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Abstract

This paper addresses a scheduling problem with continuous resour-
ces and energy constraints. Given a set of non-preemptive activities,
each activity requires a continuously-divisible resource whose instan-
taneous usage is limited in maximum and minimum, its processing
satisfying a time window and a total energy (time × resource-usage)
requirement. The goal consists in getting a schedule satisfying all the
constraints. The problem, which we refer to as the Energy-Constrained
Scheduling Problem with Continuous Resources (CECSP), is a gener-
alization of the well-known cumulative scheduling problem for which
the “energetic reasoning” or “left-shift/right-shift” necessary feasibil-
ity condition yielded a popular polynomially computable satisfiability
test. The paper presents a generalization of the energetic reasoning
for the CECSP, defining precisely the activity minimum consumptions
and exhibiting a polynomial number of relevant time intervals on which
it is sufficient to apply the satisfiability tests. A strongly polynomial
energetic reasoning satisfiability test can be derived for the considered
generalization, which also yields a short proof for the complexity of the
original algorithm. Some limits of the approach, as well as an approx-
imation framework for more general resource consumption functions,
are also addressed.

Keywords: scheduling with continuous resources, energy requirement, en-
ergetic reasoning satisfiability test, complexity.
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1 Introduction

The control of energy consumption is now an important and rapidly growing
matter of concern in most industrial sectors. This major preoccupation
appears in many areas such as production [20], transportation [13], smart
buildings [16], embedded systems [15], or technology studies [17]. This issue
becomes crucial in industrial organizations, in which the increased cost of
energy, the new environmental constraints and the supplying difficulties have
a big impact on the company activities and the production systems are
affected in first place.

To address this problem we propose to focus on the propagation of en-
ergy constraints induced by resource power consumptions. This issue can
be generally addressed by modeling the scheduling problem with continu-
ous resources. The idea is to consider the energetic reasoning propagation
algorithm [11, 18, 3] and to propose its generalization for considering con-
tinuous resource constraints where the resource-usage profile of an activity
can take any shape bounded by a time window and minimum and maximum
resource requirements, provided that a fixed amount of energy is brought to
each activity. We refer to this problem as the Energy-Constrained Schedul-
ing Problem with Continuous Resources (or Continuous Energy-Constrained
Scheduling Problem, in short CECSP).

Energetic reasoning is part of constraint-based scheduling. Constraint-
based scheduling can be defined as a topic that studies how to solve schedul-
ing problems using constraint programming [4, 19]. A popular global con-
straint useful for a large variety of scheduling problems is the cumulative

constraint. Given a resource of limited capacity and a set of activities, each
having a release date, a due date, a duration and a resource requirement, the
cumulative constraint states that each activity is scheduled in its time win-
dow while, at any time, the cumulative resource requirement of the ongoing
activities does not exceed the resource capacity. The decision problem em-
bedded inside the cumulative constraint is called the cumulative scheduling
problem (CuSP). Deciding whether a cumulative constraint can be satis-
fied amounts to deciding whether a CuSP has a solution and this is strongly
NP-complete. Necessary feasibility conditions (or satisfiability tests) have
been developed for constraint propagation. In particular, energetic rea-
soning yielded the powerful polynomially computable “left-shift/right-shift”
satisfiability test and time-bound adjustments proposed in [3]. As a counter-
part of its strength, the test has a relatively high complexity, which limited
its use in branch-and-bound trees. However, recently, efficient implementa-

2



tions and approximations were proposed to drastically reduce the compu-
tational requirements and considerably increasing the energetic reasoning
appeal for future applications [7].

The constraint propagation techniques developed so far in the literature
cannot tackle directly the peculiarity of the CECSP. As the resource is con-
tinuously divisible, the activity requirement may change at any moment,
and even under the assumption of continuous time, a fundamental question
arises whether a strongly polynomial energetic reasoning-based satisfiability
test can be defined for this constraint. This amounts to find a set of rel-
evant intervals of polynomial cardinality, on which it is sufficient to apply
energetic reasoning. This is the main objective of this paper.

The paper and its contributions are organized as follows: Section 2 pro-
vides a short background on the scheduling theory regarding energy con-
straints. Section 3 defines the CECSP, establishes the complexity of spe-
cial cases and discusses the interest of the CECSP for solving more gen-
eral energy-constrained problems, in particular scheduling problems with
continuously-divisible resources and non-linear power processing rate func-
tions. In Section 4, we consider energetic reasoning for the CECSP. We
show that the energetic reasoning satisfiability test for the CSCSP can be
computed in strongly polynomial time, as there actually exists a set of rel-
evant intervals, the cardinality of which is bounded by a quadratic func-
tion of the number of activities. The interest of approximating general
energy-constrained scheduling problems by a CECSP is illustrated through
an example derived from the literature. In Section 5, we provide analytic
expressions of all relevant intervals in function of the problem instance pa-
rameters. These findings additionally provide a shorter proof for correctness
of the polynomial satisfiability test proposed for the CuSP in [3]. In Section
6, some limits of energetic reasoning for the CECSP are underlined. Con-
cluding remarks and perspectives are drawn in Section 7. A theorem proof
is developed in the appendix.

2 Background

The scheduling problem with a cumulative constraint, a.k.a. the Cumula-
tive Scheduling Problem (CuSP) can be seen as a subproblem of the well-
known RCPSP (Resource-Constrained Project Scheduling Problem). In a
CuSP, precedence constraints are relaxed and a single limited-capacity re-
source is considered at a time. Each activity is processed without interrup-
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tion and the execution is constrained by a time window and an instantaneous
resource consumption. A few methods have been proposed to solve the CuSP
as such, e.g., constraint programming [3], column generation [1], and more
recently, efficient SAT encodings through lazy clause generation [22]. More
generally, the methods proposed in the vast literature on the RCPSP or its
generalizations can be adapted to solve the CuSP, such as, again, recent
SAT-based techniques [10, 14, 23].

Considering more particularly constraint-based scheduling, necessary con-
ditions have been developed for constraint propagation to cope with the
NP-completeness of the problem. One of the most successful ones are the
left-shift/right-shift conditions [3], also known as energetic reasoning [18].
Energetic reasoning simultaneously encompasses considerations on time con-
straints and resource constraints yielding a (necessary) satisfiability test as
well as time-bound adjustments. The central concept is the minimum energy
consumption of an activity over a given time interval called the mandatory
consumption. The satisfiability test consists in verifying that there does not
exist any interval such that the sum of the mandatory consumptions over
this interval exceeds the total available energy equal to the resource capac-
ity times the length of the interval under consideration. In [3], Baptiste et
al. show that for the cumulative constraint, the satisfiability test can be
limited to a quadratic number of intervals.

Despite its fundamental interest, the cumulative constraint suffers from
limitations already identified in the literature. One of these limitations is
that there are many practical applications where the duration and resource
requirement of activities may vary over time in a discrete or continuous way.
For example, in a scheduling problem with malleable tasks [9], the activities
must be processed on several processors at the same time and the processing
speed depends on the number of assigned processors; the set of processors
assigned to the same activity can change over time [5]. The time/resource
tradeoff problem addressed in [21] also falls into this category. Several au-
thors propose variants of the cumulative constraint and associated filtering
algorithms to relax the constant or fixed resource requirement assumption.
Baptiste et al. [3] consider the fully elastic case where an activity has a
constant energy requirement but its resource requirement at each (discrete)
time is a variable whose domain varies from 0 to the resource capacity. The
same authors also defined the partially elastic case without any limitation
on the activity consumptions. Beldiceanu and Poder [6] define an activity
as a sequence of continuous trapezoid sub-activities with variable duration
and heights. Viĺım [24] considers activities where duration and resource re-
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quirement are defined by intervals. In the two latest studies, no fixed energy
requirement is set for the activities. Finally, Fündeling and Trautmann have
considered the RCPSP with work-content constraints and proposed priority
rule-based heuristics to solve it [12]. The work-content constraint is very
close to the scheduling problem addressed in this paper. The main differ-
ences lie in the pure discrete feature of resource requirements contrary to
our study where resource requirements take continuous values. Apart from
the latter reference, the CECSP can be defined, to summarize, as a previ-
ously unconsidered generalization of the CuSP where the amount of resource
required by an activity in progress at each time instant can be modulated
between a minimum and a maximum value.

The CECSP is also linked to other energy-constrained scheduling prob-
lems with continuous resources [8, 25, 26]. In [8], the resources are dis-
tinguished according to their divisibility. Thus, a resource can be either
discretely-divisible (discrete) or continuously-divisible (continuous). In our
work, we will consider the case of continuous resources, which can be allo-
cated at each time to each activity in an arbitrary and unknown in advance
amount that must lie within a given interval. Practical applications deal-
ing with real continuous resources are numerous, in particular all situations
involving power limitations (electrical energy for example). Continuous re-
sources may also serve as a relaxation of discrete resources, providing an
aggregated reasoning and therefore getting rid of the combinatorial feature
coming from the various alternative amounts to process an activity. The
authors of [8] study several models for task processing according to the
resource amount allotted. In particular, they study problems with one con-
tinuous, renewable resource in addition to: 1) parallel, identical processors
and a continuously variable task processing speed; 2) a single processor and
a continuously variable task processing time.

We consider in this paper an energetic consumption constraint (in short,
energy constraint) associated with each activity processing, as defined in
[2]. The energy is generically defined as the product of a time duration by a
resource quantity. This gives an aggregate amount comparable to a surface,
which can be expressed in units of [time × resource] (man-day, kW.h, ...).
The concept of energy is of great interest, especially when it is more easy
to measure accurately the activity energy while some parameters (activity
duration, resource amount) remain incompletely specified. Compared to
the energy requirement considered in problems with continuous resources,
for which the energy brought to an activity is computed by integrating a
power processing rate function on the scheduling horizon [8, 25], the CECSP
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corresponds to the significant restriction to identity power processing rate
functions. On the other hand, the scheduling problems considered in [8, 25]
do not consider minimum and maximum resource requirement constraints.
We refer to [2] for a presentation of an industrial application of the discrete
variant of the CECSP.

3 Problem statement and properties

3.1 Definition of the CECSP

Formally, the problem takes as input a set of n activities A = {1, 2, . . . , n}.
Such activities have to be executed using a continuous resource of maximal
availability R (capacity). Every activity i has an energy requirement Wi,
a resource requirement between bmin

i and bmax
i , and it has to be realized

within a time window [ri, di]. No restriction is assumed on parameter values,
i.e., R ∈ R and Wi, b

min
i , bmax

i , ri, di ∈ R, for each activity i ∈ A. Let
T = [mini∈A ri,maxi∈A di] denote the continuous time horizon. Solving
the CECSP consists in determining, for each activity i, a start time sti, a
finishing time fti, and the resource quantity allocated bi(t) for all t ∈ T
such that the following constraints are satisfied:

ri ≤ sti ≤ fti ≤ di (i ∈ A) (1)

bmin
i ≤ bi(t) ≤ bmax

i (i ∈ A ; t ∈ [sti, fti]) (2)

bi(t) = 0 (i ∈ A ; t ∈ T \ [sti, fti]) (3)
∫ fti

sti

bi(t)dt = Wi (i ∈ A) (4)

∑

i∈A
bi(t) ≤ R (t ∈ T ) (5)

Constraints (1) impose each activity being processed inside its time win-
dow. Constraints (2)–(3) state that the resource-usage profile of every ac-
tivity must satisfy minimum and maximum resource requirements when the
activity is in process, and equals zero otherwise. Constraints (4) express
the energy requirement of each activity. Constraints (5) prevent the total
amount of resource used by the activities simultaneously in process at every
time t to exceed the resource capacity. We define the activity duration as
pi = fti − sti.

Consider now the following remarkable particular case. If bmin
i = bmax

i =
bi then pi = Wi/bi is a constant and the solution is fully determined by
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activity start times sti. If, in addition, all bi and pi are integer we notice
that we can restrict the search space to integer start times. With these
additional assumptions, we obtain the CuSP. It follows from this remark
that the CECSP is NP-complete.

3.2 CECSP with fixed starting/finishing times

If starting and finishing times are fixed, functions bi(t), i ∈ A, remain the
only unknowns, and Theorem 1 shows that the CECSP is easy to solve.

Theorem 1. For fixed (sti, fti)i∈A the feasibility of the CECSP (1)–(5) can
be checked polynomially in function of n.

Proof. Consider a feasible solution bi(t) of a CECSP and the increasing se-
ries (tq)q=1..Q of distinct start time and end time values (Q ≤ n2). For
every t, we have

∑

i∈A bi(t) ≤ R. Integrating on interval [tq, tq+1] yields
∫ tq+1

tq

∑

i∈A bi(t)dt ≤ (tq+1 − tq)R and consequently,
∑

i∈A

∫ tq+1

tq
bi(t)dt

tq+1−tq
≤ R.

Let biq =
∫ tq+1

tq
bi(t)dt. It follows that bi(t) can be set to constant value

biq/(tq+1 − tq) on interval [tq, . . . , tq+1] while keeping the solution feasible.
In other words, there is no need to change the amount of resource allocated
to an activity at time point that does not coincide with the start or the end
of another activity. It follows that by replacing bi(t) by decision variable
biq/(tq+1 − tq) for t ∈ {tq, . . . , tq+1 − 1}, in (2)–(5), where biq is the (contin-
uous) amount of energy allocated to i in interval q, yields a linear program
with a number of variables and constraints polynomial in n. Equivalently,
the problem amounts to a feasible flow problem in a network made of a
unique source node, a unique sink node, a node per activity and a node per
interval Iq = [tq, tq+1]. An arc of capacity Wi links the source to each node
i. An arc of minimal capacity bmin

i and maximal capacity bmax
i links each

node i to each node Iq such that Iq ⊆ [sti, fti]. Lastly, an arc of capacity
[tq+1 − tq] ∗ B connects each node Iq to the sink node. The CECSP with
fixed start times has a solution if and only if there exists a flow of value
∑

i∈AWi in the network.

Note that the CECSP with fixed start and end times considered in this
section is equivalent to a variant of the CECSP with zero minimum resource
requirement (bmin

i = 0) and time-varying resource capacity. Indeed, when
start and end times are fixed, the time window of each activity can be
reduced to [r′i = sti, d

′
i = fti] and each activity must receive its minimum
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requirement during its entire time window. It follows that we can define
an equivalent time-varying resource capacity function B′(t) where B′(t) =
R −

∑

i∈A|t∈[ri,di] b
min
i for each t ∈ T and define a new demand W ′

i = Wi −
bmin
i (t2 − t1) and new min and max requirements b′min

i = 0 and b′max
i =

bmax
i − bmin

i , for each activity i ∈ A. Conversely, from any CECSP with
zero minimum resource requirement and time varying resource capacity, we
easily obtain an equivalent CECSP with fixed start and end times by defining
fixed activities corresponding to capacity changes. It follows from Theorem 1
that the CECSP with zero minimum resource requirement and time varying
resource capacity is polynomial. In particular the case where the capacity
is constant (which can be defined as the continuous fully elastic problem by
reference to the discrete one presented in [3]) is also polynomial.

3.3 Interest for other energy-constrained problems

This paper is mainly devoted to a necessary feasibility condition for the
CECSP. Hence, such a condition holds for any generalization of this prob-
lem. For example, if T is discrete, bmin

i = 0, bmax
i = R, we obtain the

(polynomially solvable) fully elastic constraint [3]. If bi(t) is constrained
to take only discrete values, the necessary condition will also hold (see for
example the work-content problem considered in [12]).

Consider now a continuous resource model where the power processing
rate of an activity is no more equal to its instantaneous resource require-
ment (see for example the models presented in [8, 25]). The latter modeling
amounts to replacing the energy constraints (4) by the following, more gen-
eral, constraints:

∫ fti

sti

fi[bi(t)]dt = Wi (i ∈ A) (6)

where fi(b) is a continuous non-decreasing power processing rate function.

When the power processing rate functions are linear, i.e., fi(b) = aib+ci,
with ai, bi ∈ R, ai > 0, ci ≥ 0, we provide an approximation of this general
problem by a CECSP. In this case, constraints (6) can be written

ai

∫ fti

sti

bi(t)dt + ci

∫ fti

sti

dt = Wi (i ∈ A)

which yields

∫ fti

sti

bi(t)dt =
Wi

ai
− ci

ai
(fti − sti) (i ∈ A) (7)
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We must first underline that the CECSP or its generalization, which are
decision problems, can be transformed into equivalent minimization prob-
lems, introducing objective function

min
∑

i∈A
Wi (8)

and replacing, for the CECSP, constraints (4) by constraints

∫ fti

sti

bi(t)dt ≥ Wi (i ∈ A) (9)

and, for the generalized CECSP, constraints (6) by constraints

∫ fti

sti

fi[bi(t)]dt ≥ Wi (i ∈ A) (10)

while keeping other constraints. As time is continuous, it is never advan-
tageous to provide more energy to the activity than the required one, and
there is no constraint that would make the problems feasible only by allocat-
ing to an activity more than Wi. So both decision problems will be feasible
as soon as their minimization counterpart are feasible and vice-versa.

Whenever fi(b) ≤ b, approximating fi[bi(t)] by bi(t) gives precisely the
energy constraint (4) and a valid relaxation. We can propose another relax-
ation scheme of the generalized problem with linear power processing rate
functions by defining an upper bound pmax

i of fti − sti. The maximal dura-
tion is obtained by scheduling with the minimal resource requirement bmin

i .
From equation (7), it yields:

bmin
i pmax

i =
Wi

ai
− ci

ai
pmax
i

hence

pmax
i =

Wi

aibmin
i + ci

The following constraint must hold

∫ fti

sti

bi(t)dt ≥
Wi

ai
− ci

ai
pmax
i

therefore, using the expression of pmax
i ,

∫ fti

sti

bi(t)dt ≥
Wib

min
i

aibmin
i + ci
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By defining W ′
i =

Wib
min
i

aibmin
i + ci

and considering constraints

∫ fti

sti

bi(t)dt ≥ W ′
i ,

i ∈ A, we obtain a CECSP, which is a valid relaxation of the general problem
with linear power processing rate functions.

3.4 Illustrative example

As an illustration, we propose an extension of an example problem presented
in [25].

Consider a problem with n = 4, R = 1 and power processing rate func-
tions of activities of the form fi(b) = b1/qi with qi ∈ {1, 2}, i = 1, 2, . . . , n.
The energy requirements of the activities, and their values of qi are defined
by the vectors: W = [25, 36, 64, 47] and q = [1, 2, 1, 2]. In addition to the
original example, we define bmin = [0, 0.3, 1, 0.2] and bmax = [0.5, 0.5, 1, 0.4]
as well as r = [0, 16, 0, 50] and d = [58, 106, 90, 139].

As some power processing rate functions are non-linear (activities 2 and
4), we address here a generalized CECSP. Note that for 0 ≤ b ≤ 1,

√
b ≥ b, so

we cannot approximate fi(bi(t)) by bi(t) for f2(b) = f4(b) =
√
b. However,

the square root function can standardly be approximated from above by
its tangent line f ′ at any point. For activity 2, we are thus looking for
f ′
2(b) = a′2b + c′2. The slope of the tangent line at the middle point of

interval [0.3, 0.5] is equal to a′2 = 1
2
√
0.4

. As the tangent line passes through

(0.4,
√

0.4) we have
√

0.4 = 0.4
2
√
0.4

+ c′2 and c′2 =
√
0.4
2 . We have now a linear

function

f ′
2(b) =

b

2
√

0.4
+

√
0.4

2

as the power processing rate function for activity 2 and we can approximate
its energy constraint with the method described in the previous section. We
compute

pmax
2 =

W2

a′2b
min
2 + c′2

=
36

0.3
2.
√
0.4

+
√
0.4
2

=
720

7

√
0.4 ≈ 65.0526

Then we have

W ′
2 =

W2

a′2
− c′2

a′2
pmax
2 =

216

7

√
0.4 ≈ 19.5158

Similarly for activity 4 we can approximate f4(b) =
√
b by its tangent f ′

4(b) =

a′4b + c′4 at point (0.3,
√

0.3), which yields a′4 = 1
2
√
0.3

and c′4 =
√
0.3
2 . In the
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same way we compute a lower bound for the energy requirement at power
processing rate

f ′
4(b) =

b

2
√

0.3
+

√
0.3

2

by computing
pmax
4 = 188

√
0.3 ≈ 102.9718

Then we have

W ′
4 =

188

5

√
0.3 ≈ 20.5943

With same data but replacing W2 by W ′
2 and W4 by W ′

4 we now have a
CECSP, which is a relaxation of the original problem with non-linear power
processing rate, in the sense that if the CECSP is infeasible then the original
problem is also infeasible.

4 Energetic reasoning—The“left-shift/right-shift”
necessary condition

Energetic reasoning has been successful implemented in the cumulative

global constraint. Our objective is here to extend its principle to the case of
continuous resources for the CECSP. The cornerstone of all this reasoning is
based on an accurate evaluation of the real available energy for the activity
execution over a continuous time interval, according to the other activity
consumptions. Thanks to this evaluation, various energetic balances can put
in evidence an energy lack over certain intervals. This can produce forbidden
activity locations, yielding sequencing conditions between activities, time
window narrowing coming from time-bound adjustments, or “holes” in the
associated underlying interval. In this paper we concentrate on the necessary
condition yielding a satisfiability test.

4.1 A necessary feasibility condition

When starting and finishing times must be determined, as our problem gen-
eralizes CuSP, deciding whether the scheduling problem with continuous
resources and energy constraint has a solution is NP-complete. It is con-
sequently of interest to establish necessary feasibility conditions, i.e., an
incomplete satisfiability test that ensures the constraint cannot be satisfied
if the test returns false while we can not conclude on the constraint sat-
isfiability if the test returns true. For the CuSP, the energetic reasoning
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triggers a successful incomplete satisfiability test used in commercial solvers
[3, 18].

A first elementary satisfiability test consists in checking whether the
activity data are consistent. This can be expressed as:

Proposition 1. If ∃i ∈ A such that bmax
i (di−ri) < Wi, the CECSP (1)–(5)

has no solution.

Proof. This is straightforward as Wi/b
max
i is the shortest possible duration

of activity i.

Consider now the minimum energy consumption of an activity i over an
interval [t1, t2], ignoring other activities. This value, called the mandatory
consumption over the interval, is denoted by w(i, t1, t2). It is defined by

w(i, t1, t2) = min

∫ t2

t1

bi(t)dt subject to (1)–(4)

Proposition 2 (Energy reasoning satisfiability test). The CECSP (1)–(5)
has no solution if

∃(t1, t2) ∈ T 2, t2 > t1, SL(t1, t2) < 0 (11)

where SL(t1, t2) = R(t2−t1)−
∑

i∈Aw(i, t1, t2) is the slack of interval [t1, t2],
i.e., the available energy given all the minimum energy consumptions of all
activities.

Proof. Suppose that the condition is satisfied. By definition w(i, t1, t2), is
the minimum energy consumed by i over interval [t1, t2]. If any feasible
solution bi(t), ∀i ∈ A, exists, we have

∫ t2
t1

bi(t)dt ≥ w(i, t1, t2). By summing

over all activities, it comes
∑

i∈A
∫ t2
t1

bi(t)dt ≥
∑

i∈Aw(i, t1, t2) > R(t2− t1).
We obtain a contradiction with the integration of resource constraint (5) on
interval [t1, t2].

Proposition 2 corresponds to the well-known energetic reasoning on non-
preemptive problems, involving the “left-shift/right-shift” necessary condi-
tion transposed to our problem. In [3], it was shown that Test (11) can be
restricted for the CuSP to a set of dominant intervals of polynomial cardi-
nality. A polynomial consistency-checking algorithm exists if a polynomial
number of intervals [t1, t2] are sufficient to perform the satisfiability test.
The first objective is then to find a minimal set of intervals on which to
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apply this energetic consistency test for the CECSP. In [2], the necessary
condition has been presented for the discrete time case but the question on
the existence of a polynomial number of relevant intervals was left open.

4.2 Mandatory consumption

Let us first have a closer look at the mandatory consumption of an activity
i ∈ A, for all intervals [t1, t2] with t2 > t1. We will show that w(i, t1, t2)
is a two-dimensional piecewise-linear continuous function decreasing in t1
and increasing in t2. Each function w(i, t1, t2), i ∈ A is defined in the
polygon P = {t1 ≥ rmin, t2 − t1 ≥ 0, t2 ≤ dmax}, with rmin = mini∈A ri and
dmax = maxi∈A di.

Constraints (5) are the only constraints that link variables bi(t) for dif-
ferent i. Actually, as these constraints have been removed in the definition of
the mandatory consumption, they can be computed separately (and easily)
for each activity. Given the interval [t1, t2], it can easily be observed that the
minimum consumption of an activity i inside the interval always corresponds
to a configuration where the activity is either left shifted (in which case the
activity starts at ri and is scheduled at its maximum resource requirement
bmax
i between ri and t1) or right shifted (in which case the activity ends at
di and is scheduled at its maximum resource requirement bmax

i between t2
and di), or both. Depending on the relative position of t1, t2, ri, and di,
the possible configurations for minimum energy consumption of an activity
i are displayed in Figure 1.

We summarize the expression of the minimum consumption for each of
the possible configurations (a)–(i) as follows:

(a) If t1 ≤ t2 ≤ di −Wi/b
max
i ,

w(i, t1, t2) = 0.

(b) If t1 ≤ ri ≤ t2 ≤ di and t2 ≥ di −Wi/b
max
i ,

w(i, t1, t2) = Wi − (di − t2)b
max
i

(c) If ri + Wi/b
max
i ≤ t1 ≤ t2,

w(i, t1, t2) = 0

(d) If ri ≤ t1 ≤ di ≤ t2, and t1 ≤ ri + Wi/b
max
i ,

w(i, t1, t2) = Wi − (t1 − ri)b
max
i

(e) If t1 ≤ ri ≤ di ≤ t2, w(i, t1, t2) = Wi

13
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ri t1 t2 di
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bmax

i

ri t1

bmin

i

bmax

i

ri t1t2 di dit2

bmin

i

bmax

i

di

bmin

i

t2t1

bmax

i

Figure 1: Mandatory consumption configurations

(f–i) If ri ≤ t1 ≤ ri + Wi/b
max
i and di − Wi/b

max
i ≤ t2 ≤ di, the following

subconfigurations are defined:

(f)–(h) If the activity can be scheduled at its minimum requirement in-
side [t1, t2], i.e., Wi−bmax

i (t1−ri+di−t2) ≤ bmin
i (t2−t1), we have:

w(i, t1, t2) = min





bmin
i (t2 − t1),
Wi − (di − t2)b

max
i ,

Wi − (t1 − ri)b
max
i



, which can be expressed

by the following conditions:

(f) If Wi− (di− t2)b
max
i ≤ bmin

i (t2− t1) and Wi− (di− t2)b
max
i ≤

Wi − (t1 − ri)b
max
i

w(i, t1, t2) = Wi − (di − t2)b
max
i

(g) If Wi− (t1− ri)b
max
i ≤ bmin

i (t2− t1) and Wi− (t1− ri)b
max
i ≤

Wi − (di − t2)b
max
i

w(i, t1, t2) = Wi − (t1 − ri)b
max
i

(h) If bmin
i (t2 − t1) ≤ Wi − (di − t2)b

max
i and bmin

i (t2 − t1) ≤
Wi − (t1 − ri)b

max
i ,

w(i, t1, t2) = bmin
i (t2 − t1)
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(i) If the activity cannot be scheduled at its minimum requirement
inside [t1, t2], i.e., Wi − bmax

i (t1 − ri + di − t2) ≥ bmin
i (t2 − t1),

w(i, t1, t2) = Wi − bmax
i (t1 − ri + di − t2)

The conditions associated with the different expressions are linear in-
equalities that define a planar subdivision of polygon P into convex polygons
inside which the minimum consumption is linear. Hence, the individual ac-
tivity minimum consumption w(i, t1, t2) is a bivariate continuous piecewise
linear function. This remark allows us to establish the theorem stated in
Section 4.4.

4.3 Back to the example

We illustrate the energetic reasoning satisfiability test on the scheduling
example presented in Section 3.4. We use the modified energy requirements
W ′ to work on the CECSP instead on its generalization. Consider two
particular intervals I1 = [t1, t2] = [0, 139] and I2 = [t3, t4] = [16, 106].

Since I1 covers the entire scheduling horizon,
∑

i∈Aw(i, t1, t2) =
∑

i∈AW ′
i =

25 + 216
7

√
0.4 + 64 + 188

5

√
0.3 ≈ 129.1101 ≤ 139. For this interval the slack

is positive and nothing can be concluded on the problem feasibility.

Let now compute the mandatory consumption of each activity over in-
terval I2 = [16, 106] . Task 1 is in case (d) of Figure 1 (r1 ≤ t3 ≤ d1 ≤ t4)
and w(1, t3, t4) = 25 − 16 × 0.5 = 17. Task 2 has precisely [t3, t4] as time
window, so w(1, t3, t4) = W ′

2 = 216
7

√
0.4. Task 3 is also in case (d) of Figure

1 (r3 ≤ t3 ≤ d3 ≤ t4) and w(3, t3, t4) = 64 − 16 × 1 = 48. Last, activity
4 is in configuration (b) of Figure 1 (t3 ≤ r4 ≤ t4 ≤ d4) and w(4, t3, t4) =
188
5

√
0.3−33×0.4 ≈ 7.3944. By summing up all w(i, t3, t4) we obtain a total

energy requirement of 17 + 216
7

√
0.4 + 48 + 188

5

√
0.3 − 33 × 0.4 ≈ 91.9101,

which is strictly larger than the interval capacity (90).

It follows that the energetic reasoning satisfiability test on [t3, t4] allows
the infeasibility of the CECSP to be proven and, consequently, that of its
generalization.

4.4 Strong polynomiality of the satisfiability test

Theorem 2 below shows that, despite the continuous nature of the CECSP
yielding a potentially infinite interval space, the energetic reasoning satisfi-
ability test can be checked in strongly polynomial time.
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Theorem 2. The energetic reasoning satisfiability test (11) needs only be
applied on a quadratic number of intervals [t1, t2].

Proof. The slack function, as a difference of a linear function R(t2 − t1)
and a sum of piecewise linear functions, is itself a two-dimensional piecewise
linear function. The minimum of the slack function is attained on an ex-
treme point of one of the convex polygons on which it is linear. The break
line segments of the slack function are the same as the ones of the sum of
the individual minimum consumption functions. Hence, from a geometrical
point of view, an extreme point of the slack function is the intersection of
two line segments, each being the break line segment of an individual activ-
ity minimum consumption function. It follows directly that to compute the
minimum slack, it suffices to enumerate all such intersection points, and,
for each of them to perform the satisfiability test (11). For each activity,
there is a constant number of line segments, which gives O(n2) number of
intersection points.

For each intersection point, the energetic reasoning satisfiability test (11)
needs O(n) time to compute the sum of minimum consumptions, which gives
a total time complexity of O(n3) for a naive enumeration algorithm. Note
that for the cumulative case (i.e., bmin

i = bmax
i ), this property has already

been established by Baptiste, Le Pape, & Nuijten (see Proposition 6 in [3]).
We will come back to these results in the next section, as Theorem 2 yields
a shorter proof.

For more computational efficiency, it is now necessary to further char-
acterize the break line segments of the individual activity minimum con-
sumption functions, as we can observe that for a given activity some regions
(a)–(i) can be skipped.

5 In-depth characterization of break line segments

In this section, we provide the different possible configurations for the manda-
tory consumption of an activity. This amounts to define analytically the
break line segments defining the polygons of the bivariate piecewise linear
function based on activity parameters.

To perform this analysis we first make the following observations for the
minimum consumption function.

First, we observe that the function value is independent of t1 if t1 ≤ ri
and independent of t2 if t2 ≥ di. This is formally stated by:
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Lemma 1.

w(i, t1, t2) = w(i, ri, t2), ∀(t1, t2 ∈ P ), t1 ≤ ri

w(i, t1, t2) = w(i, t1, di), ∀(t1, t2 ∈ P ), t2 ≥ di.

Proof. For any interval [t1, t2] such that t1 ≤ ri,

∫ t2

t1

bi(t)dt =

∫ ri

t1

bi(t)dt +

∫ t2

ri

bi(t)dt =

∫ t2

ri

bi(t)dt

since bi(t) = 0 for all t ≤ ri by Constraints (1) and (3). The definition of the
minimal energy consumption yields the first equality. The second equality
is obtained by a symmetric argument.

Second we observe that the minimal energy consumption of an activity
i ∈ A inside an interval [t1, t2] is symmetric with respect to axis t1 + t2 =
ri + di.

Lemma 2. For all t1 ≥ 0, t2 ≥ t1, w(i, t1, t2) = w(i, di +ri− t2, di +ri− t1).

Proof. First from Lemma 1, we may restrict to an interval [t1, t2] ⊆ [ri, di].
Let t′1 = di + ri − t2 and t′2 = di + ri − t1. By symmetry we have also
[t′1, t

′
2] ⊆ [ri, di]. It follows that for both intervals the mandatory con-

sumption is either zero or computed according to one of the configura-
tions (f)–(i) displayed in Figure 1 and described in Section 4.2. In the
case where w(i, t1, t2) = 0, we have either t2 ≤ di − Wi/b

max
i =⇒ t′1 ≥

ri + Wi/b
max
i or t1 ≥ ri + Wi/b

max
i =⇒ t′2 ≤ di − Wi/b

max
i . In each case,

the implication gives w(i, t′1, t
′
2) = 0. In the case where w(i, t1, t2) > 0,

we have [ri + Wi/b
max
i , di − Wi/b

max
i ] ⊂ [t1, t2], which also implies that

[ri +Wi/b
max
i , di−Wi/b

max
i ] ⊂ [t′1, t

′
2]. This means that one of the configura-

tions among {(f),(g),(h),(i)} holds for each interval. If the conditions for con-
figuration (f) hold for [t1, t2], conditions for configuration (g) hold for [t′1, t

′
2]

and the mandatory consumptions are equal because Wi − (di − t2)b
max
i =

Wi − (t′1 − ri)b
max
i . Symmetrically, if configuration (g) holds for [t1, t2], con-

figuration (f) holds for [t′1, t
′
2] and the mandatory consumptions are equal.

Finally, configurations (h) and (i) are both preserved by the transformation
and we have t2 − t1 = t′2 − t′1. It follows that mandatory consumptions are
equal in both cases.

From Lemmas (1) and (2), it is sufficient to establish the expression
of w(i, t1, t2) on the polygon (triangle) delimited by inequalities t1 ≥ ri,
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t1 + t2 ≤ ri + di and t2 − t1 ≥ 0. The triangle is defined by the intersection
points A = (ri, di), B = ((ri + di)/2, (ri + di)/2) and C = (ri, ri).

Inside this polygon, the unique point for which the minimum required
energy is maximal is point A = (ri, di) and w(i, ri, di) = Wi (see configura-
tion (e) in Figure 1).

For ease of notation, we define activity earliest end time emin
i and latest

start time smax
i as follows:

emin
i = ri + Wi/b

max
i , ∀i ∈ A

smax
i = di −Wi/b

max
i , ∀i ∈ A

Theorem 3. The minimum mandatory consumption function of an activity
is one of the six piecewise linear bivariate functions described through the
planar subdivisions displayed in Figures 2–5 and precisely described here-
after. The break line segments to consider are those of the polygons on
which the function is linear.

The detailed proof of this theorem is given in appendix. We present
below the seven possible configurations for the expression of the mandatory
consumption of an activity, depending on the problem parameters. The
seven possible piecewise linear functions are represented in Figures 2–5. As
each function w(i, t1, t2) is a two-dimensional piecewise linear function, we
could represent it on the 3-D space. For the sake of readability, we project
it on the (t1, t2) plane and we represent the different linear parts by shaded
zones.

5.1 Case b
min
i = 0

For this case, which can be stated as the continuous fully elastic case (by
reference to [3]), the break line segments of the mandatory consumption
functions are given in Figure 2. Inside each zone, the linear expression of the
mandatory consumption (one of the expressions (a-i) defined in Section 4.2)
is recalled when it is not equal to zero. Basically there are two zones, one (e)
in which the mandatory consumption is maximal, as interval [t1, t2] covers
the activity time windows, and one (i) where the mandatory consumption is
obtained by scheduling as many as possible amount of activity outside of the
interval. The break line segments to consider are (rmin, di)A, A(ri, dmax),

(rmin, smax
i )D, DD′ and D′(emin

i , dmax) where A = (ri, di), D = (ri, s
max
i )

and D′ = (emin
i , di). From Figure 2 onwards, a point indicated with a
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square stands for an intersection (remarkable interval) of two break lines of
the individual mandatory consumption function of activity i. A circled point
is the intersection of a break line of the mandatory consumption function
of activity i with a boundary break line t2 = dmax and t1 = rmin. Other
displayed intersection points are here irrelevant, as they are located on lines
that are not both break lines of the mandatory function.

t1

t2

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

12

(e)

(i)

A

B

C

C’

D

D’

E

rmin ri dmaxemin
i

dmax

rmin

di

smax
i

Figure 2: Case bmin
i = 0 (ri = 3, di = 10, bmax

i = 5,Wi = 10)

5.2 Case b
min
i = b

max
i = bi

In the particular case where bmin
i = bmax

i , i.e., the standard cumulative case,
as considered in [3], we obtain two possible configurations of the break line
segments depending on the relative positioning of the earliest end time emin

i

and the latest end time smax
i (Figure 3). For both configurations, as in the

previously considered case, the mandatory is maximal when [ri, di] ⊆ [t1, t2],
i.e., in zone (e).

Consider the case where emin
i ≤ smax

i (see Figure 3(a)). As the earliest
end time does not exceed the latest start time there are only two zones where
the mandatory consumption is non-zero and non-maximal. The zone where
the activity is left-shifted is subdivided into two sub-zones: area (d) defined
by ri ≤ t1 ≤ di ≤ t2, and area (g) above line t1 + t2 = ri + di. The zones
where the activity is right-shifted (b,f) can be defined by symmetry. The
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break line segments to consider are then given by (ri, dmax)A, (rmin, di)A,

(rmin, smax
i )F , F (emin

i , dmax), AF , where F = (emin
i , smax

i ).

Consider now the case where ri + Wi/bi ≥ di −Wi/bi (see Figure 3(b)).
As, for any point t ∈ [smax

i , emin
i ], the activity is necessarily in progress,

in addition to the zones mentioned in the previous case, there is a zone (h)
where the mandatory consumption uses the full interval capacity. The break
line segments to consider are given by (ri, dmax)A, (rmin, di)A, (rmin, smax

i )G,

G′(emin
i , dmax), AH, GH and G′H, where H = (smax

i , emin
i ), G = (smax

i , , smax
i )

and G′ = (emin
i , emin

i ).

Now we come back to the results obtained by Baptiste et al [3] on the
set of remarkable intervals, i.e., the set of intervals on which it is sufficient
to apply the energetic reasoning satisfiability test. By observing the break
line segments of the minimum consumption piecewise linear function of all
activities, as displayed in Figure 3, we may define S1 as the set of all hori-
zontal break line segments, S2 as the set of all vertical break line segments,
and S3 as the set of all (A,H) segments. Intersection points have to be
searched between segment pairs in S1 × S2, S1 × S3 and S2 × S3 only. This
gives an alternative proof of Proposition 6 in [3].

t1

t2

rmin riri dmax

emin
i

smax
i

dmax

rmin

di

smax
i

emin
i

A

B

C

C’

D

D’

F
G

G’

(e) (d)

(g)(b)
(f)

(a) emin
i ≤smax

i (Wi=10)

t1

t2

rmin
rmin

riri
emin
i

smax
i

dmax

dmax

di

smax
i

emin
i

A

B

H

FG

G’

C

C’

D

D’

(e) (d)

(g)

(b) (f)

(h)

(b) emin
i ≥smax

i (Wi=20)

Figure 3: Two configurations for case bmin
i = bmax

i = 5 (ri = 3, di = 10)
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5.3 Case 0 < b
min
i < b

max
i

We still have to consider the more general case of the energy scheduling
problem, where there is a non-zero minimal requirement strictly lower than
the maximal requirement. In this case we have four configurations for the
break line segments that are displayed in Figures 4 and 5.

We first consider the case where bmin
i (di− ri) ≥ Wi, i.e., the activity can

be scheduled at the minimum requirement during all its processing. Hence
we have a minimum energy consumption inside the interval lower than or
equal to (t2 − t1)b

min
i . This leads, for the break line segments, to the two

configurations displayed in Figure 4 depending on the relative ordering of the
earliest end time emin

i and the latest start time smax
i . The displayed zones,

as well as the break line segments, are the same as for the bmin
i = bmax

i case,
except that point H has now the expression

H = (
ri(b

max
i − bmin

i ) − dib
min
i + Wi

bmax
i − 2bmin

i

,
di(b

max
i − bmin

i ) − rib
min
i −Wi

bmax
i − 2bmin

i

)

H is the intersection point of the lines delimiting configuration (h) bmin
i (t2−

t1) = Wi − (di − t2)b
max
i and bmin

i (t2 − t1) = Wi − (t1 − ri)b
max
i .

We now consider the complementary case where bmin
i (di− ri) ≤ Wi, i.e.,

the activity cannot be scheduled at its minimal requirement during all its
processing. This leads, for the break line segments, to the two configurations
displayed in Figure 5. This is the only case where more than bmin

i (t2−t1) can
be required by the activity inside the interval, which corresponds to linear
expression (i). The zone where (i) holds is delimited by lines t1 = ri, t2 = di
and Wi − bmax

i (t1 − ri + di − t2) = bmin
i (t2 − t1), which intersect at points A,

I = (ri,
dib

max
i

−rib
min
i

−Wi

bmax
i

−bmin
i

) and I ′ = (
rib

max
i

−dib
min
i

+Wi

bmax
i

−bmin
i

, di). According to the

relative ordering of the earliest end time emin
i and the latest start time smax

i ,
the region below line Wi−bmax

i (t1−ri+di−t2) = bmin
i (t2−t1) and delimited

by lines bmin
i (t2−t1) = Wi−(di−t2)b

max
i and bmin

i (t2−t1) = Wi−(t1−ri)b
max
i ,

on which configuration (h) is observed is either closed at point H or at points
G and G′.

The break line segments to consider for configuration 5(a) are given by

(ri, dmax)A, (rmin, di)A, (rmin, smax
i )F , F (emin

i , dmax), AI, AI ′, II ′, IH, I ′H,
and HF .

The break line segments to consider for configuration 5(b) are given by

(ri, dmax)A, (rmin, di)A, (rmin, smax
i )G, G′(emin

i , dmax), AI, AI ′, II ′, IG and
I ′G′.
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t1

t2

rmin riri dmax

emin
i

smax
i
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rmin

di

smax
i
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i

A

B

C

C’

D

D’

F
G

G’

(e) (d)

(g)(b)
(f)

(a) Case emin
i ≤ smax

i (bmin
i = 2,Wi = 10)

t1
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smax
i
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dmax

di

smax
i
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i

A

B

H

FG

G’

C

C’

D

D’

(e) (d)

(g)

(b) (f)

(h)

(b) Case emin
i ≥ smax

i (bmin
i = 4,Wi = 20)

Figure 4: Case (di − ri)b
min
i ≥ Wi (ri = 3, di = 10, bmax

i = 5)
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(a) Case emin
i ≤ smax

i (bmin
i = 1,Wi = 10)
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rmin
rmin

riri
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di
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i
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i
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B
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(e) (d)

(g)

(b)

(f)

(h)

(i)

(b) Case emin
i ≥ smax

i (bmin
i = 2,Wi = 20)

Figure 5: Case (di − ri)b
min
i ≤ Wi (ri = 3, di = 10, bmax

i = 5)

22



6 Limits of energetic reasoning for the CECSP

Returning to the fixed starting and finishing times case, we underline here
a weakness of energetic reasoning for the CECSP case compared to the
CuSP case. Consider an instance of CuSP, which is a CECSP where bmin

i =
bmax
i = bi, ∀i ∈ A, where all starting times and finishing times are fixed.

It can be easily shown that applying energetic reasoning on all possible
intervals yields a necessary and sufficient feasibility condition. It suffices
to consider all intervals [tq, tq+1] defined in the proof of Theorem 1. For
the CuSP, fixing the starting and finishing times precisely gives, for any
activity i ∈ A, a minimal consumption inside any interval [tq, tq+1] equal
to bi(tq+1 − tq) if [tq, tq+1] ⊂ [sti, fti] or to zero otherwise. It follows that
the energetic reasoning allows making all resource capacity checks for each
interval [tq, tq+1], which is sufficient to assert feasibility (see argument for
Theorem 1).

For the CECSP case, fixing start and end times of activities yields a
polynomial problem, as stated by Theorem 1. Unfortunately, the energetic
reasoning necessary condition may in some cases fail to prove infeasibility.
Consider the following example with n = 3, R = 3, r = st = {0, 4, 0},
d = ft = {2, 6, 6}, W = {4, 4, 10}, bmin = {2, 2, 1}, bmax = {2, 2, 2}. Note
that fixing the start times amounts to setting constraint r = st and d =
ft. Figure 6 displays the polygons on which the slack function is linear.
Activities 1 and 2 are such that bmin

i > 0 and bmin
i = bmax

i . They both
correspond to the degenerate case of Figure 3(b) where smax

i = ri and emin
i =

di. The break line segments of their mandatory consumption are displayed
in dotted and dashed lines, respectively. Activity 3 is such that 0 < bmin

i <
bmax
i , (di − ri)b

min
i ≤ Wi and emin

i ≥ smax
i . It corresponds to the case of

Figure 5(b) (also a degenerate case where smax
i = ri and emin

i = di). The
break line segments of its mandatory consumption are displayed in thick.
Taking the intersection points of all segment pairs for which the interval
length is not zero, we obtain six relevant intervals, displayed as square dots.

The energetic reasoning satisfiability test can be limited to these in-
tervals. Figure 7 illustrates the slack computation by considering all six
intervals. For each interval, only activities having a non-zero minimum con-
sumption are displayed in gray for Activity 1, vertical lines for Activity 2
and horizontal lines for Activity 3. The dotted line represent the resource ca-
pacity. It can be seen that no infeasibility is detected since, for each interval
the sum of minimum consumption never exceeds the interval capacity.

Consider now the LP defined in the proof of Theorem 1, we consider
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three time slots corresponding to the intervals between the start and end
times of the activities. Note that we have four relevant time points t1 = 0,
t2 = 2, t3 = 4, t4 = 6 and that biq corresponds to the amount of resource
allocated to activity i in time slot [tq, tq+1]. Writing the LP, we obtain

b11 = 4, b12 = 0, b13 = 0 (12)

b20 = 4, b22 = 0, b23 = 4 (13)

2 ≤ b3q ≤ 4 q = 1, 2, 3 (14)

b31 + 4 ≤ 6 (15)

b32 ≤ 6 (16)

b33 + 4 ≤ 6 (17)

b31 + b32 + b33 = 10 (18)

As constraints (15,17) bound b31 and b33 by 2, and constraint (14) bounds b32
by 4, energy constraint (18) cannot obviously be satisfied. The infeasibility
of the LP (or equivalently of the flow problem) proves that of the CECSP.

t1

t2

6

4

2

2 4 60

Figure 6: Slack polygons and relevant intervals

7 Conclusions and further research

In this paper, we have considered a scheduling problem with continuous
resources and energy constraint, an extension of the cumulative scheduling
problem to represent energy requirements of activities and modulation. We
have proposed a strongly polynomial extension of the standard energetic
reasoning scheme for this problem.
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[2, 4]

[0, 4]

[2, 6]

[0, 6]

[0, 2]

[4, 6]

Figure 7: Slack computation on the six relevant intervals

As a follow-up of this work, several research directions are promising.
One consists in designing a clever method for enumerating the extreme
points of the slack polytopes to obtain an efficient energetic reasoning al-
gorithm. Another direction consists in designing a complete tree-search
method embedding energetic reasoning, linear programming and/or network
flow algorithms to obtain a feasible solution or to prove that no solution ex-
ists. A complementary question is to know whether it is possible to design
a single algorithm that embed the power of energetic reasoning and that
of linear programming/network flow. Besides satisfiability tests, energetic
reasoning for the CuSP includes time windows adjustments, that can also
be extended to the CECSP. Further research includes generation of valid in-
equalities from energetic reasoning and their integration in a mixed integer
linear program. Last, for a better application to actual scheduling problems
under energy constraints, it would be necessary to make a direct extension
of energetic reasoning to general, non-linear power processing rate functions.
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Scheduling arbitrary number of malleable tasks on multiprocessor
systems. Bulletin of the Polish Academy of Sciences: Technical Sci-
ences, 62(2), 255–261 (2014)

[6] N. Beldiceanu and E. Poder. A continuous multi-resources cu-
mulative constraint with positive-negative resource consumption-
production. In: Van Hentenryck P., Wolsey L. (Eds.) CPAIOR 2007.
LNCS, vol. 4510, pp. 214–228, Springer-Verlag, Berlin/Heidelberg
(2007)

26



[7] T. Berthold, S. Heinz, J. Schulz. An approximative criterion for the
potential of energetic reasoning. In: Marchetti-Spaccamela A., Segal
M. (Eds.) TAPAS 2011. LNCS, vol. 6595, pp. 229–239, Springer-
Verlag, Berlin/Heidelberg (2011)
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Appendix – Proof of theorem 3

Proof. We enumerate all possible configurations concerning the parameters
of an activity, starting with the minimum requirement bmin

i .

Case b
min
i = 0

We now focus on the case where bmin
i = 0 (corresponding to the continuous

variant of fully elastic problem [3]). The break line segments of the mini-
mum energy consumption piecewise linear function of such an activity are
displayed in Figure 2, and obtained as follows.

In this case, for any interval [t1, t2] strictly included in [ri, di], the min-
imum required energy consumption in [t1, t2] is attained by scheduling as
much energy as possible before t1 and after t2. Hence, the energy is clearly
equal to max(0,Wi − (t1 − ri)b

max
i − (di − t2)b

max
i ). This yields

w(i, t1, t2) =







0 if Wi − (t1 − ri)b
max
i − (di − t2)b

max
i ≤ 0

Wi − (t1 − ri)b
max
i

−(di − t2)b
max
i otherwise

In the triangle defined by inequalities t1 ≥ ri, t1+t2 ≤ ri+di and t2 ≥ t1,
the points for which the minimum required energy is non-zero are precisely
such that t2 − t1 ≥ di − ri −Wi/b

max
i .

The line t2 − t1 = di − ri − Wi/b
max
i is parallel to line t2 = t1. It

intersects line t1 = ri at point D = (ri, s
max
i ) and line t1 + t2 = ri + di at

point E = (ri+Wi/2bmax
i , di−Wi/2bmax

i ), respectively. From this analysis, it
follows that we have inside the triangle two regions separated by the segment
joining this two points on which the energy is linear.

By applying the symmetry property, we obtain the full description of the
minimum energy consumption in the case bmin

i = 0 as depicted in Figure 2.
Points indicated with a prime (i.e., D′ and C ′) have been obtained by sym-
metry. The function is linear inside three polygons (that can de decomposed
in seven convex polygons). In the polygon hatched with horizontal lines, we
have w(i, t1, t2) = Wi. In the polygon(s) hatched with vertical lines, we have
w(i, t1, t2) = Wi − (t1 − ri + di − t2)b

max
i . In the gray polygon(s), we have

w(i, t1, t2) = 0. Nodes indicated with a square are the intersection points of
break line segments. Circle points correspond to intersections of a break line
of w(i, t1, t2) with boundary t1 = dmax and t2 = rmin, which are break line
segments of the mandatory consumption of activities argminj∈A rj = rmin
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and argmaxj∈A dj = dmax. Hence for slack computation one has to consider
the five break line segments involving at least one square point.

Case b
min
i > 0

We now assume that there is a non-zero lower bound for the activity re-
quirement. We first characterize the subregions on which the mandatory
consumption is minimal and the ones on which it is maximal, which yields
two configurations displayed in Figure 8 and obtained as follows.

We reason only on triangle (A,B,C) as the expression on the rest of
the polygon P can be obtained by applying the properties established in
Lemmas 1 and 2. Note that the minimum required energy is 0 in the triangle
(A,B,C) as this value reached by setting t2 = t1 and the maximum required
energy is Wi is attained in A (and only in A) as already observed.

Looking at the geometry of the subregions in triangle (A,B,C), the line
t2 = di − Wi/b

max
i (below which the required energy is 0 as expressed in

configuration (a)) crosses line t1 = ri at the already defined point D =
(ri, s

max
i ) (which belongs to segment AC), line t1 + t2 = ri + di at point

F = (emin
i , smax

i ) and line t2 = t1 at point G = (smax
i , smax

i ).

F belongs to the triangle (A,B,C) if and only if F is located on segment
AB. For this, the four following inequalities must be satisfied:

emin
i ≥ ri
emin
i ≤ (ri + di)/2
smax
i ≤ di
smax
i ≥ (ri + di)/2

The first and third inequalities are always satisfied. The second and
fourth inequalities are equivalent to inequality

ri + Wi/b
max
i ≤ di −Wi/b

max
i (19)

G is located on segment BC if the reverse inequality holds.

Focusing now on line t1 = ri + Wi/b
max
i (to the right of which the min-

imum required energy is 0 as stated by condition (c)), a similar reasoning
shows that it intersects line t1 + t2 = ri + di also at point F and line t2 = t1
at point G′ = (ri+Wi/b

max
i , ri+Wi/b

max
i ). Point G′, as the symmetric point

of G with respect to axis t1 + t2 = ri + di, belongs to BC if (19) holds.

The regions on which the energy is maximal (Wi) are displayed in hori-
zontal lines and the region on which the energy is minimal (0) are displayed
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Figure 8: Minimal and maximal consumption regions (ri = 3, di =
10, bmax

i = 5)

in gray. Hence we have now two cases to consider to establish the expres-
sion of the minimum required energy when it is neither minimal nor maximal
(except at the boundaries). If ri + Wi/b

max
i ≤ di −Wi/b

max
i , we have to es-

tablish the expression of the energy consumption in triangle (A,D, F ). If
ri +Wi/b

max
i ≥ di −Wi/b

max
i the expression must be established in polygon

(A,B,G,D).

Case b
min
i = b

max
i = bi

Let us first establish the minimum energy consumption expression in the
particular case where bmin

i = bmax
i , i.e., the standard cumulative case, as

considered in [3]. We obtain as follows two possible configurations of the
break line segments (Figure 3).

Consider the case where ri + Wi/bi ≤ di −Wi/bi (see Figure 8(a)). Any
point (t1, t2) located in triangle (A,D, F ) verifies t2 ≥ di − Wi/bi. Since
we have also t1 + t2 ≤ ri + di, we have by subtracting the inequalities,
t1 ≤ ri + Wi/bi, which means that globally:

ri ≤ t1 ≤ ri + Wi/bi ≤ di −Wi/bi ≤ t2 ≤ di

As bmin
i = bmax

i = bi, left shifting the activity before t1 yields a consump-
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tion inside the interval of (ri + Wi/bi − t1)bi = Wi − (t1 − ri)bi. Right
shifting the activity after t2 yields a consumption inside the interval of
(t2 − di + Wi/bi)bi = Wi − (di − t2)bi. As di − t2 ≥ t1 − ri, the mini-
mal consumption inside (A,D, F ) is equal to Wi− (di− t2)bi. The geometry
of the subregion is displayed in Figure 3(a). By symmetry, the minimal con-
sumption inside triangle (A,D′, F ) is equal to Wi − (t1 − ri))bi. To sum up,
in the polygon hatched with horizontal lines the energy is maximal (Wi), in
the gray polygons the energy is minimal (0), in the polygon hatched with
descending diagonal lines the energy is equal to Wi − (di − t2)bi, while in
the polygon hatched with ascending diagonal lines the energy is equal to
Wi − (t1 − ri))bi. There are five break line segments to consider for slack
computation.

Consider now the case where ri + Wi/bi ≥ di −Wi/bi (see Figure 8(b)).
We consider two subcases. If t1 ≥ di − Wi/bi, as we have also t1 + t2 ≤
ri + di, this yields t2 ≤ ri + Wi/bi. Because ri + Wi/bi ≥ di − Wi/bi
and bmin

i = bmax
i = bi, the minimum consumption is equal to bi(t2 − t1).

Oppositely, if t1 ≤ di−Wi/bi, right shifting i after t2 while considering that
bmin
i = bmax

i = bi yields a consumption of (t2−di+Wi/bi)bi = Wi−(di−t2)bi.
With similar argument as Figure 8(a) case, it can be shown that this value is
larger than the one obtained by left shifting the activity before t1. Clearly for
this case, we obtain two subregions of (A,B,G,D) on which the minimum
consumption is linear, separated by line t1 = di − Wi/bi. This lines starts
at G and crosses segment AB at point H = (di−Wi/bi, ri +Wi/bi). This is
illustrated in Figure 3(b). By symmetry, we also obtain two subregions of
(A,D′, G′, H) on which the energy consumption is linear. Overall, we have
six convex polygons defining the piecewise linear function. In the polygon
hatched with horizontal lines, the consumption is maximal (Wi). On the
gray polygons, the consumption is minimal (0). In the polygon hatched with
descending diagonal lines, the energy consumption is equal to Wi−(di−t2)bi.
In the polygon hatched with ascending diagonal lines, the energy is equal
to Wi − (t1 − ri)bi. In the crosshatched polygon, it is equal to (t2 − t1)bi.
There are seven break line segments to consider for slack computation.

Case 0 < b
min
i < b

max
i

In this case we have four configurations for the break line segments that are
displayed in Figures 4 and 5. We obtain these configurations as follows.

We have identified two subcases depending on the relative ordering of the
earliest end time ri +Wi/b

max
i and the latest start time di−Wi/b

max
i . If ri +

32



Wi/b
max
i ≤ di−Wi/b

max
i we have to establish the expression of the minimum

consumption inside triangle (A,D, F ) (see Figure 8(a)). If, oppositely, ri +
Wi/b

max
i ≥ di−Wi/b

max
i , we have to establish the expression of the minimum

consumption inside polygon (A,B,G,D) (see Figure 8(b)). In both cases,
we have ri ≤ t1 ≤ ri + Wi/b

max
i and di − Wi/b

max
i ≤ t2 ≤ di. Before

t1, a maximal consumption of (t1 − ri)b
max
i can be scheduled. After t2,

a maximal consumption of (di − t2)b
max
i can be scheduled. As t1 + t2 ≤

ri + di ⇔ t1 − ri ≤ di − t2, the minimal consumption inside [t1, t2] can
always be attained by right-shifting the activity in its time window. Hence
there remains Wi − (di − t2)b

max
i units to schedule before t2. Can we have a

minimal energy larger than (t2−t1)b
min
i inside [t1, t2] ? This can only happen

if Wi − (di − t2)b
max
i − (t1 − ri)b

max
i ≥ (t2 − t1)b

min
i , which can be written

t2 − t1 ≥ bmax
i

(di−ri)−Wi

bmax
i

−bmin
i

. In both polygons (A,D, F ) and (A,B,G,D) point

A = (ri, di) maximizes t2− t1. For A to satisfy the inequality, we must have

di − ri ≥ bmax
i

(di−ri)−Wi

bmax
i

−bmin
i

=⇒ bmin
i (di − ri) ≤ Wi

1. We first consider the case where bmin
i (di − ri) ≥ Wi, i.e., the activity

can be scheduled at the minimum requirement during all its process-
ing. Hence, both in (A,D, F ) and in (A,B,G,D), we have a minimum
energy consumption lower than or equal to (t2 − t1)b

min
i . This leads,

for the break line segments, to the two configurations displayed in Fig-
ure 4. Note that the two configurations for activities with bmin

i = bmax
i

displayed in Figure 3 are particular cases of configurations presented
here.

To have the minimum energy precisely equal to (t2 − t1)b
min
i , we must

have Wi − (di − t2)b
max
i ≥ (t2 − t1)b

min
i , which can be written bmin

i t1 +
(bmax

i − bmin
i )t2 ≥ dib

max
i −Wi. We can check under which conditions

the inequality is verified for each of the extreme points of (A,D, F )
and (A,B,G,D).

(a) Let us focus first on (A,D, F ) for the case ri + Wi/b
max
i ≤ di −

Wi/b
max
i . For A = (ri, di), we get (di − ri)b

min
i ≤ Wi, which is

never satisfied under our set of hypothesis. For D = (ri, di −
Wi/b

max
i ), we have a smaller l.h.s. and, consequently the inequal-

ity is never satisfied. For F = (ri + Wi/b
max
i , di −Wi/b

max
i ), we

obtain ri + Wi/b
max
i ≥ di − Wi/b

max
i , which is in contradiction

with our hypothesis. Consequently, in (A,D, F ) the minimum
energy consumption is equal to Wi − (di − t2)b

max
i .
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(b) Consider now (A,B,G,D) for the case ri + Wi/b
max
i ≥ di −

Wi/b
max
i . For G = (di − Wi/b

max
i , di − Wi/b

max
i ), the condi-

tion is always satisfied as G actually belongs to line bmin
i t1 +

(bmax
i − bmin

i )t2 = dib
max
i −Wi. For B = ( ri+di

2 , ri+di
2 ), the condi-

tion becomes ri + Wi/b
max
i ≥ di −Wi/b

max
i , which is also always

satisfied in the considered case. It follows that, from a geomet-
rical point of view, line bmin

i t1 + (bmax
i − bmin

i )t2 = dib
max
i − Wi

crosses the polygon at G and intersects segment AB at point

H = (
ri(b

max
i

−bmin
i

)−dib
min
i

+Wi

bmax
i

−2bmin
i

,
di(b

max
i

−bmin
i

)−rib
min
i

−Wi

bmax
i

−2bmin
i

).

The two subcases are illustrated in Figure 4 for an activity with ri = 3,
di = 10 and bmax

i = 5. Figure 4(a) corresponds to the case where Wi =
10 and bmin

i = 2. We see that in this configuration, for which bmin
i (di−

ri) ≥ Wi and ri+Wi/b
max
i ≤ di−Wi/b

max
i hold, the minimum required

energy is maximal in the polygon hatched with horizontal lines, equal
to Wi− (di− t2)b

max
i in the polygon hatched with descending diagonal

lines and equal to Wi − (t1 − ri)b
max
i in the polygon hatched with

ascending diagonal lines. Elsewhere, the minimum required energy is
equal to 0. There are five break line segments to consider for minimum
slack computation.

Figure 4(b) illustrates the case where Wi = 20 and bmin
i = 4, which be-

longs to the configuration where bmin
i (di−ri) ≥ Wi and ri+Wi/b

max
i ≥

di − Wi/b
max
i hold. We observe the additional case where the mini-

mum required energy is equal to bmin
i (t2 − t1), inside the crosshatched

polygon (H,G,G′). This gives seven break line segments to consider.

2. We now consider the complementary case where bmin
i (di − ri) ≤ Wi,

i.e., the activity cannot be scheduled at its minimal requirement during
all its processing. This leads, for the break line segments, to the two
configurations displayed in Figure 5.

We know that in both polygons (A,D, F ) and (A,B,G,D) point A =

(ri, di) verifies inequality t2 − t1 ≥ bmax
i

(di−ri)−Wi

bmax
i

−bmin
i

. We also see that

for point D = (ri, di − Wi/b
max
i ), t2 − t1 ≤ bmax

i
(di−ri)−Wi

bmax
i

−bmin
i

is always

satisfied. Hence line t2 − t1 =
bmax
i

(di−ri)−Wi

bmax
i

−bmin
i

crosses segment AD at

point I = (ri,
dib

max
i

−rib
min
i

−Wi

bmax
i

−bmin
i

) and line t1 + t2 = ri + di at point

J =

(

2bmax
i ri − bmin

i (ri + di) + Wi

2(bmax
i − bmin

i )
,

2bmax
i di − bmin

i (di + ri) −Wi

2(bmax
i − bmin

i )

)

.
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All points located in triangle (A, I, J) consequently verify w(i, t1, t2) =
Wi − bmax

i (t1 − ri) − bmax
i (di − t2) while all points located in poly-

gons (I, J,D, F ) or (I, J,B,G,D) have a minimal consumption not
larger than bmin

i (t2 − t1). We want to characterize the subregions
of these polygons for which the minimal consumption is precisely
equal to bmin

i (t2 − t1). For each such point (t1, t2), we must have
Wi − (di − t2)b

max
i ≥ (t2 − t1)b

min
i , which can be written bmin

i t1 +
(bmax

i − bmin
i )t2 ≥ dib

max
i −Wi. We can check under which conditions

the inequality is verified for each of the extreme points of (I, J,D, F )
and (I, J,B,G,D). I is precisely the intersection point of segment
AD and line bmin

i t1 + (bmax
i − bmin

i )t2 = dib
max
i −Wi. As this line has a

negative slope of −bmin
i /(bmax

i − bmin
i ), it defines a non-empty region in

the considered polygons. We can easily notice that the line crosses line
t2 = di −Wi/b

max
i at point G. This leads us to consider two subcases.

(a) For polygon (A,D, F ), which corresponds to the case where ri +
Wi/b

max
i ≤ di −Wi/b

max
i , G is after F on line t2 = di −Wi/b

max
i .

Hence line bmin
i t1 + (bmax

i − bmin
i )t2 = dib

max
i −Wi crosses segment

AF at point H = (
ri(b

max
i

−bmin
i

)−dib
min
i

+Wi

bmax
i

−2bmin
i

,
di(b

max
i

−bmin
i

)−rib
min
i

−Wi

bmax
i

−2bmin
i

),

already considered for a previous configuration. To summarize
there are three regions to consider inside polygon (A,D, F ): tri-
angle (A, I, J) on which the minimum energy consumption is
equal to Wi−bmax

i (t1−ri)−bmax
i (di− t2), triangle (I, J,H) inside

which the minimum energy consumption is equal to bmin
i (t2 − t1)

and polygon (I,H,D, F ) inside which the minimum energy con-
sumption is equal to Wi − (di − t2)b

max
i .

(b) For polygon (A,B,G,D), which corresponds to the case where
ri +Wi/b

max
i ≤ di−Wi/b

max
i , we directly obtain a decomposition

in three subregions: triangle (A, I, J) inside which the minimum
energy consumption is equal to Wi− bmax

i (t1− ri)− bmax
i (di− t2),

polygon (I, J,B,G) inside which the minimum energy consump-
tion is equal to bmin

i (t2 − t1), and triangle (I,D,G) inside which
the minimum energy consumption is equal to Wi − (di − t2)b

max
i .

The two configurations corresponding to the case (di − ri)b
min
i ≤ Wi,

are illustrated in Figure 5. Using the symmetry of the minimum
consumption, we obtain the displayed polygons in which the mini-
mum consumption is linear. The polygon hatched with horizontal
lines corresponds to w(i, t1, t2) = Wi, the white polygon corresponds
to the case where w(i, t1, t2) = Wi − bmax

i (t1 − ri) − bmax
i (di − t2),
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the crosshatched polygon corresponds to the case where w(i, t1, t2) =
bmin
i (t2− t1), the polygons hatched with descending diagonal lines cor-

respond to the case where w(i, t1, t2) = Wi−(di−t2)b
max
i , the polygons

hatched with ascending diagonal lines correspond to the case where
w(i, t1, t2) = Wi − (t1 − ri)b

max
i .

For the Figure 5(a) configuration, one has ten break line segments
to consider whereas for the Figure 5(b) configuration, we obtain nine
break line segments. Note that the continuous fully elastic case (Figure
2) is particular case of both the cases of Figure 5 where the areas
hatched by diagonal lines or crosshatched do not appear.
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