 := f 1,1,1 + f 1,1,2 and f 2 := f 2,1,1 + f 2,1,2 .
Moreover q ᾱ(ω 0 ) = 0 when | ᾱ| is even and q ᾱ(ω 0 ) = (-1) k |f ᾱ| when | ᾱ| is odd whereas h ᾱ(ω 0 ) = 0 when | ᾱ| is odd. When | ᾱ| = 4, h ᾱ(ω 0 ) = f β ω 0 where ᾱ = β•(j), j = 1; 2 and when

| ᾱ| = 2, h ᾱ(ω 0 ) = -(f ᾱ•(1) +f ᾱ•(2) )ω 0 . Now q 1 (ω 0 ) = 0, h 1 (ω 0 ) = ω 0 , q 2 (ω 0 ) = sin(ω 0 ) = (-1) k , h 2 (ω 0 ) = 2ω 0 cos(ω 0 ) = 0, q 3 (ω 0 ) = 0, h 3 (ω 0 ) = -2ω 0 , q 4 (ω 0 ) = -2(-1) k , h 4 (ω 0 ) = 0.
Thus, for i = 2 and so | ᾱ| = 3, |q 2 (ω 0 )q ᾱ(ω 0 )| = |1f ᾱ| (1/k) and for i = 4 and so

| ᾱ| = 1, |q 4 (ω 0 ) -q ᾱ(ω 0 )| = | -2 -f j | (1/k), since f j := f j,1,1 + f j,1,2 , j = 1; 2.
And, for i = 1 and so

| ᾱ| = 4, |h 1 (ω)/ω -h ᾱ(ω 0 )/ω 0 | ≤ |h 1 (ω)/ω -h 1 (ω 0 )/ω 0 | + |h 1 (ω 0 )/ω 0 -h ᾱ(ω 0 )/ω 0 | = |h 1 (ω)/ω -h 1 (ω 0 )/ω 0 | + |1 -f β | (1/k), due to Lemma 4.2. At last, for i = 3 and so | ᾱ| = 2, |h 3 (ω)/ω - h ᾱ(ω 0 )/ω 0 | ≤ |h 3 (ω)/ω -h 3 (ω 0 )/ω 0 | + |h 3 (ω 0 )/ω 0 -h ᾱ(ω 0 )/ω 0 | = |h 3 (ω)/ω -h 3 (ω 0 )/ω 0 | + | -2 + (f ᾱ•(1) + f ᾱ•(2) )| (1/k), due to Lemma 4.2.
(2) Since h ᾱ(ω 0 )/ω 0 = 0 for an odd | ᾱ| (cf. Proof of Theorem 4.1), it is bounded from above by a constant independent of k.

For an even i, |q i (ω)| is proved to satisfy the same property by induction on m where i = 2m. It is enough to assume that both |q 2m (ω)| and |h 2m (ω)/ω| are bounded from above by a constant independent of k and to use the recursive definition of q i and h i twice to compute the same expressions with indices 2m + 1 and 2m + 2 ((4.50) and (4.51)).

Energy decreasing

Using the Riesz basis constructed in the latest section, the energy is proved to decrease exponentially to a non-vanishing value depending on the initial datum. The decay rate is explicitly given at the end of Theorem 5.1 below since the ω's satisfying iω 2 ∈ (σ 2 ∪ σ2 ) are the solutions of (3.28). For any fixed value of n, the constant C is computable numerically. Its value is given for n = 2.

5.1. Energy decreasing using the Riesz basis. (1) H 1 is orthogonal to H 2 .

(2) Let u 0 in H be the initial condition of the boundary value problem given in the introduction and u 1 0 its orthogonal projection onto H 1 . Then E(t) decreases exponentially to E 1 (0) := u 1 0 2

H when t tends to +∞. More precisely

(5.57) E(t) ≤ E 1 (0) + e -2Ct E 2 (0)
where -C := sup iω 2 ∈(σ2∪ σ2) ℜ(iω 2 ) < 0.

Proof. First part: Above all, it is easy to see that the operator A * d is obtained by changing i by -i in A d . Thus, if A d ψ 1 (ω, .) = λψ 1 (ω, .), with λ = iω 2 then A * d ψ 1 (ω, .) = -λψ 1 (ω, .). Now, to prove that H 1 is orthogonal to H 2 , it suffices to check that any generalized eigenfunction ψ 2 (ω ′ , .) of H 2 is orthogonal to any eigenfunction ψ 1 (ω, .) of H 1 . First we assume that ψ 2 (ω ′ , .) is an eigenfunction, i.e

A d ψ 2 (ω ′ , .) = λ ′ ψ 2 (ω ′ , .)
with λ ′ = iω ′2 . Therefore, since λ is purely imaginary,

λ ′ < ψ 2 (ω ′ , .), ψ 1 (ω, .) > H = < A d ψ 2 (ω ′ , .), ψ 1 (ω, .) > H = < ψ 2 (ω ′ , .), A * d ψ 1 (ω, .) > H = -< ψ 2 (ω ′ , .), A d ψ 1 (ω, .) > H = -λ < ψ 2 (ω ′ , .), ψ 1 (ω, .) > H = λ < ψ 2 (ω ′ , .), ψ 1 (ω, .) > H .
Consequently < ψ 2 (ω ′ , .), ψ 1 (ω, .) > H = 0.

Secondly, we assume that λ ′ is not simple. Let ψ 2 (ω ′ , .) be an associated generalized eigenfunction of order p ≥ 2, in the sense that

(A d -λ ′ ) p ψ 2 (ω ′ , .) = 0, (A d -λ ′ ) p-1 ψ 2 (ω ′ , .) = 0. Setting ψ = (A d -λ ′ )ψ 2 (ω ′ , .
), then ψ is a generalized eigenfunction associated to λ ′ of order p -1, so arguing by iteration with respect to the order p we can assume that < ψ, ψ 1 (ω, .) > H = 0. Therefore λ ′ < ψ 2 (ω ′ , .), ψ 1 (ω, .) > H = < A d ψ 2 (ω ′ , .) + ψ, ψ 1 (ω, .) > H = < A d ψ 2 (ω ′ , .), ψ 1 (ω, .) > H = λ < ψ 2 (ω ′ , .), ψ 1 (ω, .) > H , as previously. Consequently < ψ 2 (ω ′ , .), ψ 1 (ω, .) > H = 0.

Second part: the spectrum of the dissipative operator A d is the union of σ 1 -set of the purely imaginary eigenvalues and σ 2 ∪ σ2 -set of the other eigenvalues (see Theorem 3.1). The initial condition u 0 := (u ᾱ) ᾱ∈I 0 is written as a sum of two terms:

u 0 := iω 2 ∈σ1 u 1 0 (ω, •)ψ 1 (ω, •) + iω 2 ∈(σ2∪ σ2) u 2 0 (ω, •)ψ 2 (ω, •)
where ψ 1 (ω, •) (respectively ψ 2 (ω, •)) is a normalized (in H) eigenfunction of A d associated to the eigenvalue iω 2 in σ 1 (resp. σ 2 ). Note that the sum takes into account the multiplicities of the eigenvalues here. Thus the solution of the boundary value problem given in the introduction is:

u(t) := iω 2 ∈σ1 u 1 0 (ω, •)e iω 2 t ψ 1 (ω, •) + iω 2 ∈(σ2∪ σ2) u 2 0 (ω, •)e iω 2 t ψ 2 (ω, •).
The energy, defined in the introduction, by (2.11) is:

E(t) = E 1 (t) + E 2 (t) with E 1 (t) := iω 2 ∈σ1 u 1 0 (ω, •) 2 H |e iω 2 t | 2 , E 2 (t) := iω 2 ∈(σ2∪ σ2) u 2 0 (ω, •) 2 H |e iω 2 t | 2 .
Now, since σ 1 contains only purely imaginary eigenvalues (see Theorem 3.1), |e 2iω 2 t | = 1, for any ω such that iω 2 ∈ σ 1 and any t > 0. Thus E 1 (t) = E 1 (0) for any t > 0.

The real part of iω 2 is a non-positive real number if ω is such that iω 2 ∈ (σ 2 ∪ σ2 ) (see Theorem 3.1). In the proof of Theorem 3.1, this real part is proved to be equal to 2γ j π with γ j independent of k if iω 2 ∈ σ 2 . Since σ2 is a finite set and since j belongs to a finite set, there exists C > 0 such that, for any ω such that iω

2 ∈ (σ 2 ∪ σ2 ): -ℜ(iω 2 ) ≥ C > 0. It holds |E 2 (t)| ≤ e -2Ct E 2 (0)
. Thus E 2 (t) decreases exponentially to 0 when t tends to +∞ and the total energy E(t) decreases exponentially to E 1 (0) when t tends to +∞.

5.2. Energy decreasing: a numerical example. Let us explicit the case n = 2 which corresponds to Figure 1. The polynomials P A,2 and P B,2 defined in Proposition 3.4 are:

P A,2 (z) = 9z 3 + 7z 2 + 7z + 9, P B,2 (z) = 9z 3 + z 2 -z -9.
The polynomial P A,2 has 3 roots which are: 5) .

z (2) A,1 = -1 = e iπ , z (2) 
A,2 = 1 9 (1 -4i √ 5) = e -i arctan(4 √ 5) , z (2) 
A,3 = 1 9 (1 + 4i √ 5) = e i arctan(4 √ 
Thus the spectrum of the conservative operator A 0 introduced at the beginning of Section 3 is given by (3.18) with The values of γ j defined by (3.36) are:

σ (0) 2 = {i(kπ ± arctan(4 √ 5 
γ 1 = - 2 5π , γ 2 = γ 3 = - 3 10π
.

Then the set σ 2 which is a part of the spectrum of the dissipative operator A d (see the beginning of Section 3 and Theorem 3.1) has two vertical asymptots:

ℜ(λ) = 2πγ 1 = - 4 5 , ℜ(λ) = 2πγ 2 = 2πγ 3 = - 3 5 ,
which is consistent with the numerical computation of the spectrum (see Figure 4).

At last, numerically the eigenvalue of A d with the largest real part is λ ≈ -0.37459+0.873125i. Hence the approximate value for the decay rate: C ≈ 0.37459.

a k,l (λ) = < Bg, φ 0 k,l (kπ, •) > D(A0) ′ ,D(A0) λ + λ k = < g, B * φ 0 k,l (kπ, •) > C N λ + λ k , ∀ k ∈ Z * b k,l (λ) = < Bg, φ 0 k,l (kπ + π 2 , •) > D(A0) ′ ,D(A0) λ + λ k = < g, B * φ 0 k,l (kπ + π 2 , •) > C N λ + λ k , ∀ k ∈ Z c j,k (λ) = < Bg, φ 0 k (ω j,k , •) > D(A0) ′ ,D(A0) λ + λ j,k = < g, B * φ 0 k (ω j,k , •) > C N λ + λ j,k , ∀ k ∈ Z, j = 2, • • • , n Which implies that H(λ)g = i(ω 0 ) 2 ∈σ (0) ϕ 0 n+1 (ω 0 , 1) λ + i(ω 0 ) 2 g,
where ϕ 0 n+1 (ω 0 , •) is defined by (4.49). It holds

H(λ) = k∈Z ϕ 0 n+1 (ω 0 , 1) λ + λ k 0 ... 0 , ∀ λ such that ℜ λ = γ. sup ℜλ=γ |H(λ)| = sup ℜλ=γ i(ω 0 ) 2 ∈σ (0) ϕ 0 n+1 (ω 0 , 1) λ + i(ω 0 ) 2 ≤ √ 2 sup ℜλ=γ i(ω 0 ) 2 ∈σ (0) ϕ 0 n+1 (ω 0 , 1) γ + |(ω 0 ) 2 + ℑ(λ)| .
It is known that |ϕ 0 n+1 (ω 0 , 1)| 1 (cf. Lemma 4.2). The spectrum of A 0 can be split into a finite union of sets of the form i(kπ + θ) 2 k∈Z * or k∈Z , where θ is a real number, (cf. Theorem 3.1) and the multiplicity of the eigenvalues is uniformly bounded. Thus, if we set λ = γ + iy, it suffices to show (6.62) sup

y∈R k∈N 1 γ + |(kπ + θ) 2 + y| < ∞.
First we consider the case y ≥ 0 and we set Σ(y) = k∈N 1 γ + |(kπ + θ) 2 + y| . Then (6.63) Σ(y) ≤ k∈N 1 (kπ + θ) 2 < ∞, y ≥ 0. Now, we assume that y < 0 and we set y

= -Y 2 , Y > 0. If Y ≥ |θ|, we have Σ(y) = Σ 1 (Y ) + 1 γ + (E[ Y -θ π ]π + θ) 2 -Y 2 + Σ 2 (Y ),
where

Σ 1 (Y ) = k≤E[ Y -θ π ]-1 1 γ + Y 2 -(kπ + θ) 2 , Σ 2 (Y ) = k≥E[ Y -θ π ]+1 1 γ + (kπ + θ) 2 -Y 2 .
First, we have

(6.64) Σ(y) ≤ Σ 1 (Y ) + 1 γ + Σ 2 (Y ),
and the following estimates for Σ i (Y ), i = 1, 2 :

Σ 1 (Y ) ≤ k≤E[ Y -θ π ]-1 1 Y 2 -(kπ + θ) 2 , = k≤E[ Y -θ π ]-1 1 π( Y -θ π -k)(Y + kπ + θ) , ≤ 1 π k≤E[ Y -θ π ]-1 1 Y , 1, Σ 2 (Y ) ≤ k≥E[ Y -θ π ]+1 1 (kπ + θ) 2 -Y 2 = k∈N 1 ((k + E[ Y -θ π ] + 1)π + θ) 2 -Y 2 = k∈N 1 (k + E[ Y -θ π ] + 1)π + θ -Y (k + E[ Y -θ π ] + 1)π + θ + Y ≤ k∈N 1 (k + Y -θ π )π + θ -Y × kπ = π 6 .
So, we have proved that Σ(y) is uniformly bounded for large values of |y|, consequently (6.62) holds with a continuity argument.

Application to feedback stabilization with another feedback law

This section is dedicated to some stability properties of the solutions of system (7.65)-(7.70). We obtain an exponential stability result in the energy space. As in Section 2, the operator A d generates a C 0 semigroup of contractions on H.

• R • O • O1 • O2 • O1,1 • O2,2 • O1,2 • O2,1 ❉✐ss✐♣❛t✐♦♥ •❛✇ ❉✐r✐❝❤•❡t ❜♦✉♥❞❛r② ❝♦♥❞✐t✐♦♥ ❉✐ss✐♣❛t✐♦♥ •❛✇
In this section, we show that the semigroup e tA d decays to the null steady state with an exponential decay rate.

To obtain this, our technique is based on a frequency domain approach method and combines a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent.

Theorem 7.1. There exist constants C, τ > 0 such that the semigroup e tA d satisfies the following estimate (7.76) e tA d L(H) ≤ C e -τ t , ∀ t > 0.

We will employ from [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF][START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert space[END_REF] the following frequency domain theorem for uniform stability of a C 0 semigroup of contractions on a Hilbert space: i.e., (7.85) iβ n z ᾱ,n + i d 2 z ᾱ,n dx 2 ≡ f ᾱ,n → 0 in L 2 (0, 1), ᾱ ∈ I. Our goal is to derive from (7.84) that ||Z ᾱ,n || H converges to zero. Thus there will be a contradiction.

We notice that from (7.80), it holds: By using the continuity and transmission conditions, we deduce by iteration and by the same way as above:

z ᾱ,n → 0, in L 2 (0, 1), ᾱ ∈ I.

Which contradicts the fact that Z n H = 1. Now, we assume that no subsequence of β n converges towards +∞, (i.e lim n→∞ β n = -∞). Since z ᾱ satisfies the first equality of (7.81), we multiply it by z ᾱ, and then integrating by parts, summing over all ᾱ ∈ I, using the boundary and transmission conditions as well as (7.86) and (7.88), we get

iβ n Z n 2 
H -i ᾱ∈I 1 0 | dz ᾱ dx | 2 dx + o(1) = 0,
which also contradicts the fact that Z n H = 1.
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 5 Figure 5. A Tree-Shaped network with exponential stabilizing feedback Let ᾱ * be an arbitrary element of I Dir . We consider the following initial and boundary value problem : (7.65)∂u ᾱ ∂t (x, t) + i ∂ 2 u ᾱ ∂x 2 (x, t) = 0, 0 < x < 1, t > 0, ᾱ ∈ I,(7.66) i u(1, t) + ∂u ∂x (1, t) = 0, i u ᾱ(0, t) -∂u ᾱ ∂x (0, t) = 0, ᾱ ∈ I Dir , ᾱ = ᾱ * , t > 0,
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 722 A C 0 semigroup e tL on a Hilbert space H satisfies ||e tL || L(H) ≤ C e -τ t , for some constant C > 0 and for τ > 0 if and only if(7.77) ρ(L) ⊃ iβ β ∈ R ≡ iR, ) < ∞,where ρ(L) denotes the resolvent set of the operator L. Lemma 7.3. The spectrum of A d contains no point on the imaginary axis. Proof. Since the resolvent of A d is compact, its spectrum σ(A d ) only consists of eigenvalues of A d . We will show that the equation (7.79) A d Z = iβZ with Z ∈ D(A d ) and β = 0 has only the trivial solution.By taking the inner product of (7.79) with Z and using(7.80) ℜ (< A d Z, Z > H ) = -|z(1)| 2ᾱ * = ᾱ∈I Dir |z ᾱ(0)|we obtain that z(1) = 0, z ᾱ(0) = 0, ᾱ * = ᾱ ∈ I Dir . Next, we get the following ordinary differential equation:ᾱ(x) + i d 2 z ᾱ dx 2 (x) = 0, x ∈ (0, 1), ᾱ ∈ I, z(1) = dz dx (1) = 0, z ᾱ(1) = dz ᾱ dx (1) = 0, ᾱ * = ᾱ ∈ I Dir , z ᾱ * (0) = 0, z ᾱ•β (1) = z ᾱ(0), β = 1, 2, ᾱ ∈ I Int , , ᾱ ∈ I Int .And the above system has only the trivial solution.Proof of Theorem 7.1. By Lemma 7.2, it suffices to show that A d satisfies the following two conditions:(7.82)ρ(A d ) ⊃ i β β ∈ R ≡ iR, and(7.83) lim sup |β|→∞(iβ -A d ) -1 L(H) < ∞,where ρ(A d ) denotes the resolvent set of the operator A d . By Lemma 7.3 the condition (7.82) is satisfied. Suppose that condition (7.83) is false. By the Banach-Steinhaus Theorem (see [17]), there exist a sequence of real numbers β n → ∞ and a sequence of vectors Z n ∈ D(A d ) with Z n H = 1 such that (7.84) ||(iβ n I -A d )Z n || H → 0 as n → ∞,

( 7 .z n ( 1 )

 71 86) ||(iβn I -A d )Z n || H ≥ |ℜ ( (iβ n I -A d )Z n , Z n H ) | = |z n (1→ 0, z ᾱ,n (0) → 0, ᾱ * = ᾱ ∈ I Dir → 0, ᾱ * = ᾱ ∈ I Dir .First we assume that the sequence (or a subsequence) of β n converges towards +∞. According to (7.85):z ᾱ,n = A ᾱ,n sin β n x + B ᾱ,n cos β n x -(7.89) i x 0 sin √ β n (xy) √ β n f ᾱ,n (y) dx, x ∈ (0, 1), ᾱ ∈ I,where A ᾱ,n and B ᾱ,n are constants.Moreover, for ᾱ = ᾱ * , (7.90)z ᾱ * ,n = A ᾱ * ,n sin β n xi x 0 sin √ β n (xy) √ β n f ᾱ * ,n (y) dx, x ∈ (0, 1).According to (7.87)-(7.88), it holds for ᾱ * = ᾱ ∈ I Dir , (7.91)A ᾱ sin √ β n + B ᾱ cos √ β n → 0 A ᾱ √ β n cos √ β n -√ β n B ᾱ sin √ β n → 0,which implies that, for ᾱ * = ᾱ ∈ I Dir , (7.92) A ᾱ,n , B ᾱ,n → 0 and that (7.93) z ᾱ,n → 0, in L 2 (0, 1), ᾱ * = ᾱ ∈ I Dir .

Transfer function analysis

The transfer function of the conservative operator A 0 introduced at the beginning of Section 3 is proved to be bounded from above. Let us recall the definition of this operator:

0, 1) : satisfies (6.58) to (6.60) hereafter , (6.58) du dx (1) = 0, u ᾱ(0) = 0, ᾱ ∈ I Dir , (6.59)

, where the duality is obtained by means of the inner product in H.

Theorem 6.1. (Estimate of the transfer function) Let A 0 : D(A 0 ) ⊂ H → H and B be the operators defined above. The transfer function is given by:

Proof. In order to compute the transfer function and to prove that it satisfies sup

We denote ψ λ = (λI + A 0 ) -1 Bg.

We consider the decomposition, for an even n (an odd value for n leads to a similar expression and this case is left to the reader):

where the φ 0 k,l (kπ, •)'s (respectively φ 0 k,l (kπ + π 2 , •)'s and the φ 0 k (ω j,k , •)'s) are the normalized (in H) eigenfunctions of A 0 with the corresponding eigenvalues λ k = i(ω k ) 2 with ω k ∈ σ 0 1 (resp. λ j,k = i(ω j,k ) 2 ∈ σ 0 2 ). See Theorems 3.1 and 3.3 for the details and note that, for simplicity, the same notation is used for eigenfunctions which do not have the same form. Now the above coefficients in the decomposition of ψ λ are equal to: