
HAL Id: hal-01109125
https://hal.science/hal-01109125v1

Preprint submitted on 24 Jan 2015 (v1), last revised 26 Jun 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A bounded degree SOS hierarchy for polynomial
optimization

Jean-Bernard Lasserre, Toh Kim-Chuan, Yang Shouguang

To cite this version:
Jean-Bernard Lasserre, Toh Kim-Chuan, Yang Shouguang. A bounded degree SOS hierarchy for
polynomial optimization . 2015. �hal-01109125v1�

https://hal.science/hal-01109125v1
https://hal.archives-ouvertes.fr

A bounded degree SOS hierarchy for polynomial optimization∗

Jean B. Lasserre†, Kim-Chuan Toh‡ and Shouguang Yang§

January 24, 2015

Abstract

We consider a new hierarchy of semidefinite relaxations for the general polynomial op-
timization problem (P) : f∗ = min{ f(x) : x ∈ K } on a compact basic semi-algebraic set
K ⊂ R

n. This hierarchy combines some advantages of the standard LP-relaxations associ-
ated with Krivine’s positivity certificate and some advantages of the standard SOS-hierarchy.
In particular it has the following attractive features: (a) In contrast to the standard SOS-
hierarchy, for each relaxation in the hierarchy, the size of the matrix associated with the
semidefinite constraint is the same and fixed in advance by the user. (b) In contrast to the
LP-hierarchy, finite convergence occurs at the first step of the hierarchy for an important
class of convex problems. Finally (c) some important techniques related to the use of point
evaluations for declaring a polynomial to be zero and to the use of rank-one matrices make
an efficient implementation possible. Preliminary results on a sample of non convex problems
are encouraging.

1 Introduction

We consider the polynomial optimization problem:

(P) : f∗ = min
x

{f(x) : x ∈ K } (1)

where f ∈ R[x] is a polynomial and K ⊂ R
n is the basic semi-algebraic set

K = {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m}, (2)

for some polynomials gj ∈ R[x], j = 1, . . . ,m. In order to approximate (and sometimes solve
exactly) (P) one may instead solve a hierarchy of convex relaxations of (P) of increasing sizes,
namely for instance:

• Semidefinite relaxations based on Putinar’s certificate of positivity on K [22], where the
d-th convex relaxation of the hierarchy is a semidefinite program given by

γd = max
t,σj

t : f − t = σ0 +

m
∑

j=1

σj gj

. (3)

∗The work of the first author is partially supported by a PGMO grant from Fondation Mathématique Jacques

Hadamard.
†LAAS-CNRS and Institute of Mathematics, University of Toulouse, LAAS, 31031 Toulouse cédex 4, France

(lasserre@laas.fr).
‡Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076

(mattohkc@nus.edu.sg).
§Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076.

1

The unknowns σj are sums of squares (SOS) polynomials with the degree bound constraint,
degree(σjgj) ≤ 2d, j = 0, . . . ,m, and the expression in (3) is a certificate of positivity on K for
the polynomial x 7→ f(x)− t.

• LP-relaxations based on Krivine-Stengle’s certificate of positivity on K [13, 25], where the
d-th convex relaxation of the hierarchy is a linear program given by

θd = max
λ≥0,t

t : f − t =
∑

(α,β)∈N2m
d

λαβ

m
∏

j=1

(

g
αj

j (1− gj)
βj

)

, (4)

where N
2m
d = {(α, β) ∈ N

2m :
∑

j αj + βj ≤ d}. The unknown are t and the nonnegative scalars
λ = (λαβ), and it is assumed that 0 ≤ gj ≤ 1 on K (possibly after scaling) and the family
{gi, 1 − gi} generates the algebra R[x] of polynomials. Problem (4) is an LP because stating
that the two polynomials in both sides of “=” are equal yields linear constraints on the λαβ ’s.
For instance, the LP-hierarchy from Sherali-Adams RLT [23] and their variants [24] are of this
form.

In both cases, (γd) and (θd), d ∈ N, provide two monotone nondecreasing sequences of lower
bounds on f∗ and if K is compact, then both converge to f∗ as one lets d increases. For more
details as well as a comparison of such relaxations, the reader is referred to e.g. Lasserre [18, 15]
and Laurent [19], as well as Chlamtac and Tulsiani [7] for the impact of LP- and SOS-hierarchies
on approximation algorithms in combinatorial optimization.

Of course, in principle, one would much prefer to solve LP-relaxations rather than semidefi-
nite relaxations (i.e. compute θd rather than γd) because present LP-software packages can solve
sparse problems with millions of variables and constraints, which is far from being the case for
today’s semidefinite solvers. And so the hierarchy (3) applies to problems of modest size only
unless some sparsity or symmetry is taken into account in which case specialized variants can
handle problems of much larger size; see e.g. Waki et al. [28]. However, on the other hand, the
LP-relaxations (4) suffer from several serious theoretical and practical drawbacks. For instance,
it has been shown in [15, 18] that the LP-relaxations cannot be exact for most convex problems,
i.e., the sequence of the associated optimal values converges to the global optimum only asymp-
totically and not in finitely many steps. Moreover, the LPs of the hierarchy are numerically
ill-conditioned. This is in contrast with the semidefinite relaxations (3) for which finite con-
vergence takes place for convex problems where ∇2f(x∗) is positive definite at every minimizer
x∗ ∈ K (see de Klerk and Laurent [9, Corollary 3.3]) and occurs at the first relaxation for
SOS-convex1 problems [17, Theorem 3.3]. In fact, as demonstrated in recent works of Marshall
[20] and Nie [21], finite convergence is generic even for non convex problems.

1.1 Contribution

This paper is in the vein of recent attempts in Lasserre [16] and Ahmadi and Majumdar [1]
to overcome the important computational burden associated with the standard SOS-hierarchy
(3). In particular, in [16] we have suggested another hierarchy of convex relaxations which
combines some of the advantages of the SOS- and LP- hierarchies (3) and (4). In the present
paper we take advantage of attractive features of the SDPT3 solver [26, 27] to provide an effective
implementation of this new hierarchy. First preliminary tests on a sample of non convex problems
suggest that this new hierarchy might be efficient. This new hierarchy is another type of SOS-
hierarchy labelled BSOS (for hierarchy with bounded degree SOS) with the following attractive
features:

1An SOS-convex polynomial is a convex polynomial whose Hessian factors as L(x)L(x)T for some rectangular
matrix polynomial L. For instance, separable convex polynomials are SOS-convex.

2

• In contrast to the standard SOS-hierarchy (3), for each semidefinite program in the hierar-
chy, the size

(

n+k
n

)

of the semidefinite matrix variable is now fixed, parametrized by an integer
k that one fixes in advance. This integer k determines the degree of a certain SOS polynomial
(for instance one may fix k = 2), whence the label BSOS (for “bounded”-SOS). Recall that in
the standard SOS-hierarchy (3) the size of the semidefinite matrix variable is

(

n+d
n

)

with rank d

in the hierarchy.
• In contrast to the LP-hierarchy (4), finite convergence occurs at the first step in the

hierarchy for a large class of convex problems; typically convex problems defined with convex
quadratic polynomials or SOS-convex polynomials of degree at most k. Recall that such finite
convergence is impossible for the LP-hierarchy (4).

• Just as in the standard SOS-hierarchy (3), there also exists a sufficient condition for finite
convergence of the hierarchy. Namely it suffices to check whether at an optimal solution of the
corresponding SDP, some associated moment matrix is rank-one.

• Last but not least, to implement this hierarchy one uses important techniques that dramat-
ically alleviate the computational burden associated with a standard (careless) implementation.
Namely, (a) to declare that two polynomials are identical one uses that their values are equal
on finitely many randomly chosen points (instead of equating their coefficients), and (b) the
SDP solver SDPT3 [26, 27] can be used to handle efficiently some type of matrices used in our
positivity certificate.

Preliminary computational experiments First we have compared our results with those
obtained with the GloptiPoly software [12] (devoted to solving the SOS-hierarchy (3)) on a
sample of non convex problems with up to 20 variables. For problems with low degree (in the
initial data) and/or low dimension we obtain the global optimum whereas good lower bounds are
always obtained for problems with high degee or higher dimension (e.g. problems with degree 4
and up to 20 variables).

Next, we have also tested the LP-hierarchy (4) on a sample of convex problems and as
expected the convergence is very poor and the resulting LPs become ill-conditioned. In addition,
the LP can be expensive to solve as the LP data is typically dense. In contrast, the new hierarchy
(with smallest value k = 1 of its parameter) converges at the first step even though some of the
problems are defined with polynomials of degree larger than 2.

Finally we have considered a sample of non convex quadratic problems of the form inf{xTAx :
x ∈ ∆} where ∆ ⊂ R

n is the canonical simplex and A is a randomly generated real symmetric
matrix with r negative eigenvalues and n− r positive eigenvalues. For all problems that could
be solved with GloptiPoly (up to n = 20 variables) we obtain the optimal values. For the other
problems with n = 50, 100 variables a lower bound is obtained in reasonable amount of time.

Of course this new hierarchy of semidefinite relaxations also has its drawbacks (at least in
its present version). Namely some submatrix (of the matrix used to describe the linear equality
constraints of the resulting SDP) is fully dense and many of these linear constraints are nearly
dependent, which yields a lack of accuracy in the optimal solution when the order of relaxation
d is increased.

2 Main result

2.1 Notation and definitions

Let R[x] be the ring of polynomials in the variables x = (x1, . . . , xn). Denote by R[x]d ⊂ R[x]
the vector space of polynomials of degree at most d, which forms a vector space of dimension
s(d) =

(

n+d
d

)

, with e.g., the usual canonical basis (xα) of monomials. Also, denote by Σ[x] ⊂ R[x]

3

(resp. Σ[x]d ⊂ R[x]2d) the space of sums of squares (s.o.s.) polynomials (resp. s.o.s. polynomials
of degree at most 2d). If f ∈ R[x]d, we write f(x) =

∑

α∈Nn
d
fαx

α in the canonical basis and

denote by f = (fα) ∈ R
s(d) its vector of coefficients. Finally, let Sn denote the space of n × n

real symmetric matrices, with inner product 〈A,B〉 = traceAB. We use the notation A � 0
(resp. A ≻ 0) to denote that A is positive semidefinite (definite). With g0 := 1, the quadratic
module Q(g1, . . . , gm) ⊂ R[x] generated by polynomials g1, . . . , gm, is defined by

Q(g1, . . . , gm) :=

m
∑

j=0

σj gj : σj ∈ Σ[x]

.

We briefly recall two important theorems by Putinar [22] and Krivine-Stengle [13, 25] respec-
tively, on the representation of polynomials that are positive on K.

Theorem 1. Let g0 = 1 and K in (2) be compact.
(a) If the quadratic polynomial x 7→ M − ‖x‖2 belongs to Q(g1, . . . , gm) and if f ∈ R[x] is

strictly positive on K then f ∈ Q(g1, . . . , gm).
(b) Assume that 0 ≤ gj ≤ 1 on K for every j, and the family {1, gj} generates R[x]. If f is

strictly positive on K then

f =
∑

α,β∈Nm

cαβ
∏

j

(

g
αj

j (1− gj)
βj

)

,

for some (finitely many) nonnegative scalars (cαβ).

2.2 The Bounded-SOS-hierarchy (BSOS)

Consider the problem

(P) : f∗ = min{f(x) | x ∈ K}

where K ⊂ R
n is the basic semi-algebraic set defined in (2), assumed to be compact. Moreover

we also assume that gj(x) ≤ 1 for all x ∈ K and j = 1, . . . ,m, and {gj , 1 − gj} generates the
ring of polynomials R[x]. For a fixed d ≥ 1, the problem (P) is easily seen to be equivalent to
the following by adding redundant constraints:

(P̃) : f∗ = min{f(x) | hαβ(x) ≥ 0 ∀ (α, β) ∈ N
2m
d }

where N
2m
d = {(α, β) ∈ N

2m | |α|+ |β| ≤ d} and hαβ ∈ R[x] is the polynomial

x 7→ hαβ(x) :=

m
∏

j=1

gj(x)
αj (1− gj(x))

βj , x ∈ R
n.

Given λ = (λαβ), (α, β) ∈ N
2m
d , consider the Lagrangian function:

x 7→ Ld(x, λ) = f(x)−
∑

(α,β)∈N2m
d

λαβhαβ(x), x ∈ R
n.

The Lagrangian dual of (P̃) is given by

(P̃ ∗
d) : sup

λ

{Gd(λ) : λ ≥ 0 }

4

where the function Gd(·) is given by:

λ 7→ Gd(λ) := inf
x∈Rn

{Ld(x, λ)}, λ ≥ 0.

Now for a fixed λ, the evaluation of Gd(λ) is computational intractable. However, let k ∈ N

be fixed and observe that

Gd(λ) = inf
x∈Rn

Ld(x, λ) = sup
t

{ t | Ld(x, λ)− t ≥ 0, ∀x }

≥ sup
t

{ t | Ld(x, λ)− t ∈ Σ[x]k }

where Σ[x]k is the space of sum-of-squares polynomials up to degree 2k. Hence, with k ∈ N

fixed, consider the family of optimization problems indexed by d ∈ N:

qkd := sup
λ,t

{ t | Ld(x, λ)− t ∈ Σ[x]k, λ ≥ 0 }, d ∈ N. (5)

Observe that when k is fixed, then for each d ∈ N:

• Computing qkd in (5) reduces to solving a semidefinite program and so (5) defines a hierarchy
of semidefinite programs because qkd+1 ≥ qkd for all d ∈ N.

• The semidefinite constraint is associated with the constraint Ld(x, λ) − t ∈ Σ[x]k and
the associated matrix has fixed size

(

n+k
n

)

, independent of d ∈ N, a crucial feature for
computational efficiency of the approach.

Moreover,
f∗ ≥ sup

λ≥0
Gd(λ) ≥ qkd , ∀ d ∈ N,

and in fact we even have the more precise and interesting result.

Theorem 2 ([16]). Let K ⊂ R
n in (2) be compact with nonempty interior and gj(x) ≤ 1 for

x ∈ K and j = 1, . . . ,m. Assume further that the family {1, gj} generates the algebra R[x]. Let
k ∈ N be fixed. Then the sequence (qkd), d ∈ N, defined in (5) is monotone nondecreasing and
qkd → f∗ as d → ∞.

Moreover, if f and −gj , j = 1, . . . ,m, are SOS-convex polynomials2of degree at most 2k then
qk1 = f∗, i.e., finite convergence takes places at the first relaxation in the hierarchy! In particular
when f,−gj are convex quadratic polynomials then q11 = f∗.

2.3 The SDP formulation of (5)

To formulate (5) as a semidefinite program one has at least two possibilities depending on how
we state that two polynomials p, q ∈ R[x]d are identical. Either by equating their coefficients (e.g.
in the monomial basis), i.e., pα = qα for all α ∈ N

n
d , or by equating their values on

(

n+d
n

)

generic
points (e.g. randomly generated on the box [−1, 1]n). In the present context of (5) we prefer
the latter option since expanding the polynomial hαβ(x) symbolically to get the coefficients with
respect to the monomial basis can be expensive and memory intensive.

2A polynomial f ∈ R[x] is SOS-convex if its Hessian ∇
2f is an SOS matrix, i.e., ∇2f(x) = L(x)L(x)T for

some matrix polynomial L ∈ R[x]n×p and some p ∈ N.

5

Let τ = max{deg(f), 2k, dmaxj{deg(gj)}}. Then for k fixed and for each d, we get

qkd = max
{

t | f(x)− t−
∑

(α,β)∈N2m
d

λαβhαβ(x) = 〈Q, vk(x)vk(x)
T 〉, Q ∈ S

s(k)
+ , λ ≥ 0

}

= max

{

t
∣

∣

∣

f(x(p)) = t+
∑

(α,β)∈N2m
d

λαβhαβ(x
(p)) + 〈Q, vk(x

(p))vk(x
(p))T 〉,

p = 1, . . . , L, Q ∈ S
s(k)
+ , λ ≥ 0, t ∈ R

}

(6)

where L := |Nn
τ | =

(

n+τ
n

)

and {x(p) ∈ R
n | p = 1, . . . , L} are randomly selected points in [−1, 1]n;

s(k) =
(

n+k
k

)

, and vk(x) is a vector of polynomial basis for R[x]k, the space of polynomials of
degree at most k.

2.4 Sufficient condition for finite convergence

By looking at the dual of the semidefinite program (6) one obtains a sufficient condition for
finite convergence. To describe the dual of the semidefinite program (6) we need to introduce
some notation.

For every p = 1, . . . , L, denote by δx(p) the Dirac measure at the point x(p) ∈ R and let
〈q, δx(p)〉 = q(x(p)) for all p = 1, . . . , L, and all q ∈ R[x].

With a real sequence y = (yα), α ∈ N
n
2ℓ, denote by Mℓ(y) the moment matrix associated

with y. It is a real symmetric matrix with rows and columns indexed in the basis of monomials
(xα), α ∈ N

n
ℓ , and with entries

Mℓ(y)(α, β) = yα+β, ∀α, β ∈ N
n
ℓ .

The dual of the semidefinite program (6) reads:

q̃kd := inf
θ∈RL

L
∑

p=1

θp 〈f, δx(p)〉

s.t.

L
∑

p=1

θp (vk(x
(p)) vk(x

(p))T) � 0

L
∑

p=1

θp 〈hαβ , δx(p)〉 ≥ 0, (α, β) ∈ N
2m
d

L
∑

p=1

θp = 1.

(7)

(Notice that the weights θp are not required to be nonnegative.) By standard weak duality in
convex optimization, and for every fixed k ∈ N, one has

f∗ ≥ q̃kd ≥ qkd , ∀d ∈ N.

Let s ∈ N be the smallest integer such that 2s ≥ max[deg(f); deg(gj)]. We have the following
lemma.

Lemma 1. Let θ∗ ∈ R
L be an optimal solution of (7) and let y∗ = (y∗α), α ∈ N

n
2s, with

y∗α :=

L
∑

p=1

θ∗p (x
(p))α, α ∈ N

n
2s.

If rankMs(y
∗) = 1 then q̃kd = f∗ and x∗ = (y∗α), |α| = 1, i.e., x∗ =

∑L
p=1 θ

∗
p x

(p), is an optimal
solution of problem (P).

6

Proof. If rankMs(y
∗) = 1 then (y∗α), α ∈ N

n
2s, is the vector of moments (up to order 2s) of the

Dirac measure δx∗ at the point x∗ =
∑L

p=1 θ
∗
p x

(p) ∈ R
n. That is,

〈q, δx∗〉 = 〈q,

L
∑

p=1

θ∗p δx(p)〉, ∀q ∈ R[x]2s.

In other words, up to moments of order 2s, one cannot distinguish the Dirac measure at x∗ from
the signed measure µ =

∑

p θ
∗
pδx(p) . Next, as θ∗ is feasible for (7) and 2s ≥ max[deg(f); deg(gj)],

0 ≤

L
∑

p=1

θ∗p 〈hαβ , δx(p)〉 =

〈

hαβ ,

L
∑

p=1

θ∗p δx(p)

〉

= hαβ(x
∗), ∀(α, β) ∈ N

2m
2s .

In particular gj(x
∗) ≥ 0, j = 1, . . . ,m, which shows that x∗ ∈ K. In addition,

f∗ ≥ q̃kd =

L
∑

p=1

θ∗p 〈f, δx(p)〉 =

〈

f,

L
∑

p=1

θ∗p δx(p)

〉

= f(x∗),

which proves that x∗ is an optimal solution of problem (P).

2.5 On the rank-one matrices of (5) and SDPT3

Note that in the SDP (6), the constraint matrices associated with Q are all dense rank-1 matrices
of the form Ap = vk(x

(p))vk(x
(p))T . Thus if we let vp = vk(x

(p)), then the linear maps involved
in the equality constraints of the SDP can be evaluated cheaply based on the following formulas:

A(X) :=
[

〈Ap,X〉
]L

p=1
=

[

〈vp,Xvp〉
]L

p=1
, A∗y :=

L
∑

y=1

ypAp = V Diag(y)V T

where X ∈ Ss(k), y ∈ R
L, V = [v1, . . . ,vL] ∈ R

s(k)×L. Moreover, one need not store the
dense constraint matrices {Ap | p = 1, . . . , L} but only the vectors {vp | p = 1, . . . , L}. To
solve the SDP (6) efficiently, we need to exploit the rank-1 structure of the constraint matrices
during the iterations. Fortunately, the SDPT3 solver [26, 27] based on interior point methods
has already been designed to exploit such a rank-1 structure to minimize the memory needed to
store the constraint matrices, as well as to minimize the computational cost required to compute
the Schur complement matrix arising in each interior-point iteration. More precisely, in each
iteration where a positive definite matrix W ∈ Ss(k) is given, one needs to compute the Schur
complement matrix S whose (p, q) element is given by

Spq = 〈Ap,WAqW 〉 = 〈vpv
T
p ,Wvqv

T
q W 〉 = 〈vp,Wvq〉

2, p, q = 1, . . . , L.

It is the combination of these two implementation techniques (point evaluation in the for-
mulation and exploiting rank-one structure in the interior point algorithm) that makes our
implementation of the SOS-hierarchy (5) efficient.

3 Computational issues

Given f ∈ R[x]d, in order to efficiently evaluate the vector f(x(p)), p = 1, . . . , L, we need a
convenient representation of the polynomial f(x). In our implementation of BSOS, we use the
following data format to input a polynomial:

F (i, 1 : n+ 1) = [αT , fα]

7

where fα is the ith coefficient corresponding to the monomial xα. Note that the enumeration
of the coefficients of f(x) is not important. For a given point z ∈ R

n such that zi 6= 0 for all
i = 1, . . . , n, we evaluate f(z) via the following procedure written in Matlab syntax:

Step 1. Set P = F (:, 1 : n), f = F (:, n + 1), and s = (s1, . . . , sn)
T , where si = 1 if zi < 0, and

si = 0 if zi ≥ 0.

Step 2. Compute s̄ = rem(P s, 2) and z = exp(P log |z|).

Step 3. Compute f(z) = 〈f (a),z(a)〉 − 〈f (b),z(b)〉, where f (a) = f(find(s̄ == 0)) and f (b) =
f(find(s̄ == 1)).

(The above procedure can be modified slightly to handle the case when z has some zero compo-
nents.) Note that in the above procedure, 〈f (a),z(a)〉 and 〈f (b),z(b)〉 correspond to the sum of
positive terms and sum of negative terms in the evaluation of f(z). By separating the summa-
tion of the positive and negative terms in the evaluation of f(z), it is hoped that cancellation
errors can be minimized.

We should mention that some of the equality constraints in (6) may be redundant. For the
sake of reducing the computational cost and improve the numerical stability, we remove these
redundant constraints before solving the SDP. However, as d increases, the linear constraints
would become more and more nearly dependent, and typically the SDP problem cannot be
solved accurately by either SDPT3 or SEDUMI.

Another numerical issue which we should point out is that the constraint matrix

(

hαβ(x
(1))

)

(α,β)∈N2m
d

...
(

hαβ(x
(L))

)

(α,β)∈N2m
d

associated with the nonnegative vector (λαβ) is typically fully dense. Such a matrix would
consume too much memory and also computational cost when d increases or when m is large.

4 Numerical experiments

We call our approach BSOS (for hierarchy with bounded degree SOS). As mentioned in the
Introduction, we conduct experiments on three classes of problems which will be described in
the ensuing subsections.

4.1 Comparison of BSOS with Gloptiploy

We construct a set of test functions with 5 constraints. The test functions are mainly generated
based on the following two problems:

(P1) f = x21 −x22 +x23 −x24 +x1 −x2

s.t. 0 ≤ g1 = 2x21 +3x22 +2x1x2 +2x23 +3x24 +2x3x4 ≤ 1

0 ≤ g2 = 3x21 +2x22 −4x1x2 +3x23 +2x24 −4x3x4 ≤ 1

0 ≤ g3 = x21 +6x22 −4x1x2 +x23 +6x24 −4x3x4 ≤ 1

0 ≤ g4 = x21 +4x22 −3x1x2 +x23 +4x24 −3x3x4 ≤ 1

0 ≤ g5 = 2x21 +5x22 +3x1x2 +2x23 +5x24 +3x3x4 ≤ 1

0 ≤ x.

8

The optimal value of (P1) is f(x
∗) = −0.57491, as computed by Gloptipoly3. For BSOS, we get

the result qk=1
d=1 = −0.57491, which is the exact result.

The second problem is :

(P2) f = x41x
2
2 +x21x

4
2 −x21x

2
2

s.t. 0 ≤ g1 = x21 +x22 ≤ 1

0 ≤ g2 = 3x21 +2x22 −4x1x2 ≤ 1

0 ≤ g3 = x21 +6x42 −8x1x2 + 2.5 ≤ 1

0 ≤ g4 = x41 +3x42 ≤ 1

0 ≤ g5 = x21 +x32 ≤ 1

0 ≤ x1, 0 ≤ x2.

The optimal value of (P2) is f(x∗) = −0.037037, as computed by Gloptipoly3. The results
obtained by BSOS are

qk=3
d=1 = −0.041855, qk=3

d=2 = −0.037139, qk=3
d=3 = −0.037087

qk=3
d=4 = −0.037073, qk=3

d=5 = −0.037046

qk=4
d=1 = −0.038596, qk=4

d=2 = −0.037046, qk=4
d=3 = −0.037040

qk=4
d=4 = −0.037038, qk=4

d=5 = −0.037037.

Based on the above two problems, we increase the degree of the objective function and constraint
functions to generate other test instances which are given explicitly in the Appendix.

Table 4.1 compares the results obtained by BSOS and Gloptipoly3 for the tested instances.
We observe that BSOS can give the exact result for those problems with either low degree or
low dimension, while also providing a good lower bound for high degree and high dimensional
problems. In addition, BSOS can usually get a better bound for most of the test problems when
d increases, and in most cases, the bound is good enough for d = 2, 3.

In Table 4.1, we also use the sufficient condition stated in Lemma 1 to check whether the
generated lower bound is indeed optimal. For quite a number of instances, the moment matrix
Mℓ(y

∗) associated with the optimal solution θ∗ of (7) indeed has numerical rank equal to one
(we declare that the matrix has numerical rank equal to one if the largest eigenvalue is at least
104 times larger than the second largest eigenvalue), which certifies that the lower bound is
actually the optimal value. We should note that for some of the instances, although the lower
bound is actually the optimal value (as declared by Gloptipoly), but the rank of the moment
matrix Mℓ(y

∗) is larger than one.

4.2 Comparison of BSOS with the LP relaxations of Krivine-Stengle on con-
vex problems

Here we compare the performance of BSOS with the LP relaxations of Krivine-Stengle on convex
problems where each test problem has 5 constraint functions in addition to the nonnegative
constraint x ≥ 0. Note that the LP relaxation problem has exactly the same form as in (6),
except that the positive semidefinite matrix variable Q is set to 0. We should mention that
even though the Krivine-Stengle scheme generate LP problems instead of SDP problems, the
sizes of the LP problems also increase rapidly as d increases. In particular, the dimension of the
nonnegative variable λ is

(

2m+d
d

)

, and the constraint matrix is fully dense.

9

Table 1: Comparison of BSOS and Gloptipoly3. An entry marked with “∗” means that the
correspond SDP was not solved to high accuracy.

Problem BSOS Gloptipoly3
(d, k) Result Time(s) rank(M(y∗)) Result Time(s) Order,Optimal

P4 2 1,1 -6.7747e-001 0.3 1 -6.7747e-001 0.2 1,yes
2,1 -6.7747e-001 0.5 1

P4 4 1,2 -2.9812e-001 0.5 7 -3.3539e-002 0.3 2,yes
2,2 -3.3539e-002 0.6 4

P4 6 1,3 -6.2500e-002 0.8 31 -6.0693e-002 0.5 3,yes
2,3 -6.0937e-002 0.9 7
3,3 -6.0693e-002 1.8 4

P4 8 1,4 -9.3354e-002∗ 3.2 > 10 -8.5813e-002 2.6 4,yes
2,4 -8.5813e-002 3.7 9
3,4 -8.5813e-002 5.1 4

P6 2 1,1 -5.7491e-001 0.3 1 -5.7491e-001 0.2 1,yes
2,1 -5.7491e-001 0.8 1

P6 4 1,2 -5.7716e-001 1.1 10 -5.7696e-001 0.3 2,yes
2,2 -5.7696e-001 1.1 4
3,2 -5.7696e-001 4.3 1

P6 6 1,3 -6.5972e-001 7.1 > 10 -4.1288e-001 6.4 3,yes
2,3 -6.5972e-001 10.2 > 10
3,3 -4.1288e-001 32.0 1

P6 8 1,4 -6.5973e-001 74.2 > 10 -4.0902e-001 207.2 4,yes
2,4 -6.5973e-001 168.6 > 10
3,4 -6.5973e-001 264.1 > 10
4,4 -4.0928e-001∗ 1656.0 1∗

8 var, deg 2 1,1 -5.7491e-001 0.5 1 -5.7491e-001 0.3 1,yes
2,1 -5.7491e-001 0.9 1

8 var, deg 4 1,2 -6.5946e-001 2.8 > 10 -4.3603e-001 1.5 2,yes
2,2 -4.3603e-001 4.8 1

8 var, deg 6 1,3 -6.5973e-001 127.1 > 10 -4.1288e-001 161.3 3,yes
2,3 -6.5973e-001 126.6 > 10
3,3 -4.1322e-001* 258.7 1∗

10 var, deg 2 1,1 -5.7491e-001 0.4 1 -5.7491e-001 0.2 1,yes
2,1 -5.7491e-001 1.0 1

10 var, deg 4 1,2 -6.5951e-001 7.8 1 -4.3603e-001 5.3 2,yes
2,2 -4.3603e-001 20.0 1
3,2 -4.3603e-001∗ 66.7 1∗

20 var, deg 2 1,1 -5.7491e-001 1.2 1 -5.7491e-001 0.4 1,yes
2,1 -5.7491e-001 3.0 1

20 var, deg 4 1,2 infeasible 302.1 - -4.3603e-001 5600.8 2,yes
2,2 -4.3602e-001* 1942.2 1∗

10

The following example illustrates the performance of LP relaxation method:

(C1) min f = x41 +x42 +2x21x
2
2 − x1 − x2

s.t. 0 ≤ g1 = −x41 −2x42 +1

0 ≤ g2 = −2x41 −x42 +1

0 ≤ g3 = −x41 −4x22 +1.25

0 ≤ g4 = −4x41 −x42 +1.25

0 ≤ g5 = −2x41 −3x22 +1.1

0 ≤ x1

0 ≤ x2.

For this problem, the functions f and −gi’s are all convex. The optimal value for this problem
is f(x∗) = −0.7500, as computed by Gloptipoly3. For BSOS, we get qk=2

d=1 = −0.7500, and we
obtained the exact result by just choosing d = 1. This observation is consistent with Theorem
4.1 in [16]. For the LP relaxation method, we get the following values for various choices of d:

qLPd=1 = infeasible, qLPd=2 = −1.2200, qLPd=3 = −1.0944, qLPd=4 = −0.9696, qLPd=5 = fail.

Observe that when d increases, we could get a better lower bound for the exact optimal value.
However, as d increases, the LP relaxation problem would become increasing ill-posed and the
solver has difficulty in solving LP problem accurately. In particular, for d = 5, both the solvers
SeDuMi and SDPT3 fail to compute an accurate enough solution for the LP to generate a
sensible lower bound for f(x∗).

In Table 2, we observe that BSOS can achieve the exact result with d = 1 for all the test
instances. In contrast, the LP relaxation method of Krivine-Stengle does not perform very well
even though the test instances are convex problems. In particular, observe that for the last
instance C20 2, the LP relaxation method cannot produce a good lower bound even when we
choose d = 3, and the time taken to solve the correspond LP is about 40 minutes.

Table 2: Comparison of BSOS with LP relaxations of Krivine-Stengle on convex
problems.

LP BSOS Gloptipoly3
d Result Time(s) d, k Result Time(s) Result Time(s) Order,Optimal

C4 2 1 infeasible 1, 1 -2.5000e-001 0.4 -2.5000e-001 0.2 1,yes
2 -9.0000e-001 0.1
3 -5.8852e-001 0.3
4 -4.2500e-001 5.6
5 -3.4975e-001 98.4
6 -3.1001e-001 4074.1

C4 4 ≤ 3 infeasible 1, 2 -6.9574e-001 0.6 -6.9574e-001 0.2 2,yes
4 -1.1094e+000 16.9
5 -8.8542e-001 788.4

C4 6 ≤ 5 infeasible 1, 3 -1.1933e+000 1.5 -1.1933e+000 0.5 3,unknown
6 fail

C6 2 1 infeasible 1, 1 -2.5000e-001 0.3 -2.5000e-001 0.2 1,yes
2 -9.0000e-001 0.1
3 -5.8852e-001 0.6
4 -4.2500e-001 66.3
5 -3.4975e-001 4069.3

C6 4 ≤ 3 infeasible 1, 2 -6.9574e-001 1.3 -6.9574e-001 0.4 2,yes
4 -1.1094e+000 177.5

C6 6 ≤ 5 infeasible 1, 3 -1.1933e+000 1.3 -1.1933e+000 0.4 3,unknown
6 out of memory

C8 2 1 infeasible 1, 1 -2.5000e-001 0.4 -2.5000e-001 0.2 1,yes
2 -9.0000e-001 0.1
3 -5.8852e-001 3.5
4 -4.2500e-001 508.8

11

Table 2: Comparison of BSOS with LP relaxations of Krivine-Stengle on convex
problems.

LP BSOS Gloptipoly3
d Result Time(s) d, k Result Time(s) Result Time(s) Order,Optimal

C8 4 ≤ 3 infeasible 1, 2 -6.9574e-001 3.3 -6.9574e-001 1.2 2,yes
4 -1.1094e+000 1167.3

C10 2 1 infeasible 1, 1 -2.5000e-001 0.8 -2.5000e-001 0.3 1,yes
2 -9.0000e-001 0.1
3 -5.8852e-001 15.8
4 -4.2500e-001 9993.0

C10 4 ≤ 3 infeasible 1, 2 -6.9574e-001 11.4 -6.9574e-001 5.5 2,yes
4 -1.1094e+000 5544.2

C20 2 1 infeasible 1, 1 -2.5000e-001 1.7 -2.5000e-001 0.4 1,yes
2 -9.0000e-001 0.9
3 -5.8852e-001 2398.0

4.3 Performance of BSOS on quadratic problems with polyhedral constraints

Here consider the following problem:

min xTAx

s.t. eTx ≤ 1, x ≥ 0, x ∈ R
n,

(8)

where A is a given n×n symmetric matrix. In our numerical experiments, we generate random
instances such as Qn10 r2 for which n = 10 and A is randomly generated so that it has r = 2
negative eigenvalues and n− r positive eigenvalues as follows:

rng(’default’)

A1 = randn(n); A2 = A1*A1’; perm=randperm(n);

[V,D] = eig(A); eigval=diag(D); idx1=perm(1:r); idx2=perm(r+1:n);

V1=V(:,idx1); V2=V(:,idx2); d1=eigval(idx1); d2=eigval(idx2);

A = V2*diag(d2)*V2’ - V1*diag(d1)*V1’;

Table 4.3 compares the performance of BSOS and Gloptipoly3. From the numerical results,
we can see that BSOS is far more efficient than Gloptipoly3 in solving the problems (8). For
example, for the problem Qn20 r2 with n = 20, BSOS took only 1.9 seconds to generate the
lower bound −2.0356e3 for the problem, but Gloptipoly3 took more than 1 hour to generate
the same bound. The disparity in the efficiency between BSOS and Gloptipoly3 is expected to
become even wider for other instances with n larger than 20.

In Table 4.3, we again use the sufficient condition stated in Lemma 1 to check whether the
generated lower bound is indeed optimal. For each of the first eight instances, the moment
matrix Mℓ(y

∗) associated with the optimal solution θ∗ of (7) has numerical rank equal to one
(we declare that the matrix has numerical rank equal to one if the largest eigenvalue is at least
104 times larger than the second largest eigenvalue), which certifies that the lower bound is
actually the optimal value.

5 Conclusion

We have described and tested a new hierarchy of semideifinite relaxations for global polynomial
optimization. It tries to combine some advantages of previously defined LP- and SOS-hierarchies.
Essentially, it uses a positivity certificate already used in the LP-hierarchy but with an additional
semidefinite constraint which thus makes it an SOS-hierarchy. However the main and crucial

12

Table 3: Comparison of BSOS and Gloptipoly3 on quadratic problems with polyhedral con-
straints.

Problem BSOS Gloptipoly3
(d, k) Result Time(s)rank(Mℓ(y

∗)) Order Result Time(s) Optimal
Qn10 r2 1,1 infeasible 0.8 1 infeasible 0.1

n = 10, r = 2 2,1 -2.8023e+000 0.5 1 2 -2.8023e+000 2.8 yes
Qn10 r5 1,1 infeasible 0.7 1 infeasible 0.1

n = 10, r = 5 2,1 -1.9685e+001 0.4 1 2 -1.9685e+001 2.3 yes
Qn20 r2 1,1 infeasible 1.5 1 infeasible 0.1

n = 20, r = 2 2,1 -2.0356e-003 1.9 1 2 -2.0356e-003 4057.0 yes
Qn20 r5 1,1 infeasible 1.7 1 infeasible 0.1

n = 20, r = 5 2,1 -1.7900e+001 1.0 1 2 -1.7900e+001 3587.4 yes
Qn40 r4 1,1 infeasible 10.9 1 infeasible 1.2

n = 40, r = 4 2,1 -7.0062e+000 10.9 1
Qn50 r5 1,1 infeasible 24.9 1 infeasible 1.5

n = 50, r = 5 2,1 -5.9870e+000 34.8 1
Qn100 r10 1,1 infeasible 385.8 1 infeasible 108.7

n = 100, r = 10 2,1 -8.8502e+000 1617.4 1
Problem 2.9 in [8] 1,1 infeasible 0.9 1 infeasible 0.1

n = 10, r = 6 2,1 3.7500e-001 0.5 1 2 3.7500e-001 2.7 yes
A=-toeplitz([0,1,1,1,1,zeros(1,10)]) 1,1 infeasible 1.2 1 infeasible 0.1

n = 15, r = 3 2,1 -8.0000e-001 0.6 11 2 -8.0087e-001 233.7 unknown
A=-toeplitz([0,1,1,zeros(1,17)]) 1,1 infeasible 1.9 1 infeasible 0.2

n = 20, r = 7 2,1 -6.6667e-001 1.3 18 2 -6.6905e-001 4753.3 unknown

point is that the size of this additional semidefinite constraint is fixed in advance and decided
by the user (in contrast to the standard SOS-hierarchy in which the size of the semidefinite
constraint increases in the hierarchy). Preliminary results are encouraging especially for non
convex problems on convex polytopes where problems with up to 100 variables have been solved
in a reasonable amount of time (whereas the standard SOS-hierarchy cannot be implemented).

For problems of larger size one needs to consider some serious numerical issues due to the
presence of some fully dense submatrix and some nearly dependent linear constraints. In ad-
dition, to be able to handle large-scale problems one also needs to provide a “sparse version”
of this hierarchy, an analogue of the sparse version of the SOS-hierarchy defined in [28]. Both
issues (a topic of further investigation) are certainly non trivial, in particular the latter issue be-
cause the positivity certificate used in this new hierarchy involves products of initial polynomial
constraints, which destroys the sparsity pattern considered in [28].

References

[1] Ahmadi A.A., Majumdar A. DSOS and SDSOS Optimization: LP and SOCP-Based Alter-
natives to SOS Optimization, Proceedings of the 48th Annual Conference on Information
Sciences and Systems, Princeton, NJ, pp. 1–5, March 2014.

[2] Ben-Tal A., Nemirovski A. Lectures on Modern Convex Optimization, SIAM, Philadelphia,
2001.

[3] Belousov E.G., Klatte D. A Frank-Wolfe type theorem for convex polynomial programs,
Comp. Optim. Appl. 22, pp. 37–48, 2002.

[4] Benabbas S., Georgiou K., Magen A., Tulsiani M. SDP gaps from pairwise independence,
Theory of Computing 8, pp. 269–289, 2012.

[5] Benabbas S., Magen A. Extending SDP integrality gaps to Sherali-Adams with applications
to Quadratic Programming and MaxCutGain, in Integer Programming and Combinatorial
Optimization, Lecture Notes in Computer Science, Springer 2010, pp. 299–312.

13

[6] Bertsekas D.P., Nedić A., Ozdaglar E. Convex Analysis and Optimization, Athena Scientific,
Belmont, Massachusetts, 2003.

[7] Chlamtac E., Tulsiani M. Convex relaxations and integrality gaps, in Handbook of Semidef-
inite, Conic and Polynomial Optimization, M. Anjos and J.B. Lasserre Eds., Springer, New
York, 2012, pp. 139–170.

[8] C.A. Floudas and P.M. Pardalos, A Collection of Test Problems for Constrained Global
Optimization Algorithms, Lecture Notes in Comput. Sci. 455, Springer-Verlag, Berlin, 1990.

[9] de Klerk E., Laurent M. On the Lasserre hierarchy of semidefinite programming relaxations
of convex polynomial optimization problems, SIAM J. Optim. 21, pp. 824–832, 2011.

[10] Handelman D. Representing polynomials by positive linear functions on compact convex
polyhedra, Pac. J. Math. 132, pp. 35–62, 1988.

[11] Helton J.W., Nie J. Semidefinite representation of convex sets and convex hulls, in Handbook
on Semidefinite, Conic and Polynomial Optimization, M. Anjos and J.B. Lasserre Eds.,
Springer, New York, 2012, pp. 77–112.

[12] Henrion D., Lasserre J.B., Lofberg J. GloptiPoly 3: moments, optimization and semidefinite
programming, Optim. Methods and Softwares24, pp. 761–779, 2009.

[13] Krivine J.L. Anneaux préordonnés, J. Anal. Math. 12, pp. 307–326, 1964.

[14] Lasserre J.B. Global optimization with polynomials and the problem of moments, SIAM J.
Optim. 11, pp. 796–817, 2001.

[15] Lasserre J.B. Semidefinite programming vs. LP relaxations for polynomial programming,
Math. Oper. Res. 27, pp. 347–360, 2002.

[16] Lasserre J.B. A Lagrangian relaxation view of linear and semidefinite hierarchies, SIAM J.
Optim. 23, pp. 1742–1756, 2013

[17] Lasserre J.B. Convexity in semi-algebraic geometry and polynomial optimization, SIAM J.
Optim. 19, pp. 1995–2014, 2009.

[18] Lasserre J.B. Moments, Positive Polynomials and Their Applications, Imperial College
Press, London, 2009.

[19] Laurent M. A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxations
for 0-1 programming, Math. Oper. Res. 28, pp. 470–496, 2003.

[20] Marshall M. Representation of non-negative polynomials, degree bounds and applications
to optimization, Canad. J. Math. 61, pp. 205–221, 2009.

[21] Nie J. Optimality conditions and finite convergence of Lasserre’s hierarchy, Math. Program.
146, pp. 97–121, 2014.

[22] Putinar M. Positive polynomials on compact semi-algebraic sets, Ind. Univ. Math. J. 42,
pp. 969–984, 1993.

[23] Sherali H.D., Adams W.P. A hierarchy of relaxations between the continuous and convex
hull representations for zero-one programming problems, SIAM J. Discr. Math. 3, pp. 411–
430, 1990.

14

[24] Sherali H.D., Adams W.P. A Reformulation-Linearization Technique for Solving Discrete
and Continuous Nonconvex Problems, Kluwer, Dordrecht, MA, 1999.

[25] Stengle G. A Nullstellensatz and a Positivstellensatz in semialgebraic geometry, Math. Ann.
207, pp. 87–97, 1974.

[26] Toh K.C., Todd M.J., Tutuncu R.H. SDPT3 — a Matlab software package for semidefinite
programming, Optimization Methods and Software 11, pp. 545–581, 1999.

[27] Toh K.C., Todd M.J., Tutuncu R.H. Solving semidefinite-quadratic-linear programs using
SDPT3, Mathematical Programming 95, pp. 189–217, 2003.

[28] Waki S., Kim S., Kojima M., Maramatsu M. Sums of squares and semidefinite programming
relaxations for polynomial optimization problems with structured sparsity, SIAM J. Optim.
17, pp. 218–242, 2006.

[29] Zheng X.J., Sun X.L., Li D., Xu Y.F. On zero duality gap in nonconvex quadratic pro-
gramming problems, J. Glob. Optim. 52, pp. 229–242, 2012.

15

Appendix

Test functions for BSOS and Gloptipoly in Table 4.1

Example P4 2 (4 variables, degree 2):

f = x2
1 − x2

2 + x2
3 − x2

4 + x1 − x2; g1 = 2x2
1 + 3x2

2 + 2x1x2 + 2x2
3 + 3x2

4 + 2x3x4;

g2 = 3x2
1 + 2x2

2 − 4x1x2 + 3x2
3 + 2x2

4 − 4x3x4; g3 = x2
1 + 6x2

2 − 4x1x2 + x2
3 + 6x2

4 − 4x3x4;

g4 = x2
1 + 4x2

2 − 3x1x2 + x2
3 + 4x2

4 − 3x3x4; g5 = 2x2
1 + 5x2

2 + 3x1x2 + 2x2
3 + 5x2

4 + 3x3x4; x ≥ 0.

Example P4 4 (4 variables, degree 4):

f = x4
1 − x4

2 + x4
3 − x4

4; g1 = 2x4
1 + 3x2

2 + 2x1x2 + 2x4
3 + 3x2

4 + 2x3x4;

g2 = 3x2
1 + 2x2

2 − 4x1x2 + 3x2
3 + 2x2

4 − 4x3x4; g3 = x2
1 + 6x2

2 − 4x1x2 + x2
3 + 6x2

4 − 4x3x4;

g4 = x2
1 + 4x4

2 − 3x1x2 + x2
3 + 4x4

4 − 3x3x4; g5 = 2x2
1 + 5x2

2 + 3x1x2 + 2x2
3 + 5x2

4 + 3x3x4; x ≥ 0.

Example P4 6 (4 variables, degree 6):

f = x4
1x

2
2 + x2

1x
4
2 − x2

1x
2
2 + x4

3x
2
4 + x2

3x
4
4 − x2

3x
2
4; g1 = x2

1 + x2
2 + x2

3 + x2
4;

g2 = 3x2
1 + 2x2

2 − 4x1x2 + 3x2
3 + 2x2

4 − 4x3x4; g3 = x2
1 + 6x4

2 − 8x1x2 + x2
3 + 6x4

4 − 8x3x4 + 2.5;

g4 = x4
1 + 3x4

2 + x4
3 + 3x4

4; g5 = x2
1 + x3

2 + x2
3 + x3

4; x ≥ 0.

Example P4 8 (4 variables, degree 8):

f = x4
1x

2
2 + x2

1x
6
2 − x2

1x
2
2 + x4

3x
2
4 + x2

3x
6
4 − x2

3x
2
4; g1 = x2

1 + x2
2 + x2

3 + x2
4;

g2 = 3x2
1 + 2x2

2 − 4x1x2 + 3x2
3 + 2x2

4 − 4x3x4; g3 = x2
1 + 6x4

2 − 8x1x2 + x2
3 + 6x4

4 − 8x3x4 + 2.5;

g4 = x4
1 + 3x4

2 + x4
3 + 3x4

4; g5 = x2
1 + x3

2 + x2
3 + x3

4; x ≥ 0.

Example P6 2 (6 variables, degree 2):

f = x2
1 − x2

2 + x2
3 − x2

4 + x2
5 − x2

6 + x1 − x2;

g1 = 2x2
1 + 3x2

2 + 2x1x2 + 2x2
3 + 3x2

4 + 2x3x4 + 2x2
5 + 3x2

6 + 2x5x6;

g2 = 3x2
1 + 2x2

2 − 4x1x2 + 3x2
3 + 2x2

4 − 4x3x4 + 3x2
5 + 2x2

6 − 4x5x6;

g3 = x2
1 + 6x2

2 − 4x1x2 + x2
3 + 6x2

4 − 4x3x4 + x2
5 + 6x2

6 − 4x5x6;

g4 = x2
1 + 4x2

2 − 3x1x2 + x2
3 + 4x2

4 − 3x3x4 + x2
5 + 4x2

6 − 3x5x6;

g5 = 2x2
1 + 5x2

2 + 3x1x2 + 2x2
3 + 5x2

4 + 3x3x4 + 2x2
5 + 5x2

6 + 3x5x6; x ≥ 0.

Example P6 4 (6 variables, degree 4):

f = x4
1 − x2

2 + x4
3 − x2

4 + x4
5 − x2

6 + x1 − x2;

g1 = 2x4
1 + x2

2 + 2x1x2 + 2x4
3 + x2

4 + 2x3x4 + 2x4
5 + x2

6 + 2x5x6;

g2 = 3x2
1 + x2

2 − 4x1x2 + 3x2
3 + x2

4 − 4x3x4 + 3x2
5 + x2

6 − 4x5x6;

g3 = x2
1 + 6x2

2 − 4x1x2 + x2
3 + 6x2

4 − 4x3x4 + x2
5 + 6x2

6 − 4x5x6;

g4 = x2
1 + 3x4

2 − 3x1x2 + x2
3 + 3x4

4 − 3x3x4 + x2
5 + 3x4

6 − 3x5x6;

g5 = 2x2
1 + 5x2

2 + 3x1x2 + 2x2
3 + 5x2

4 + 3x3x4 + 2x2
5 + 5x2

6 + 3x5x6, x ≥ 0.

Example P6 6 (6 variables, degree 6):

f = x6
1 − x6

2 + x6
3 − x6

4 + x6
5 − x6

6 + x1 − x2;

g1 = 2x6
1 + 3x2

2 + 2x1x2 + 2x6
3 + 3x2

4 + 2x3x4 + 2x6
5 + 3x2

6 + 2x5x6;

g2 = 3x2
1 + 2x2

2 − 4x1x2 + 3x2
3 + 2x2

4 − 4x3x4 + 3x2
5 + 2x2

6 − 4x5x6;

g3 = x2
1 + 6x2

2 − 4x1x2 + x2
3 + 6x2

4 − 4x3x4 + x2
5 + 6x2

6 − 4x5x6;

g4 = x2
1 + 4x6

2 − 3x1x2 + x2
3 + 4x6

4 − 3x3x4 + x2
5 + 4x6

6 − 3x5x6;

g5 = 2x2
1 + 5x2

2 + 3x1x2 + 2x2
3 + 5x2

4 + 3x3x4 + 2x2
5 + 5x2

6 + 3x5x6, x ≥ 0.

Example P6 8 (6 variables, degree 8):

f = x8
1 − x8

2 + x8
3 − x8

4 + x8
5 − x8

6 + x1 − x2;

g1 = 2x8
1 + 3x2

2 + 2x1x2 + 2x8
3 + 3x2

4 + 2x3x4 + 2x8
5 + 3x2

6 + 2x5x6;

g2 = 3x2
1 + 2x2

2 − 4x1x2 + 3x2
3 + 2x2

4 − 4x3x4 + 3x2
5 + 2x2

6 − 4x5x6;

g3 = x2
1 + 6x2

2 − 4x1x2 + x2
3 + 6x2

4 − 4x3x4 + x2
5 + 6x2

6 − 4x5x6;

g4 = x2
1 + 4x8

2 − 3x1x2 + x2
3 + 4x8

4 − 3x3x4 + x2
5 + 4x8

6 − 3x5x6;

g5 = 2x2
1 + 5x2

2 + 3x1x2 + 2x2
3 + 5x2

4 + 3x3x4 + 2x2
5 + 5x2

6 + 3x5x6, x ≥ 0.

16

Example P8 2 (8 variables, degree 2):

f = x2
1 − x2

2 + x2
3 − x2

4 + x2
5 − x2

6 + x2
7 − x2

8 + x1 − x2;

g1 = 2x2
1 + 3x2

2 + 2x1x2 + 2x2
3 + 3x2

4 + 2x3x4 + 2x2
5 + 3x2

6 + 2x5x6 + 2x2
7 + 3x2

8 + 2x7x8;

g2 = 3x2
1 + 2x2

2 − 4x1x2 + 3x2
3 + 2x2

4 − 4x3x4 + 3x2
5 + 2x2

6 − 4x5x6 + 3x2
7 + 2x2

8 − 4x7x8;

g3 = x2
1 + 6x2

2 − 4x1x2 + x2
3 + 6x2

4 − 4x3x4 + x2
5 + 6x2

6 − 4x5x6 + x2
7 + 6x2

8 − 4x7x8;

g4 = x2
1 + 4x2

2 − 3x1x2 + x2
3 + 4x2

4 − 3x3x4 + x2
5 + 4x2

6 − 3x5x6 + x2
7 + 4x2

8 − 3x7x8;

g5 = 2x2
1 + 5x2

2 + 3x1x2 + 2x2
3 + 5x2

4 + 3x3x4 + 2x2
5 + 5x2

6 + 3x5x6 + 2x2
7 + 5x2

8 + 3x7x8; x ≥ 0.

Example P8 4 (8 variables, degree 4):

f = x4
1 − x4

2 + x4
3 − x4

4 + x4
5 − x4

6 + x4
7 − x4

8 + x1 − x2;

g1 = 2x4
1 + 3x2

2 + 2x1x2 + 2x4
3 + 3x2

4 + 2x3x4 + 2x4
5 + 3x2

6 + 2x5x6 + 2x4
7 + 3x2

8 + 2x7x8;

g2 = 3x2
1 + 2x2

2 − 4x1x2 + 3x2
3 + 2x2

4 − 4x3x4 + 3x2
5 + 2x2

6 − 4x5x6 + 3x2
7 + 2x2

8 − 4x7x8;

g3 = x2
1 + 6x2

2 − 4x1x2 + x2
3 + 6x2

4 − 4x3x4 + x2
5 + 6x2

6 − 4x5x6 + x2
7 + 6x2

8 − 4x7x8;

g4 = x2
1 + 4x4

2 − 3x1x2 + x2
3 + 4x4

4 − 3x3x4 + x2
5 + 4x4

6 − 3x5x6 + x2
7 + 4x4

8 − 3x7x8;

g5 = 2x2
1 + 5x2

2 + 3x1x2 + 2x2
3 + 5x2

4 + 3x3x4 + 2x2
5 + 5x2

6 + 3x5x6 + 2x2
7 + 5x2

8 + 3x7x8, x ≥ 0.

Example P8 6 (8 variables, degree 6):

f = x6
1 − x6

2 + x6
3 − x6

4 + x6
5 − x6

6 + x6
7 − x6

8 + x1 − x2;

g1 = 2x6
1 + 3x2

2 + 2x1x2 + 2x6
3 + 3x2

4 + 2x3x4 + 2x6
5 + 3x2

6 + 2x5x6 + 2x6
7 + 3x2

8 + 2x7x8;

g2 = 3x2
1 + 2x2

2 − 4x1x2 + 3x2
3 + 2x2

4 − 4x3x4 + 3x2
5 + 2x2

6 − 4x5x6 + 3x2
7 + 2x2

8 − 4x7x8;

g3 = x2
1 + 6x2

2 − 4x1x2 + x2
3 + 6x2

4 − 4x3x4 + x2
5 + 6x2

6 − 4x5x6 + x2
7 + 6x2

8 − 4x7x8;

g4 = x2
1 + 4x6

2 − 3x1x2 + x2
3 + 4x6

4 − 3x3x4 + x2
5 + 4x6

6 − 3x5x6 + x2
7 + 4x6

8 − 3x7x8;

g5 = 2x2
1 + 5x2

2 + 3x1x2 + 2x2
3 + 5x2

4 + 3x3x4 + 2x2
5 + 5x2

6 + 3x5x6 + 2x2
7 + 5x2

8 + 3x7x8, x ≥ 0.

Example P10 2 (10 variables, degree 2):

f = x2
1 − x2

2 + x2
3 − x2

4 + x2
5 − x2

6 + x2
7 − x2

8 + x2
9 − x2

10 + x1 − x2;

g1 = 2x2
1 + 3x2

2 + 2x1x2 + 2x2
3 + 3x2

4 + 2x3x4 + 2x2
5 + 3x2

6 + 2x5x6 + 2x2
7 + 3x2

8 + 2x7x8 + 2x2
9 + 3x2

10 + 2x9x10;

g2 = 3x2
1 + 2x2

2 − 4x1x2 + 3x2
3 + 2x2

4 − 4x3x4 + 3x2
5 + 2x2

6 − 4x5x6 + 3x2
7 + 2x2

8 − 4x7x8 + 3x2
9 + 2x2

10 − 4x9x10;

g3 = x2
1 + 6x2

2 − 4x1x2 + x2
3 + 6x2

4 − 4x3x4 + x2
5 + 6x2

6 − 4x5x6 + x2
7 + 6x2

8 − 4x7x8 + x2
9 + 6x2

10 − 4x9x10;

g4 = x2
1 + 4x2

2 − 3x1x2 + x2
3 + 4x2

4 − 3x3x4 + x2
5 + 4x2

6 − 3x5x6 + x2
7 + 4x2

8 − 3x7x8 + x2
9 + 4x2

10 − 3x9x10;

g5 = 2x2
1 + 5x2

2 + 3x1x2 + 2x2
3 + 5x2

4 + 3x3x4 + 2x2
5 + 5x2

6 + 3x5x6 + 2x2
7 + 5x2

8 + 3x7x8 + 2x2
9 + 5x2

10 + 3x9x10;

x ≥ 0.

Example P10 4 (10 variables, degree 4):

f = x4
1 − x4

2 + x4
3 − x4

4 + x4
5 − x4

6 + x4
7 − x4

8 + x4
9 − x4

10 + x1 − x2;

g1 = 2x4
1 + 3x2

2 + 2x1x2 + 2x4
3 + 3x2

4 + 2x3x4 + 2x4
5 + 3x2

6 + 2x5x6 + 2x4
7 + 3x2

8 + 2x7x8 + 2x4
9 + 3x2

11 + 2x9x10;

g2 = 3x2
1 + 2x2

2 − 4x1x2 + 3x2
3 + 2x2

4 − 4x3x4 + 3x2
5 + 2x2

6 − 4x5x6 + 3x2
7 + 2x2

8 − 4x7x8 + 3x2
9 + 2x2

10 − 4x9x10;

g3 = x2
1 + 6x2

2 − 4x1x2 + x2
3 + 6x2

4 − 4x3x4 + x2
5 + 6x2

6 − 4x5x6 + x2
7 + 6x2

8 − 4x7x8 + x2
9 + 6x2

10 − 4x9x10;

g4 = x2
1 + 4x4

2 − 3x1x2 + x2
3 + 4x4

4 − 3x3x4 + x2
5 + 4x4

6 − 3x5x6 + x2
7 + 4x4

8 − 3x7x8 + x2
9 + 4x4

10 − 3x9x10;

g5 = 2x2
1 + 5x2

2 + 3x1x2 + 2x2
3 + 5x2

4 + 3x3x4 + 2x2
5 + 5x2

6 + 3x5x6 + 2x2
7 + 5x2

8 + 3x7x8 + 2x2
9 + 5x2

10 + 3x9x10;

x ≥ 0.

17

Example P20 2 (20 variables, degree 2):

f = x2
1 − x2

2 + x2
3 − x2

4 + x2
5 − x2

6 + x2
7 − x2

8 + x2
9 − x2

10 + x2
11 − x2

12 + x1 − x2

+x2
13 − x2

14 + x2
15 − x2

16 + x2
17 − x2

18 + x2
19 − x2

20;

g1 = 2x2
1 + 3x2

2 + 2x1x2 + 2x2
3 + 3x2

4 + 2x3x4 + 2x2
5 + 3x2

6 + 2x5x6 + 2x2
7 + 3x2

8 + 2x7x8

+2x2
9 + 3x2

10 + 2x9x10 + 2x2
11 + 3x2

12 + 2x11x12 + 2x2
13 + 3x2

14 + 2x13x14 + 2x2
15 + 3x2

16
+2x15x16 + 2x2

17 + 3x2
18 + 2x17x18 + 2x2

19 + 3x2
10 + 2x20x20;

g2 = 3x2
1 + 2x2

2 − 4x1x2 + 3x2
3 + 2x2

4 − 4x3x4 + 3x2
5 + 2x2

6 − 4x5x6 + 3x2
7 + 2x2

8 − 4x7x8

+3x2
9 + 2x2

10 − 4x9x10 + 3x2
11 + 2x2

12 − 4x11x12 + 3x2
13 + 2x2

14 − 4x13x14

+3x2
15 + 2x2

16 − 4x15x16 + 3x2
17 + 2x2

19 − 4x18x18 + 3x2
19 + 2x2

20 − 4x19x20;

g3 = x2
1 + 6x2

2 − 4x1x2 + x2
3 + 6x2

4 − 4x3x4 + x2
5 + 6x2

6 − 4x5x6 + x2
7 + 6x2

8 − 4x7x8

+x2
9 + 6x2

10 − 4x9x10 + x2
11 + 6x2

12 − 4x11x12 + x2
13 + 6x2

14 − 4x13x14

+x2
15 + 6x2

17 − 4x16x16 + x2
17 + 6x2

18 − 4x17x18 + x2
19 + 6x2

20 − 4x19x20;

g4 = x2
1 + 4x2

2 − 3x1x2 + x2
3 + 4x2

4 − 3x3x4 + x2
5 + 4x2

6 − 3x5x6 + x2
7 + 4x2

8 − 3x7x8

+x2
9 + 4x2

10 − 3x9x10 + x2
1 + 4x2

12 − 3x11x12 + x2
13 + 4x2

14 − 3x15x14

+x2
15 + 4x2

16 − 3x15x16 + x2
17 + 4x2

18 − 3x17x18 + x2
19 + 4x2

20 − 3x19x20;

g5 = 2x2
1 + 5x2

2 + 3x1x2 + 2x2
3 + 5x2

4 + 3x3x4 + 2x2
5 + 5x2

6 + 3x5x6 + 2x2
7 + 5x2

8 + 3x7x8

+2x2
9 + 5x2

10 + 3x9x10 + 2x2
11 + 5x2

13 + 3x12x12 + 2x2
13 + 5x2

14 + 3x13x14

+2x2
15 + 5x2

16 + 3x15x16 + 2x2
17 + 5x2

18 + 3x17x18 + 2x2
19 + 5x2

20 + 3x19x20;
x ≥ 0.

Example P20 4 (20 variables, degree 4): Same as P20 2 except that f is replaced by

f = x4
1 − x4

2 + x2
3 − x2

4 + x2
5 − x2

6 + x2
7 − x2

8 + x2
9 − x2

10 + x2
11 − x2

12 + x1 − x2

+x2
13 − x2

14 + x2
15 − x2

16 + x2
17 − x2

18 + x2
19 − x2

20;

5.1 Test functions for BSOS versus LP relaxations of Krivine-Stengle on
convex problems in Table 2

Example C4 2 (4 variables, degree 2):

f = x2
1 + x2

2 + x2
3 + x2

4 + 2x1x2 − x1 − x2; g1 = −x2
1 − 2x2

2 − x2
3 − 2x2

4 + 1;

g2 = −2x2
1 − x2

2 − 2x2
3 − x2

4 + 1; g3 = −x2
1 − 4x2

2 − x2
3 − 4x2

4 + 1.25;

g4 = −4x2
1 − x2

2 − 4x2
3 − x2

4 + 1.25; g5 = −2x2
1 − 3x2

2 − 2x2
3 − 3x2

4 + 1.1; x ≥ 0.

Example C4 4 (4 variables, degree 4):

f = x4
1 + x4

2 + x4
3 + x4

4 + 3x2
1x

2
2 − x1 − x2; g1 = −x4

1 − 2x4
2 − x4

3 − 2x4
4 + 1;

g2 = −2x4
1 − x4

2 − 2x4
3 − x4

4 + 1; g3 = −x4
1 − 4x4

2 − x4
3 − 4x4

4 + 1.25;

g4 = −4x4
1 − x4

2 − 4x4
3 − x4

4 + 1.25; g5 = −2x4
1 − 3x2

2 − 2x4
3 − 3x2

4 + 1.1; x ≥ 0.

Example C4 6 (4 variables, degree 6):

f = x6
1 + x6

2 + x6
3 + x6

4 + 10
3
x3
1x

3
2 − x1 − x2; g1 = −x6

1 − 2x6
2 − x6

3 − 2x6
4 + 1;

g2 = −2x6
1 − x6

2 − 2x6
3 − x6

4 + 1; g3 = −x6
1 − 4x2

2 − x6
3 − 4x2

4 + 1.25;

g4 = −4x6
1 − x2

2 − 4x6
3 − x2

4 + 1.25; g5 = −2x2
1 − 3x6

2 − 2x2
3 − 3x6

4 + 1.1; x ≥ 0.

Example C6 2 (6 variables, degree 2):

f = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + 2x1x2 − x1 − x2; g1 = −x2
1 − 2x2

2 − x2
3 − 2x2

4 − x2
5 − 2x2

6 + 1;

g2 = −2x2
1 − x2

2 − 2x2
3 − x2

4 − 2x2
5 − x2

6 + 1; g3 = −x2
1 − 4x2

2 − x2
3 − 4x2

4 − x2
5 − 4x2

6 + 1.25;

g4 = −4x2
1 − x2

2 − 4x2
3 − x2

4 − 4x2
5 − x2

6 + 1.25; g5 = −2x2
1 − 3x2

2 − 2x2
3 − 3x2

4 − 2x2
5 − 3x2

6 + 1.1; x ≥ 0.

Example C6 4 (6 variables, degree 4):

f = x4
1 + x4

2 + x4
3 + x4

4 + x4
5 + x4

6 + 3x2
1x

2
2 − x1 − x2; g1 = −x4

1 − 2x4
2 − x4

3 − 2x4
4 − x4

5 − 2x4
6 + 1;

g2 = −2x4
1 − x4

2 − 2x4
3 − x4

4 − 2x4
5 − x4

6 + 1; g3 = −x4
1 − 4x4

2 − x4
3 − 4x4

4 − x4
5 − 4x4

6 + 1.25;

g4 = −4x4
1 − x4

2 − 4x4
3 − x4

4 − 4x4
5 − x4

6 + 1.25; g5 = −2x4
1 − 3x2

2 − 2x4
3 − 3x2

4 − 2x4
5 − 3x2

6 + 1.1; x ≥ 0.

18

Example C6 6 (6 variables, degree 6):

f = x6
1 + x6

2 + x6
3 + x6

4 + x6
5 + x6

6 + 10
3
x2
1x

3
2 − x1 − x2; g1 = −x6

1 − 2x6
2 − x6

3 − 2x6
4 − x6

5 − 2x6
6 + 1;

g2 = −2x6
1 − x6

2 − 2x6
3 − x6

4 − 2x6
5 − x6

6 + 1; g3 = −x6
1 − 4x2

2 − x6
3 − 4x2

4 − x6
5 − 4x2

6 + 1.25;

g4 = −4x6
1 − x2

2 − 4x6
3 − x2

4 − 4x6
5 − x2

6 + 1.25; g5 = −2x2
1 − 3x6

2 − 2x2
3 − 3x6

4 − 2x2
5 − 3x6

6 + 1.1; x ≥ 0.

Example C8 2 (8 variables, degree 2):

f = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7 + x2

8 + 2x1x2 − x1 − x2; g1 = −x2
1 − 2x2

2 − x2
3 − 2x2

4 − x2
5 − 2x2

6 − x2
7 − 2x2

8 + 1;

g2 = −2x2
1 − x2

2 − 2x2
3 − x2

4 − 2x2
5 − x2

6 − 2x2
7 − x2

8 + 1; g3 = −x2
1 − 4x2

2 − x2
3 − 4x2

4 − x2
5 − 4x2

6 − x2
7 − 4x2

8 + 1.25;

g4 = −4x2
1 − x2

2 − 4x2
3 − x2

4 − 4x2
5 − x2

6 − 4x2
7 − x2

8 + 1.25; g5 = −2x2
1 − 3x2

2 − 2x2
3 − 3x2

4 − 2x2
5 − 3x2

6 − 2x2
7 − 3x2

8 + 1.1;

x ≥ 0.

Example C8 4 (8 variables, degree 4):

f = x4
1 + x4

2 + x4
3 + x4

4 + x4
5 + x4

6 + x4
7 + x4

8 + 3x2
1x

2
2 − x1 − x2; g1 = −x4

1 − 2x4
2 − x4

3 − 2x4
4 − x2

5 − 2x4
6 − x4

7 − 2x4
8 + 1;

g2 = −2x4
1 − x4

2 − 2x4
3 − x4

4 − 2x2
5 − x4

6 − 2x4
7 − x4

8 + 1; g3 = −x4
1 − 4x4

2 − x4
3 − 4x4

4 − x4
5 − 4x4

6 − x4
7 − 4x4

8 + 1.25;

g4 = −4x4
1 − x4

2 − 4x4
3 − x4

4 − 4x4
5 − x4

6 − 4x4
7 − x4

8 + 1.25; g5 = −2x4
1 − 3x2

2 − 2x4
3 − 3x2

4 − 2x4
5 − 3x2

6 − 2x4
7 − 3x2

8 + 1.1;

x ≥ 0.

Example C10 2 (10 variables, degree 2):

f = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7 + x2

8 + x2
9 + x2

10 + 2x1x2 − x1 − x2;

g1 = −x2
1 − 2x2

2 − x2
3 − 2x2

4 − x2
5 − 2x2

6 − x2
7 − 2x2

8 − x2
9 − 2x2

10 + 1;

g2 = −2x2
1 − x2

2 − 2x2
3 − x2

4 − 2x2
5 − x2

6 − 2x2
7 − x2

8 − 2x2
9 − x2

10 + 1;

g3 = −x2
1 − 4x2

2 − x2
3 − 4x2

4 − x2
5 − 4x2

6 − x2
7 − 4x2

8 − x2
9 − 4x2

10 + 1.25;

g4 = −4x2
1 − x2

2 − 4x2
3 − x2

4 − 4x2
5 − x2

6 − 4x2
7 − x2

8 − 4x2
9 − x2

10 + 1.25;

g5 = −2x2
1 − 3x2

2 − 2x2
3 − 3x2

4 − 2x2
5 − 3x2

6 − 2x2
7 − 3x2

8 − 2x2
9 − 3x2

10 + 1.1;

x ≥ 0.

Example C10 4 (10 variables, degree 4):

f = x4
1 + x4

2 + x4
3 + x4

4 + x4
5 + x4

6 + x4
7 + x4

8 + x4
9 + x4

10 + 3x2
1x

2
2 − x1 − x2;

g1 = −x4
1 − 2x4

2 − x4
3 − 2x4

4 − x4
5 − 2x4

6 − x4
7 − 2x4

8 − x4
9 − 2x4

10 + 1;

g2 = −2x4
1 − x4

2 − 2x4
3 − x4

4 − 2x4
5 − x4

6 − 2x4
7 − x4

8 − 2x4
9 − x4

10 + 1;

g3 = −x4
1 − 4x4

2 − x4
3 − 4x4

4 − x4
5 − 4x4

6 − x4
7 − 4x4

8 − x4
9 − 4x4

10 + 1.25;

g4 = −4x4
1 − x4

2 − 4x4
3 − x4

4 − 4x4
5 − x4

6 − 4x4
7 − x4

8 − 4x4
9 − x4

10 + 1.25;

g5 = −2x4
1 − 3x2

2 − 2x4
3 − 3x2

4 − 2x4
5 − 3x2

6 − 2x4
7 − 3x2

8 − 2x4
9 − 3x2

10 + 1.1;

x ≥ 0.

Example C20 2 (20 variables, degree 2):

f = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7 + x2

8 + x2
9 + x2

10 + 2x1x2 − x1 − x2

+x2
11 + x2

12 + x2
13 + x2

14 + x2
15 + x2

16 + x2
17 + x2

18 + x2
19 + x2

20;

g1 = −x2
1 − 2x2

2 − x2
3 − 2x2

4 − x2
5 − 2x2

6 − x2
7 − 2x2

8 − x2
9 − 2x2

10
−x2

11 − 2x2
12 − x2

13 − 2x2
14 − x2

15 − 2x2
16 − x2

17 − 2x2
18 − x2

19 − 2x2
20 + 1;

g2 = −2x2
1 − x2

2 − 2x2
3 − x2

4 − 2x2
5 − x2

6 − 2x2
7 − x2

8 − 2x2
9 − x2

10
−2x2

11 − x2
12 − 2x2

13 − x2
14 − 2x2

15 − x2
16 − 2x2

17 − x2
18 − 2x2

19 − x2
20 + 1;

g3 = −x2
1 − 4x2

2 − x2
3 − 4x2

4 − x2
5 − 4x2

6 − x2
7 − 4x2

8 − x2
9 − 4x2

10
−x2

11 − 4x2
12 − x2

13 − 4x2
14 − x2

15 − 4x2
16 − x2

17 − 4x2
18 − x2

19 − 4x2
20 + 1.25;

g4 = −4x2
1 − x2

2 − 4x2
3 − x2

4 − 4x2
5 − x2

6 − 4x2
7 − x2

8 − 4x2
9 − x2

10
−4x2

11 − x2
12 − 4x2

13 − x2
14 − 4x2

15 − x2
16 − 4x2

17 − x2
18 − 4x2

19 − x2
20 + 1.25;

g5 = −2x2
1 − 3x2

2 − 2x2
3 − 3x2

4 − 2x2
5 − 3x2

6 − 2x2
7 − 3x2

8 − 2x2
9 − 3x2

10
−2x2

11 − 3x2
12 − 2x2

13 − 3x2
14 − 2x2

15 − 3x2
16 − 2x2

17 − 3x2
18 − 2x2

19 − 3x2
20 + 1.1;

x ≥ 0.

19

