
HAL Id: hal-01108961
https://hal.science/hal-01108961

Submitted on 23 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling scientific experiments for comet exploration
Gilles Simonin, Christian Artigues, Emmanuel Hébrard, Pierre Lopez

To cite this version:
Gilles Simonin, Christian Artigues, Emmanuel Hébrard, Pierre Lopez. Scheduling scientific exper-
iments for comet exploration. Constraints, 2015, 20 (1), pp.77 - 99. �10.1007/s10601-014-9169-3�.
�hal-01108961�

https://hal.science/hal-01108961
https://hal.archives-ouvertes.fr

Scheduling Scientific Experiments for Comet

Exploration

G. Simonin, C. Artigues, E. Hebrard, and P. Lopez

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

Univ de Toulouse, LAAS, F-31400 Toulouse, France

{gsimonin,artigues,hebrard,lopez}@laas.fr

Abstract. The Rosetta/Philae mission was launched in 2004 by the European

Space Agency (ESA). It is scheduled to reach the comet 67P/Churyumov-

Gerasimenko in November 2014 after traveling more than six billion kilometers.

The Philae module will then be separated from the orbiter (Rosetta) to attempt

the first ever landing on the surface of a comet. If it succeeds, it will engage a

sequence of scientific exploratory experiments on the comet.

In this paper, we describe a constraint programming model for scheduling the

different experiments of the mission. A feasible plan must satisfy a number of

constraints induced by energetic resources, precedence relations on tasks, and in-

compatibility between instruments. Moreover, a very important aspect is related

to the transfer (to the orbiter then to the Earth) of all the data produced by the

instruments. The capacity of inboard memories and the limitation of transfers

within visibility windows between lander and orbiter, make the transfer policy

implemented on the lander CPU prone to data loss. We introduce a global con-

straint to handle data transfers. The purpose of this constraint is to ensure that

data-producing tasks are scheduled in such a way that no data is lost.

Thanks to this constraint and to the filtering rules we propose, mission control is

now able to compute feasible plans in a few seconds for scenarios where minutes

were previously often required. Moreover, in many cases, data transfers are now

much more accurately simulated, thus increasing the reliability of the plans.

Keywords: global constraint, scheduling, data transfer, energy and memory con-

straints, space experiments

1 Introduction

Following the fly-by of the comets Halley and Grigg-Skjellerup by the spacecraft

Giotto, an even more ambitious mission, including the landing of a robotic module

on the comet nucleus, was approved by European Space Agency in 1993. This project

involves more than 50 contractors from 14 European countries, Canada and the United

States for developing the instruments necessary to a deeper study of the comet. The

Rosetta spacecraft, embarking these scientific instruments, was then launched in 2004
by Ariane 5, and was set to travel more than six billion kilometers to finally reach

the comet 67P /Churyumov-Gerasimenko in November 2014. Its complex trajectory in-

cludes four gravity assist maneuvers (three times around Earth and once around Mars)

before finally reaching the comet and entering its orbit. During its travel, the probe has

met two asteroids (Steins and Lutetia), and collected data and pictures. Upon arrival at

67P , Rosetta will enter orbit around the comet and follow it on its journey towards the

Sun. Finally, a lander module, called Philae, will then be deployed and attempt the first

ever landing on the surface of a comet.

Philae features ten instruments, each developed by a European laboratory, to ac-

complish a given scientific experiment when approaching, or once landed on the comet.

The instruments are designed to measure the molecular, mineralogical, and isotopic

composition of the comet’s surface and subsurface material, and also to measure char-

acteristics of the nucleus such as near-surface strength, density, texture, porosity, ice

phases and thermal properties. For instance, ÇIVA and ROLIS are two imaging instru-

ments, used to take panoramic pictures of the comet and microscopic images, whilst

the Alpha Proton X-ray Spectrometer (APXS) instrument analyzes the chemical com-

position of the landing site and its potential alteration during the comet’s approach to

the Sun. The obtained data will be used to characterize the surface of the comet, to de-

termine the chemical composition of the dust component, and to compare the dust with

known meteorite types.

The exploratory mission will have three phases. First, SDL (Separation-Descent-

Landing) will run for 30 minutes during which many experiments will be run. Second,

FSS (First Science Sequence) will last 5 days. This phase is critical because the execu-

tion of the most energetically greedy experiments requires battery power. The quality of

the schedule conditions the longevity of the batteries and is therefore a key to the suc-

cess of the mission. Finally, during the LTS phase (Long Term Science), scientific tasks

will be resumed at a much slower pace, using the lander’s own solar panels to partially

reload the batteries. This phase will continue for months until the probe is destroyed

due to the extreme temperatures of the Sun.

This project is a collaboration with CNES1 in Toulouse (France) on the planning

of the experimentation sequence on each of the three phases. The plans are elaborated

on the ground at the Science Operations and Navigation Centre (SONC) in Toulouse.

Many planning decisions rely on SONC’s expert knowledge and are outside the scope of

this paper. However, a set of scheduling decisions are modeled as a constraint program.

A software (called MOST) has been developed on top of the Ilog-Scheduler/Solver

library by an industrial subcontractor to solve this constraint program. In particular,

constraints on the instruments energy usage, on data collection and transfers, as well

as incompatibilities between experiments, have been implemented in this framework.

Solutions are generated using classic depth-first search. Once they have been validated,

these schedules are sent to the mission center located in Germany where they are en-

coded in the format expected by the Command and Data Management Systems (CDMS)

onboard Rosetta and Philae. The communication delay to reach the spacecraft is roughly

25 minutes when approaching the comet. The CDMS can then execute the timed plan

by triggering the different subsystems at the specified dates. It is important to men-

tion that many parameters such as the orbital trajectory of Rosetta, which conditions

the communication links with the lander Philae, will be known precisely only shortly

before the landing. Currently, many different scenarios are solved and validated on the

1 Centre National d’Etudes Spatiales

ground. However, the final and real plan will only be computed on yet partially un-

known data, just a few days before being executed. This project has many similarities

with the (interrupted) NetLander program [6].

The experiments of the FSS and LTS and the maneuvers of the SDL are modeled in

MOST as a scheduling problem with two main types of resources.

First, the tasks within the experiments concurrently use the energy from a central-

ized source, mainly from batteries, and up to some extent from solar panels. There is

an upper limit on the instant power that can be delivered to the experiments. Moreover,

experiments are linked to the batteries through several power lines, themselves linked to

a different converter. Each line and each converter entails another instant power thresh-

old. Within MOST this is modeled as a hierarchy of CUMULATIVE constraints [1], one

for the total instant power, one for each converter, and one for each line.

Second, each experiment produces data that must be transferred back to Earth. Each

experiment has its own memory, collecting data as it is produced. This data is then

transferred to a central mass-memory, then sent to Rosetta (the orbiter) when it is in vis-

ibility, i.e., above the horizon of the comet with respect to Philae. The orbiter thus acts

as a relay and transfers the data to Earth (this also requires visibility between Rosetta

and Earth2). All transfers from the experiments to the mass memory, and from the mass

memory to the orbiter are executed (that is, computed onboard) by the CDMS follow-

ing a greedy rule: priorities are assigned off-line to experiments. Then, on-line, data is

systematically transferred from the experiment of highest priority with available data

to the mass-memory, unless the mass-memory is full, in which case all transfers are

blocked. This transfer policy may lead to data loss when an experiment produces more

data than its memory can store and its priority is not high enough to allow a transfer

to the mass-memory. This is modeled within MOST using RESERVOIR constraints [5].

Data production tasks fill the reservoir, while multiple pre-defined data transfer tasks of

variable duration empty it.

This modeling choice has several drawbacks and it quickly became apparent that it

was the critical aspect of the problem to tackle in order to find better solutions faster.

The first problem with this model is that data transfers are not accurately represented.

For each experiment, a sequence of tasks standing for data transfers are pre-defined.

Their duration is constrained so that the experiment with the highest priority is allowed

to transfer as much as possible, and no overlap is allowed among transfers. In the cur-

rent implementation there is a transfer task every 120 seconds over the horizon, with a

maximum duration of 120 seconds. This is too few to accurately represent the policy of

the CDMS, however, this is already too much for Ilog-Scheduler to handle (the planning

horizon may be up to one day, i.e., about 700 transfer tasks for each experiment).

Instead we propose to encapsulate data transfers into a global constraint. The deci-

sion variables are start times of data-producing tasks (data-producing rate and duration

are known in advance) and the priority permutation. This allows us to very quickly

check the satisfiability of a schedule with respect to data transfer. Moreover, we can

compute bounds allowing to filter out the domain of the variables standing for start time

of the data-producing tasks. Unfortunately, enforcing arc consistency or even bounds

consistency on this constraint is NP-hard, so we do not give a complete filtering al-

2 Nasa and Russian relays are used to cover the whole surface.

gorithm. However, our approach reduces the solving time dramatically: from hours in

some cases to seconds in all scenarios currently considered by the SONC. Moreover,

the result is much more accurate, to the point that some scenarios for which MOST

could not show that transfers were feasible can now be solved efficiently.

In Section 2, we briefly outline the energetic aspect of the problem and more for-

mally define the data transfer aspect. Then, in Section 3 we introduce our approach to

modeling data transfers. In particular, we formally define a new global constraint and

oppose exact and approximate models to transfer blocks of data. In Section 4 we give

an efficient satisfiability checking procedure and two filtering rules for the introduced

global constraint. Last in Section 5, we report experimental results and compare results

between old and new models.

2 Problem Description

Each experiment can be seen as a list of tasks to be scheduled. Disregarding data trans-

fers, the problem can be seen as a scheduling problem over a set of experiments with

relatively standard constraints.

Disjunctive resources: Each task of an experiment may require during its processing

one or several instruments. Several tasks using the same instrument cannot be scheduled

simultaneously, which corresponds to a standard disjunctive resource.

Precedences: Tasks within the same experiment might have precedence constraints;

for instance the lander carries a Sampling Drilling and Distribution device (SD2 instru-

ment), which will drill more than 20 cm into the surface, collect samples, and deposit

them in different ovens, which are mounted on a circular and rotatable carousel. Four

ovens of this carousel are dedicated to the Ptolemy instrument. With an appropriate

sample loaded into one of the ovens, the carousel rotates to a position whereby a device

referred to as a "tapping station" is used to connect the oven to the inlet of the gas man-

agement system of the Ptolemy instrument. At this point, the oven must be heated so

that volatile samples are analyzed by Ptolemy. In this typical experiment, we have three

tasks using three different instruments, each task preceding each other w.r.t. standard

precedence constraints.

Cumulative Resources: Tasks within the experiments concurrently use energy from a

centralized source, mainly from batteries and up to some extent from solar panels. All

energy sources (batteries and solar panels) are centralized on a main power line (see Fig-

ure 1). The energy needed to run each task is supplied by an auxiliary power line. Each

auxiliary line is linked to a converter, and each converter is linked to the main power

line. At each level, the total instant power delivered cannot exceed a given threshold.

For each auxiliary power line, all the tasks supplied by this line are constrained by a

CUMULATIVE constraint [1] with capacity equal to this threshold. Similarly another

CUMULATIVE constraint is associated to each converter, and a last one is associated to

the main power line, involving all tasks of the problem.

Power line

Converter

Batteries

Tasks supply

Solar

Panels

Tasks supply
Auxiliary

power line

Fig. 1: Illustration of the global power system

State Resources: In addition to instrument availability, which is modeled with a dis-

junctive constraint, each instrument can have multiple states along the schedule. Some

tasks can trigger the modification of the state of an instrument, and the processing of

certain tasks might be subject to some instruments having a given state. This is modeled

using state resource constraints in Ilog-Scheduler.

Data Transfer and Memory Constraints: Every experiment has its own memory. Some

tasks produce data, temporarily stored on the experiment’s memory. Then this data

will be transferred onto the mass-memory and subsequently to the orbiter. Note that

for a given experiment, the precedence constraints between tasks are such that data-

producing tasks do not overlap. Therefore, at every time only one task of each experi-

ment shall write in the experiment’s memory.

The onboard CDMS controls all data transfers, from the experiments to the mass

memory, and from the mass memory to the orbiter. Within a plan, experiments are (to-

tally) ordered according to a priority function. Apart from this ordering, the CDMS

is completely autonomous. It simply transfers data from the experiment with high-

est priority among those with transferable data. Moreover, it transfers data from the

mass-memory to the orbiter whenever possible, that is, when there is some visibility.

However, it does not ensure that all produced data will eventually be transferred to the

orbiter. When too much data is produced simultaneously and not enough can be trans-

ferred on the mass-memory, or when there is no visibility with the orbiter and therefore

the mass-memory cannot be emptied, the capacity of an experiment’s memory may be

overloaded and data is lost.

The Mars Express mission, launched in 2003 and still in operation, also featured

a data transfer planning problem, similar to Rosetta’s in many respects. In both cases,

data-producing tasks are to be scheduled, data is kept into a number of memory storage

devices on board and periodically transmitted to the Earth during visibility windows.

However, a critical difference is that in Mars Express, the transfers are actually de-

cisions to be made at the planning level. A flow model was proposed to address the

so-called Memory Dumping Problem in [4,7] and further improved in [8]. In our case,

however, the CDMS policy is given. To be more accurate, it is actually possible to

change the experiments’ priorities. However this cannot be done at any time since it

corresponds to a global configuration change of the CDMS. Hence, only a few priority

changes can be allowed in the planning horizon, which yields the need of consider-

ing the fixed priority case. When priorities are fixed, data loss can only be controlled

through the schedule of data-producing tasks.

In other words, we shall consider data transfers as a global constraint on the start

times of tasks ensuring that no data will be lost with respect to the CDMS policy.

3 A Global Constraint for Data Transfer

Except for data transfer, all the constraints above can be modeled using the standard

methods and algorithms [2], all available in Ilog-Scheduler. Hence, we focus on data

transfers and propose a global constraint to reason about this particular aspect of the

problem.

From now on, we consider a set {E1, . . . , Em} of m experiments. An experiment

Ek = {tk1, . . . , tkn} is a set of data-producing tasks3, and is associated with a mem-

ory of capacity Mk. A task tki produces data for a duration pki at a rate πki in the

experiment’s memory. The lander possesses a mass memory of capacity M0, where

data can be transferred from experiments.

The CDMS is given as input a priority ordering on experiments. For i ∈ [1, . . . ,m],
we denote by P (i) the index of the experiment coming at rank i in this ordering and

its dual R(k) standing for the rank of experiment Ek in the priority ordering (P (i) =
k ⇔ R(k) = i). We shall say that experiment Ek has higher priority than experiment

Ej iff R(k) < R(j).

For reasons that will be explained later, the rate of the transfer from the experiment

memory to the mass memory is not fixed and depends on three factors: (i) the number of

active experiments, (ii) the relative priority of the experiment being transferred with re-

spect to other active experiments, and (iii) the presence of a simultaneous transfer from

the mass memory to the orbiter. An experiment is said to be active if its first task has

already started and its last task has not finished, or if it has some data in memory. When

there are simultaneous transfers to and from the mass-memory, the transfer rate from

experiments is lower. These parameters are function of time, so we define a predicate

τ(k,t) that gives the transfer rate from an experiment Ek to mass-memory according

to its priority, to the number of active experiments, and to the presence of a transfer to

the orbiter at time t. However, transfers between mass-memory and the orbiter have a

constant rate denoted by τ orbiter.

Data can only be transferred out to the orbiter when it is in visibility, that is, in

the line of sight of the lander over the horizon of the comet. Visibility is represented

as a set of intervals {[a1, b1], . . . , [av, bv]} in the scheduling horizon, their lengths

and frequencies depend on the chosen orbit. We shall use V (t) as a Boolean function

which equals true iff time t is included in one of the visibility intervals. Moreover, data

is transferred in and out memories by block units of 256 bytes. A data-producing task

therefore entails as many transfer tasks as blocks of data it produces.

3 To simplify the notations, we assume that all experiments have the same number of tasks. This

is of course not the case; however it does not affect the methods we introduce.

We consider the following decision variables: s11, . . . , smn, with domain in

[0, . . . , H], standing for the start times of data-producing tasks {t11, . . . , tmn}, respec-

tively. The fact that data loss should be avoided can be seen as a relation (i.e., a con-

straint) between these decision variables. It is relatively easy to understand this relation

procedurally since the CDMS policy is deterministic. Given a priority ordering and a

fixed schedule of the data-producing tasks, one can unroll the rules outlined in Section 2

and further detailed in Section 3.1 to check whether the CDMS policy will lead to data

loss or not.

First, in Section 3.1 we discuss an “exact” definition of this constraint based on fol-

lowing the transfer of each block of data individually. However, this formulation is not

practical, so we propose an alternative model in Section 3.2. And finally, in Section 3.3

we study the worst case approximation error of this alternative model.

3.1 CDMS Policy

In this section, we detail the CDMS policy, then we define a constraint modeling the

relation between the start time of data-producing tasks induced by this policy. Let mt
k

stand for the quantity of data in the memory of experiment Ek at time t (with t ∈ R)

and mt
0 be the quantity of data in the mass-memory.

The CDMS transfers data by blocks of 256 bytes. Its policy is relatively simple

and can be described using a simple automated earliest transfer scheduling algorithm

(AETS). AETS runs the two following processes in parallel:

– Repeat: Scan experiments by order of priority until one with at least one block of

data on its memory is found. In that case, transfer one block from this experiment

to the mass memory unless the mass memory is full.

– Repeat: If the orbiter is visible, and there is at least one block of data on the mass

memory, then dump one block (transfer from the mass memory to the orbiter).

We can define the DATATRANSFER constraint as the relation allowing only assign-

ments of start times and priorities such that given the CDMS policy (AETS), no block

of data is produced while the memory of the experiment is full.

In order to specify this constraint as precisely as possible we would need to consider

each block of data, and its associated transfer task, individually. More precisely, we need

πkipki transfer tasks for each data-producing activity tki (the production rate πki is in

blocks per second (blk/s) and the duration pki is in seconds). The release time of the jth

block’s transfer task is ski + j(1/πki), where ski is the start time of tki. Moreover, the

start times and durations of these transfer tasks are functionally dependent on the start

times of data-producing activities and experiment priorities. This dependence relation

is a consequence of the AETS procedure. The time-dependent duration of the transfer

tasks come from time-dependent transfer rates τ(k,t). Blocks are actually transferred

from experiments memories to the mass memory at a constant rate. However, when

seeking which experiment to transfer from, the length of the scanning process depends

on the number of active experiments and on the priority of the experiment eventually

selected. An experiment Ek is active between the start of its first task and the end time

of its last task, or if the experiment memory is not empty. The transfer rate is thus larger

in practice for the higher priority experiments as they are scanned first. Furthermore,

transfers from the experiment memory are slower when there are simultaneous transfers

from the mass memory to the orbiter. To emulate this, we use variable transfer rates. The

transfer rate τ(k,t) in blocks per second (blk/s) is actually read in a table (τ observed
k,x,y,z),

which entries were measured experimentally and give the transfer rate for experiment k
depending on the number x of active experiments, on its relative priority y among them

and on the Boolean presence z of a transfer to the orbiter, at the considered time t.
More precisely, τ(k,t) = τ observed

k,|X(t)|,y(k,t),z(t), where the set of active experiments at

time t is defined by:

X(t) = {k | ∃i, ski ≤ t ≤ ski + pki ∨mt
k > 0}

The relative priority of experiment k at time t is defined by:

y(k, t) = |{k′ ∈ X(t)|R(k′) ≤ R(k)}|

The presence of a transfer to the orbiter is defined by

z(t) = V (t) ∧mt
0 > 0

It can be easily checked that y(k, t) ∈ {1, . . . , |X(t)|}. However, it has been somewhat

counterintuitively observed that the transfer rate between mass-memory and the orbiter

can be considered constant (denoted by τ orbiter).

We can define a constraint DATATRANSFER([s11, . . . , smn]) ensuring that the

schedule of tasks {t11, . . . , tmn} is such that no data is lost according to the CDMS

rule described above.

Such an “exact” formulation would not be practical, as considering the transfer of

each block of data would be too difficult. Therefore, we propose an alternative model

in the next section. The basic idea is to represent all the data produced by a task as a

continuous quantity.

3.2 Approximated Definition

We have seen that it is difficult to capture very precisely the behavior of the CDMS.

When we consider a data-producing task in isolation, the number and frequency of the

transfer tasks is easy to compute. However, when we consider several data-producing

tasks with different priorities and unknown start times, this viewpoint becomes im-

practical. We therefore propose an alternative model that approximates very closely the

amount of transferred data with a reasonable time and space complexity.

The basic idea is to consider data produced by a task as continuous quantity. This

idea is straightforward in the case where experiments fully use the transfer bus. Indeed,

consider a task tki that produces more data than it can transfer: τ(k,t) ≤ πki, with τ(k,t)
the transfer rate at time t from an experiment Ek to mass-memory. Suppose first that

there is no task with higher priority. The transfer can be seen as a continuous task of

duration πkipki

τ(k,t)
. It is therefore easy to compute how the usage of the memory will be

impacted by this transfer. However, when taking into consideration priorities, variable

transfer, and production rates, it becomes significantly more complex. We list here three

difficulties.

First, as explained in the previous section, we have time-dependent transfer rates

τ(k,t) (from the experiment to the mass memory) due to the scanning process of the

AETS procedure.

Second, transfer tasks can be interrupted, however, they are different from classic

preemptive tasks in that we do not decide when the interruption occurs. When an ex-

periment with higher priority starts producing data, it preempts any current transfer of

lower priority. This is the unique context where an interruption can happen. If there

is no experiment with higher priority to interrupt the transfer, the usage of the experi-

ment’s memory increases at rate πki−τ(k,t) during pki seconds. Similarly, during πkipki

τ(k,t)

seconds the usage of the mass memory increases at rate τ(k,t).
The third difficulty concerns tasks producing data at a lower rate than the possible

transfer rate (i.e., τ(k,t) > πki). In this case, data is transferred one block at a time, with

a lag between each transfer to wait for the next block to be produced (see Figure 2).

1

π
− 1

τ

0 1 2

Production Rate π = 1.5 blk/s

Transfer Rate τ = 3 blk/s

1

π

1

τ

Fig. 2: Exact transfer model

Approx

Transfer

Exact

Transfer

0 1 2

Fig. 3: Example of two data transfer tasks with

both model

Other tasks of lower priority with non-empty memory can use these gaps to begin

the transfer of a block of data. In other words, the duration of the transfer of highest

priority is still very close to πkipki

τ(k,t)
seconds, however other transfers can be squeezed in

that same period. In order to simulate this, we consider that the data bus has a capacity

(bandwidth) normalized to 1. The demand of a task tki at time t is min(r, πki

τ(k,t)
), where

r stands for the remaining bandwidth. Bandwidth is allocated recursively, according to

this demand function and to priority (see Figure 3).

In other words, we approximate the “vertical” partition of the data bus shown in

Figure 3 (exact transfers) by a “horizontal” partition, i.e., we consider that the bus has

a bandwidth that can be divided over parallel transfers.

We shall see that this model allows us to represent memory usage very precisely,

with a computational complexity independent on the time horizon and on the amount

of data produced.

We can now formally define the constraint which is satisfied if and only if data

production tasks are scheduled such that the approximated view of the CDMS policy

would not entail data loss. Let πt
k stand for the data-producing rate on experiment Ek

at time t, let p(τ tk) stand for the potential transfer rate of experiment Ek at time t if it

was of highest priority, and let τ tk stand for the actual (approximate) transfer rate from

experiment Ek to the mass memory at time t.

Definition 1.

DATATRANSFER(s11, . . . , smn) ⇔

∀t, k, πt
k =

{

πki if ∃i s.t. ski ≤ t ≤ ski + pki
0 otherwise

(1)

∀t, k, p(τ tk) =







0 if mt
0=M0

τ(k,t) if mt
0 < M0 ∧ mt

k > 0
min(πt

k, τ(k,t)) otherwise
(2)

∀t, k, τ tk = min(p(τ tk), τ(k,t)(1−
∑R(k)−1

i=1

τt
P (i)

τ(P (i),t)
)) (3)

∀t, k, mt
k =

∫ t

0
(πt

k − τ tk)dt (4)

∀t, mt
0 =

∫ t

0
(
∑m

k=1 τ
t
k − V (t)τ orbiter)dt (5)

∀t, k, mt
k ≤ Mk (6)

Equation 1 states that if a data-producing task tki is running at time t, then the data-

producing rate πt
k of an experiment k at that time is equal to the data-producing rate of

tki, and it is null otherwise.

Equation 2 defines the potential transfer rate p(τ tk) of experiment Ek at time t if it

is not trumped by other experiments of higher priority. The first case corresponds to a

a full mass memory. When this happens, all transfers are stopped, hence the potential

transfer rate is null. The second case corresponds to the transfer of data hold on the

experimental memory. In this case, it can be transferred at the maximum available rate

(τ(k,t)). The last case corresponds to data being transferred as soon as it is produced.

In this case, the experimental memory is empty (mt
k = 0) and will remain so, if the

production rate is smaller than or equal to the possible transfer rate (πt
k ≤ τ(k,t)).

Otherwise, data will build up onto the experiment memory, and will be transferred at

rate τ(k,t).

Equation (3) gives the real transfer rate (in the approximation scheme), that is, tak-

ing into account experiments with higher priorities. The experiment with highest pri-

ority uses the bandwidth proportionally to the ratio between its potential transfer rate

p(τ tk) and the maximum transfer rate τ(k,t). Then the residual bandwidth is assigned

using recursively the same rule.

Finally, Equations (4) and (5) link the usage of the different memories to the sum

of the in and out transfer rates (πk and τk are used here as functions of t) while Equa-

tions (6) ensure that memory capacity is never exceeded.

Figure 4 illustrates the difference between the two models on a small example with

two tasks t1 and t2 such that t2 has higher priority.

Approx transfer (t1)

Approx transfer (t2)

Exact transfer (t1)

Exact transfer (t2)

production (t1)

production (t2)

Fig. 4: Comparison of the two representations: two data-producing tasks t1 and t2 (bot-

tom); The “exact” view of the corresponding transfers, sharing the transfer bus because

of gaps due to the low data-producing rate (middle); The alternative reformulation,

where this is modeled as sharing the bandwidth (top).

3.3 Approximation Error

Here we study the worst case approximation error of the “bandwidth” model. We shall

refer to the “real” behavior of the CMDS as the exact model, whereas the formulation

given in Definition 1 shall be referred to as the approximate model. Let mt
k be the

load of the memory of experiment Ek in the exact model, and let mt
k

′

be the load of the

memory of experiment Ek in the approximate model. We denote by ∆t
k=mt

k−mt
k

′

the discrepancy between the two models. We will show that for all values of t and k, the

absolute error |∆t
k| is bounded by 1 + α, where α is the maximum ratio between two

transfer rates in the transfer matrix τ observed, for a fixed number of active experiments.

Usually, the difference in transfer rates comes from side effects of the CDMS policy

and is close to 1.

In order to simplify the proofs, we will use the following notation: πk (resp. τk) for

πt
k (resp. τ tk) when the rates are constant over time, and simply π (resp. τ) when there is

no ambiguity. We first consider the case of a single experiment, then the general case.

Single experiment:

Theorem 1. If only one experiment is active, the absolute error is bounded by 1
(|∆t

1| ≤ 1).

Proof. Without loss of generality, we suppose that the considered data production task

starts at time 0. There are two cases:

– either π > τ .

Since the transfer starts at time 0 in the approximate model and 1/π in the exact

model (this is the time required to produce the first block of data), the error ∆t
1 is

equal to 1 for t = 1/π. Now, since the transfer rates are equal to τ in both the exact

and approximate models, we have ∆t
1 ≤ 1, ∀t ≥ 1/π.

– or π ≤ τ .

In the exact model we have a sequence of transfers at rate τ with start times equal to
i
π where i is a positive integer (see Figure 5). In the approximate model, however,

data transfer starts at time 0 at a fixed rate equal to π. In the time interval [0, 1/π],
the value of ∆t

1 will therefore increase linearly from 0 to 1. Then, in the interval

[1/π, 1/π+1/τ], ∆t
1 decreases from 1 to π

τ . Finally, in the interval [1/π+1/τ, 2/π],
it increases from π

τ up to 1. We can observe that there is a cyclic pattern and thus

we have a maximum error of |∆t
1| ≤ 1 for all t.

⊓⊔

Data

Exact

Transfer

Transfer

Approx

Production

4
π

0

p(τ)

1

0
t0 t1 t2 t3 t4 t5

π=0.25 blk/s p(τ)=0.33 blk/s τ=0.25 blk/s

∆t
1

τ

1
π

2
π

3
π

Fig. 5: Value of discrepancy of memory usage ∆t
1 when π≤p(τ) (single experiment)

Observe that one could propose a slightly different model where the transfer of the

data produced by an experiment Ek starts after 1/πk seconds, that is, the time it requires

to produce the first block of data. By doing this, the error in the simplest case (single

experiment and πk > τk) would be reduced to 0. However, if a high producing task di-

rectly follows a smaller producer of the same experiments, the delay on the first transfer

is larger than on the second transfer. This situation may entail an overlap between the

two transfers, making this idea very difficult to implement for a very small theoretical

gain.

General case:

When multiple experiments are active simultaneously, the analysis is more complex.

Consider Figure 6. In this example, we have two experiments E1 and E2 such that

E1 has higher priority than E2. Moreover, we suppose that at time t2 = 1/π1 + 1/τ1
(i.e., when the transfer of the first block produced by E1 ends), E2 has at least one

block of data in memory. Since the transfer channel is free, E2 will start transferring a

block. However, the duration of this transfer may be longer than 1/π1. Moreover, the

transfer of a single block cannot be interrupted. Therefore, the transfer of the next block

of data from E1 might be delayed beyond the expected date 2/π1. Figure 6 illustrates

such a case, where the transfer of the second block produced by E1 is delayed to t3 =
1
π1

+ 1
τ1

+ 1
τ2

.

Results:

We consider a sequence of experiments E1, . . . , Em ordered by decreasing priority.

Let α = τ1
τm

be the highest ratio of transfer rates for these experiments (experiments

with lower priority have lower transfer rates). We analyze the error for the experiment

with highest priority. Indeed, the type of disruption described above only comes from

the interaction with experiments of lower priorities. Moreover, experiments of lower

priorities use the gaps left by the experiment of higher priority. Therefore, accuracy on

the latter implies accuracy on the former. Last, we restrict our analysis to the case where

the production rate π is lower than the transfer rate τ . Indeed, otherwise the experiment

fully uses the bandwidth, and the behavior described above does not happen.

Theorem 2. If several experiments are active, the absolute error is bounded by 1 + α
(|∆t

1| ≤ 1 + α).

Exact

Transfer

Data

Production

Approx

Transfer

Legend:

π1=τ1=0.25 blk/s

1
π

2
π

3
π

4
π

Exp1

Exp2

t5t4t3t2t1

α

∆t
1

t0
0

π(τ1)=0.4 blk/s π(τ)=0.25 blk/s

Transfers

Transfers

Fig. 6: Value of discrepancy of memory usage ∆t
1 when π≤p(τ) (multiple experiments)

Proof. As in the previous proof, we first consider the period of transfer of the first block

of E1, starting at time 1
π1

and ending at time 1
π1

+ 1
τ1

. At time 1
π1

+ 1
τ1

, experiments of

lower priorities might have data in their memory and hence start transferring. However,

observe that as soon as the transfer of the block in process at time 2
π1

ends, experiment

E1 will take precedence since it has the highest priority. Therefore, the maximum delay

is the size of the transfer of this block. Let Ek be the experiment that produced this

data block. We can analyze the value of ∆t
1 = mt

1 −mt
1
′

for any t. First, observe that

since π1 < τ1, data is transferred in and out of mt
1
′

at the same rate. Consequently, we

have mt
1
′
= 0 for all t until the start of another data production task. In other words,

we bound the value of mt
1 = ∆t

1. At time t1 = 1/π1, we have mt1
1 = 1 and it will

then decrease to π1/τ1 at time t2 = 1/π1+1/τ1 (i.e., mt2
1 ≤ 1). Now, over the interval

[t2, t3] = [1/π1 + 1/τ1, 1/π1 + 1/τ1 + 1/τk], experiment E1 produces data at rate

π1 during 1/τk seconds, and does not transfer any block out. The memory load will

therefore increase by π1/τk during this period. Since we have π1 < τ1, we can bound

this value by τ1/τk ≤ α. In other words, ∆t3
1 = mt3

1 ≤ 1 + α. Subsequently, since E1

has the highest priority, it will transfer its data onto the mass memory at rate τ1 until

strictly less than one block is left its memory. It follows that mt
1 will decrease linearly

over an interval [t3, t4] with mt4
1 < 1. Now we can use a recursive argument: the delay

due to the transfer of an experiment of lower priority will increase the usage of the

memory of E1 by at most α, starting from a value smaller than 1. Therefore we have

∆t
1 = mt

1 ≤ 1 + α for all t. ⊓⊔

In theory, the transfer rate should be a constant, and therefore we should have α = 1.

However, in practice, the observed transfer rates fluctuate with respect to the number

of simultaneously active experiments, the relative priority of each experiment, and the

presence of simultaneous transfers to the orbiter. This is due to the CDMS scanning

procedure, as explained in Section 3.1. Table 1 illustrates typical observed transfer rates

for a set of five experiments. The third column gives the transfer rates from experiments

to the mass memory. We can see that the highest value of α will be 3.85/2.0 = 1.925 for

5 active experiments. It follows that our model will emulate the state of the memories

with an error of less than 3 blocks of data in this case.

Table 1: Variable transfer rates
Nb. Exp. x Priority y τ observed

k,x,y,0 τ observed
k,x,y,1

1 1 6.14 3.77
2 1 5.36 3.99
2 2 4.74 4.09
3 1 4.74 4.09
3 2 4.28 3.77
3 3 3.80 3.45
4 1 4.31 4.09
4 2 3.88 3.55
4 3 3.46 3.08
4 4 3.10 2.37
5 1 3.90 3.85
5 2 3.48 3.30
5 3 3.06 2.80
5 4 2.80 2.30
5 5 2.65 2.00

4 Checking and Filtering Algorithms

In this section, we introduce a filtering procedure for the DATATRANSFER constraint.

Observe that the DATATRANSFER constraint is NP-complete to satisfy, hence NP-

hard to filter. Indeed, consider the particular case where memory capacities are all of

exactly one block of data, mass-memory is unlimited, and production rates are equal to

transfer rates. Since the capacities are all equal to one block, each block produced must

be immediately transferred. Moreover, since production and transfer rates are equal,

a transfer will stop exactly when production stops. However, since there is a single

transfer channel to the mass-memory, no overlap is possible between these tasks. Since

we have time windows on the variables ski, this particular case is therefore equivalent to

a disjunctive unary resource, i.e., it is strongly NP-hard. It follows that achieving arc- or

even bound-consistency on the exact or approximated version of the constraint would

be NP-hard. We shall therefore propose two filtering rules, that are correct, however

incomplete (with respect to bound- or arc-consistency).

We first present an efficient O(nm log(nm)) (recall that nm is the total number

of tasks) procedure for computing transfers and memory usage of a given schedule.

This procedure executes a sweep of the horizon similar to that described in [3]. Besides

checking whether the constraint is violated, we shall also use this algorithm to compute

lower bounds in order to filter the domains.

4.1 Data Transfer Verification

Given a complete schedule of the data-producing tasks, and a priority ordering, we

now describe an algorithm that computes the effective transfer rate (in the sense of

Definition 1) and the memory usage for each experiment over the whole horizon in

time O(nm log(nm)). Notice that both are step functions, moreover we will see that

there are at most O(nm) breaking points, so they can be stored on O(nm) bits. This

algorithm can be used to verify whether an assignment is consistent by simply checking

that the usage of all experiments remains within the memory’s capacity. We shall also

use it to compute bounds on the memory usage of extreme scenarios (e.g., all tasks

set to their earliest start time). It sweeps the time horizon chronologically, computing

variations of various parameters only when certain events occur.

First, we build a list of events. Each event is time tagged. There are six types of

“static” events, i.e., that are known before executing the sweep procedure (for O(nm)
events in total):

– Start/end of an experiment;

– Start/end of a data-producing task;

– Start/end of visibility.

Moreover, “dynamic” events will be created and inserted while executing the sweep.

Those events correspond to deadlines due to the memory capacity. In other words, out-

side the events above, the conditions might change if an experiment memory is emptied

(in which case, a transfer might stop or continue at the production rate), or if the mass

memory is filled or emptied. We call these Deadline events.

We first sort the events in chronological order. Next, in the main loop we explore

the list of events in that order. For each time point t where at least one event occurs, we

go through all events occurring at t and update the following arrays accordingly:

– visibility stands for whether there is a visibility line at time t. It is flipped whenever

encountering a “Start of visibility” or “End of visibility” event;

– production(k) stands for the data-producing rate of experiment Ek at time t. It

is increased (resp. decreased) by the data-producing rate of the task whenever en-

countering a “Start of production” (resp. “End of production”) event;

– active stands for the number of active experiments at time t. It is increased (resp.

decreased) by one whenever encountering a “Start of experiment” (resp. “End of

experiment”) event.

At each step of the loop, we therefore know the complete state (data-producing rate

on each experiment, whether we are in visibility or not, and how many experiments

are active). Moreover, we also keep track of the memory usage with another array:

memory. We then compute what are the current transfers, and partition the bandwidth

between them using the principle described in Section 3.2.

For each experiment Ek (visited by order of priority), if it has data on memory, or

if it is currently producing data, and if the bandwidth is not zero, we create a transfer.

We first compute its potential transfer rate p(τ(k,t)) according to Expression (2) and

setting t to the event time. We then compute the actual transfer rate τ tk using Expression

(3). These computations can be done in O(1) for each experiment as the cumulative

bandwidth usage
∑R(k)−1

i=1

τt
P (i)

τ(P (i),t)
is computed incrementally.

Then, for each experiment currently in transfer, we compute a theoretical deadline,

i.e., the date at which it will be emptied at this rate of transfer if nothing changes. Notice

that it can be never. Similarly, we compute a theoretical deadline for filling the mass-

memory. If the earliest of all these deadlines happens earlier than the next scheduled

event, we create a dynamic Deadline event and we add it to the list of events. Events

of this type will do nothing on their own, however, they will allow the algorithm to

recompute the transfers according to the new situation (the mass-memory being filled,

or an experiment’s memory being empty).

Finally, the usage of each memory at time t is updated according to the transfers.

This algorithm has a worst case time complexity of O(nm log(nm)). The list of

events has initially O(nm) elements. There are two for each data-producing task, two

for each visibility window, and two for each experiment (we assume that the num-

ber of visibility windows is less than nm). Sorting them can therefore be done in

O(nm log nm) time. In the main loop, events are processed only once, and this takes

at most O(m) time. Moreover, in some cases, “deadline” events can be added during

the exploration of the event list. However, at most one such event can be added for each

event initially in the list. Indeed, consider a deadline event. It is created only if no other

event yet to process has an earlier date. In other words, transfer and data-producing

rates as well as visibility do not change. The experiment memory that was emptied will

therefore stay empty at least until the next standard event. The same is true for deadline

event triggered by filled mass-memory: it will stay full at least until the next visibility

event. Therefore, the worst case time complexity of the main loop is O(nm).

4.2 Filtering Rules

In this section we introduce two propagation rules for the DATATRANSFER constraint.

Minimal transfer span: The first rule tries to guess a lower bound on the total span of

a subset of tasks of the same experiment Ek. The intuition is that if data is produced at

a higher rate than it can be transferred out, the capacity of a memory could be reached

and data will be lost. In other words, given a set Ω ⊆ Ek of data-producing tasks of

an experiment Ek, the total amount of data produced by these tasks, minus what can be

stored on the memory of Ek, need to be transferred out. The duration of this transfer is

a lower bound on the span of this set of tasks, i.e., the duration between the minimum

start time and maximum end time of any task in this set.

The total amount of data produced by tasks in Ω is equal to
∑

tki∈Ω πkipki. At most

Mk can be stored on the experiment’s own memory, hence at least
∑

tki∈Ω πkipki−Mk

has to be transferred out before the end of the last data-producing task. Let τ be the

highest possible transfer rate for data out of the experiment’s own memory. We can use

this rate to derive a lower bound on the total duration of Ω:

max
tki∈Ω

(eki)− min
tki∈Ω

(ski) ≥

∑

tki∈Ω πkipki −Mk

τ
(7)

Observe that if we set the experiment’s memory Mk to 0 and all production and

transfer rates to 1, then enforcing constraint (7) on all subsets of tasks of a given ex-

periment is equivalent to forbid overlaps between tasks. Indeed, let tki and tkj be two

tasks of duration pki and pkj , respectively. Constraint (7) guarantees a duration of at

least pki + pkj between the start of the first and the end of the second task. In other

words, if we can schedule tasks so that this constraint is satisfied on each subset, then

no two task may overlap. In the other direction, if we can schedule a set of tasks with-

out overlaps, then the makespan for this set of tasks is at least the sum of the tasks’

durations, hence Constraint (7) would be satisfied on this set. It shows that computing

tight bounds satisfying Constraint (7) on all subsets Ω of tasks in a given experiment is

NP-hard since we have time-window constraints (that is, feasible bounds for each task).

We shall therefore apply this rule only for subsets of tasks that are consecutive when

ordered by earliest start time (so that only a polynomial number of subsets is checked),

and independently for each such subset.

In real scenarios, however, the order of data-producing tasks of a given experiment

is often known a priori. Assuming that the tasks in Ω are ordered, with tkf being the

first task and tkl being the last task in Ω, we can often induce the simpler constraint:

ekl − skf ≥

∑

tki∈Ω πkipki −Mk

τ

Example 1. Figure 7 depicts the application of this rule. For an experiment k, we have

two tasks tk1, tk2, the former producing πk1 = 5 blocks/sec and the latter πk2 = 4
blocks/sec, both for 70 seconds. Therefore, πk1pk1+πk2pk2=630 blocks are produced.

Assume that the memory of this experiment has a capacity of 250 blocks. Consequently,

380 blocks need to be transferred out in order to avoid data loss. Since the maximum

transfer rate is 2 blocks/sec, this transfer will take at least 190 seconds. We can conclude

that the end of tk2 is at least 190 seconds after the start of tk1. The grey scale gives the

evolution of the memory for tk2 finishing exactly 190 seconds after the start of tk1.

Moreover, we can take into account the data produced by tasks of experiments with

higher priority, since the corresponding data transfer will preempt those of lower prior-

ity.

Consider an interval of time [a, b]. Any data produced by experiments of higher

priority during this period must be transferred out before Ek can be allowed to transfer.

Let min(|tki∩ [a, b]|) be the minimum size of a common interval between [a, b] and

[ski, ski+pki] for any value of ski. If |[a, b]∩[c, d]| stands for the size of the intersection

Time

Memory used

0

100

200

300

Mk

πk1 = 5 πk2 = 4

∑
tki∈Ω πkipki−Mk

τ
ens1

Fig. 7: Example of minimal span constraint.

of intervals [a, b] and [c, d], then :

min (|tki ∩ [a, b]|) =

min (|[a, b] ∩ [min(ski),min(ski) + pki]|, |[a, b] ∩ [max(ski),max(ski) + pki]|)

We can compute a lower bound Tk(a, b) on the time required to transfer the data

produced by experiments of higher priority than k over the interval [a, b] as a lower

bound on the data produced, divided by the maximum transfer rate:

Tk(a, b) =





j<R(k)
∑

j=1

n
∑

i=1

|tP (j)i ∩ [a, b]| ∗ πP (j)i





/

τ

Given a subset Ω ⊆ Ek of experiment Ek, consider the time interval [a, b] between

the latest start time of any task in Ω (a = maxtki∈Ω(min(ski))) and the earliest end

time of any task in Ω (b = mintki∈Ω(max(ski) + pki)). The lower bound on the span

given above assumes continuity of the transfer, and by definition this duration must

include the interval [a, b]. Therefore, any interruption of the transfer during this period

induces the same delay on the minimal span of Ω. In other words, any time taken to

transfer data of experiments with higher priority during [a, b] (Tk(a, b)) can be simply

added to the lower bound above.

Hence we can tighten Constraint (7) as follows (with a = maxtki∈Ω(min(ski)) and

b = mintki∈Ω(max(ski) + pki)):

max
tki∈Ω

(eki)− min
tki∈Ω

(ski) ≥

∑

tki∈Ω πkipki −Mk

τ
+ Tk(a, b) (8)

We apply this rule for every set of consecutive tasks (with respect to their earliest

start times) of every experiment. There are n2m such sets, and computing the lower

bound takes at most O(nm) time. The whole procedure hence has a worst case time

complexity of O(n3m2).

Mass memory saturation: Since transfers from the lander to the orbiter are possible

only during some visibility windows, the data can only accumulate on the mass-memory

while not in visibility. As a consequence, the period that precedes a visibility window is

critical since the mass memory can be saturated hence blocking all transfers. When this

happens, data produced by an experiment remains on its memory at least until the next

visibility window, and it is possible to lose data when the experiment’s memory itself is

saturated.

We use this observation to deduce that data-producing tasks which would generate

too much data to hold on the mass memory and on their own memory should be either

advanced or postponed. Suppose that we know that at time t, the mass-memory will

necessarily be filled. It will remain so until the next visibility. Now, if a task tki produces

more data in the interval between t and the next visibility window than its own memory

can hold, it will be lost. Indeed, no data can be transferred onto the mass-memory as

long as it is full, and it will start to be emptied only when the visibility allows it. We

can therefore deduce that the task tki must start either early enough to produce before

t or late enough so that the data in excess will be produced during the visibility period

(in order to have a chance to be transferred).

First, we show how to compute an upper bound t on the time when the mass-

memory will reach its maximum before a given visibility window. We consider a single

visibility cycle V = (a, v, b), where a < v < b denote, respectively, the end of the

previous cycle, the start of a visibility window, and the end of that visibility window.

Let Ω(V) be the set of data-producing tasks that are necessarily scheduled within the

interval [a, b].

Proposition 1. Scheduling all data-producing tasks in Ω(V) to their latest start time

minimizes the memory usage of the mass-memory (mt
0) for all t ∈ [a, b].

Proof (sketch). Clearly if we consider a data-producing task tki in isolation, setting its

start time to the latest possible time point (max(ski)) delays the transfer onto the mass

memory hence its memory usage for any time point in [a, b].
When multiple data-producing tasks can run in parallel, experiments of high priority

can preempt transfer intervals of experiment of lower priority. Therefore, one could

advance a data-producing task tjl in time in order to use the resource and therefore

delay the transfer of some of the data produced by tki. However, since the transfer rate

increases with the priority, for any time interval where the transfer of the data produced

by tjl preempts that produced by tki, data is being transferred to the mass memory at

a higher rate. Thus, advancing a data-producing task tji of higher priority never helps

minimizing the mass memory usage. ⊓⊔

Given a visibility cycle V = (a, v, b), we can therefore get a lower bound on mt
0 on

the usage of the mass memory for any t in the interval [a, b] using the sweep algorithm.

For every task in Ω(V), we tentatively fix it to its latest start time and execute the sweep

algorithm. Hence, we can easily compute t, the smallest value of t for which mt
0 = mv

0 .

Given an experiment Ek, we can bound the amount of data that can be produced by

any task of this experiment in the period [t, v] and stored without loss. There are mt
0

blocks of data already on the mass-memory, so M0 −mt
0 is free. Moreover, up to Mk

can be stored on the experiment’s own memory, for a total of δk = M0 + Mk − mt
0

blocks. Above this threshold, data produced by tasks of experiment Ek between t and

v will be lost. If |tki ∩ [t, v]| stands for the length of the overlap between a task tki and

the interval [t, v], a task tki produces |tki ∩ [t, v]| ∗ πki blocks of data in the interval

[t, v]. Therefore, the following relation must hold:

n
∑

i=1

(

min(|tki ∩ [t, v]|) ∗ πki

)

≤ δk

from which we can deduce the following implied constraint:

|tki ∩ [t, v]| ≤



δk −
∑

j 6=i∈[1,n]

(min(|tkj ∩ [t, v]|) ∗ πkj)





/

πki (9)

We run the sweep algorithm once to obtain the value of t. Then, for each experiment,

we can compute δk and in time O(n) the values of min(|tkj ∩ [t, v]| for each task tki.
Finally we compute the implied constraint also in time O(n) (it takes constant time for

each task, once min(|tkj ∩ [t, v]| is known). Finally we apply it only when it collapses

to a simple lower or upper bound on the start time ski of a task tki. The total time

complexity of this filtering rule is thus O(nm log(nm) + nm) = O(nm log(nm)).

5 Experimental Results

All the previous algorithms and filtering rules have been implemented on the latest

version of MOST. We conducted experiments on different scenarios provided by the

SONC group of CNES. Each scenario consists in several experiments of the SDL or

FSS which must be scheduled on a time window between 10 hours and 5 days for the

longest scenario. On the last three scenarios, we search a valid solution for either or

both of the two experimental sequences SDL and FSS, albeit with in a macroscopic

view.

For each subset of experiments, several variations are tested in order to assess uncer-

tain parameters. For instance, the visibility cycle depends on the exact mass and shape

of the comet, the orbit selected by Rosetta, and the landing site chosen for Philae, all of

which are unknown at this time. Some scenarios have continuous visibility, while other

have different periods for the visibility cycles. The hardware onboard the probe will

have travelled in extreme temperatures for ten years, so the exact charge and efficiency

of the batteries is also uncertain. Moreover, engineers of SONC test a range of varia-

tions on other parameters such as the memory capacity simply to stress-test the system

(MOST).

5.1 Search Effort

We ran 13 scenarios and compared the results of the current version of MOST against

the ad-hoc propagator introduced in this paper. Both versions were run on quad-core

Sun T5120 running Solaris 2.10 with 8GB of RAM. The current version of MOST

(denoted by MOST+ILCRESERVOIR) models data transfers using Ilog-Scheduler

ILCRESERVOIR constraints. Our version is denoted by MOST+DATATRANSFER.In

both cases, we used the same default search strategy. Interval variables standing for

activities are explored in chronological order of their earliest start times, and we branch

by assigning them to this earliest start time. Indeed, SONC’s engineers prefer rather

simple strategies which make the solver choices more foreseeable and hence the so-

lutions easier to validate. Moreover, we shall see that because of the constrainedness

of the implemented scenarios, no real search is required provided a sufficiently strong

filtering on data transfers.

We report the results in Table 2. We present for each scenario the set of experiments

involved, the memory capacities, and whether the visibility is periodic (P) or continuous

(C). Then we give the number of fails calculated by Ilog-Scheduler during search, the

initialization time, and finally the solving time.

We observe first that using our approach, solutions can be obtained backtrack-free,

whereas the previous model actually needs to branch on the variables standing for trans-

fer durations and therefore requires exploring a sizeable search tree. The reformulation

using ILCRESERVOIR constraints was indeed very loose, and did not allow to detect

inconsistencies early. Moreover, to overcome this weakness, the scenarios produced by

the SONC group are overly constrained in order to cut possibilities and allow the solver

to converge more easily. Finally, our propagator is relatively light and therefore more

time effective, compared to the model using a large amount of transfer tasks throughout

the horizon for each reservoir constraint.

In fact, the previous model was so large that the initialization time is very high. The

few seconds of initialization time in our approach correspond to the rest of the model

(cumulative and unary resources), which is common to both implementations.

In two cases (Consert/Romap scenarios), no solution was found by

MOST+ILCRESERVOIR within the time cutoff. However, this is not explained

(only) by performance issues. In fact, these two scenarios do not have a valid solution

under the old model, whereas they are feasible.

Our model significantly reduces the search effort with respect to the previous ap-

proach. In fact, all scenarios used by SONC’s engineers are solved backtrack-free using

our method, even if we use a “minimal” version of the constraint. In this version we sim-

ply check, whenever the start time of a new task is fixed, whether the DATATRANSFER

constraint is violated. It shows that the search effort observed on the previous model

was devoted to compute a transfer policy which is in fact functionally dependent on the

schedule of producing tasks.

However, since the real parameters will only be fully known days before launch-

ing Philae, and will probably be revised after its landing, it is important to be robust

and consider even scenarios that may not seem realistic now. We therefore manually

tweaked the instance “Overview FSS” in two ways. First, we gave more flexibility to

the tasks in order to increase the potential search space. Second, we decreased some

memories and increased some production rates so that the filtering rules are more likely

to be triggered.

Table 2: Old vs. new version of MOST on 8 standard scenarios
Scenario Parameters MOST+ILCRESERVOIR MOST+DATATRANSFER

Mk M0 Visi. Fails
time (s)

Fails
time (s)

init. search init. search

Consert 500 17456 P 295 4.06 20.07 0 0.88 0.08
Consert/Romap 500/250 17456 P 7112 11.13 Time out 0 1.17 0.10
Consert/Romap 500/250 37456 P 7051 11.03 Time out 0 1.17 0.10
SD2/Ptolemy 64/2000 17456 P 234 26.71 41.72 0 3.37 0.09
SD2/Ptolemy 64/2000 17456 C 211 32.78 79.48 0 3.25 0.08

SD2/Cosac/Civa 64/24000/4000 37456 P 407 50.20 181.91 0 2.75 0.14
SD2/Cosac/Civa 64/24000/4000 17456 P 413 50.84 179.19 0 2.95 0.15
SD2/Cosac/Civa 64/24000/4000 17456 C 390 25.12 91.08 0 1.82 0.10
APXS/Sesame 125/2000 17456 P 44 27.74 28.53 0 3.5 0.19

SD2/Ptolemy/Cosac/ 64/2000/24000/
17456 P 1657 265.45 1639.33 0 21.14 6.71

Mupus/Sesame 750/1750
Overview FSS (10 exps) 17456 P 591 125.69 565.09 0 2.12 0.49
SDL 30min (8 exps) 17456 P 1145 14.94 20.52 0 9.47 0.23

SDL 360min +
17456 P 44201 217.09 10801.40 0 4.44 1.20

FSS (15 exps) macro vision

Table 3: Impact of the Filtering Algorithms
Scenario DATATRANSFER DATATRANSFER(1) DATATRANSFER(2) DATATRANSFER(1 & 2)

Fails time (s) Fails time (s) Fails time (s) Fails time (s)

Overview A 569 49 569 54 569 65 569 68

Overview B 2143 102 516 30 2143 99 516 54

Overview C 3278 170 1651 99 3278 257 1651 149

We ran four versions of our approach on these harder instances. The first does not do

any filtering and simply checks the DATATRANSFER constraint after each assignment.

The other three versions use the first (1), the second (2) or both filtering rules (1 & 2).

We report the results in Table 3 for three instances obtained as described above.

The best results appear in bold. We observe that the first filtering rule actually does

reduce the search effort significantly on these instances. However, the second filtering

rule was not able to effectively prune on any of the modified instances. Although we

can generate toy instances where the second filtering rule is triggered, this is not the

case for the considered set of real scenarios.

5.2 Model Accuracy

In the model MOST+ILCRESERVOIR, tasks with very low data-producing rates are

treated differently because of rounding issues: It is assumed that the data is produced

all at once at the end of the task. Therefore in these scenarios, transfers can be delayed

by a substantial amount compared to the real behavior of the CDMS.

Moreover, since transfer tasks have a frequency of 120 seconds, they cannot accu-

rately model situations where the CDMS frequently switches between different trans-

fers. Scenarios Consert/Romap highlight this problem on SONC’s version of MOST.

Both experiments have small data-producing tasks and small memory capacities. There-

fore, switches between transfers from these two experiments are extremely frequent.

Fig. 8: Example of MOST+ILCRESERVOIR

However, with MOST+ILCRESERVOIR it is not possible to switch frequently enough

since data-transfer tasks are preallocated every 120 seconds on the time line. As a re-

sult, the model using the ILCRESERVOIR constraint has no solution, whereas transfers

are actually possible.

Figure 8 is a screenshot of the MOST’s GUI showing a zoom on a plan (a solution)

of the scenario SD2/Ptolemy. The bottom bars represents the transfer of Ptolemy, and

the bars just above are data-producing tasks. We can see that the transfer task does not

coincide with the data-producing task. Indeed there is a gap, because data-producing

rate is too low to trigger a transfer task earlier.

These results show that our model is closer to the real case, because our approximate

representation of data transfers gives a solution very similar to the exact one. One of

the most important improvements of our version is the precision and the realism of our

model; we accurately model the behavior of the CDMS.

6 Conclusions

The problem of planning the scientific experiments to be undertaken by the lander Phi-

lae can be modeled as a task scheduling problem with additional constraints to ensure

that no data is lost. In this paper, we have introduced a new model for managing data

transfers, relying essentially on the global constraint DATATRANSFER. This new ap-

proach improves the previous methods in two ways.

First, data transfers do not need to be discretized. Whereas, in the previous model,

predefined “transfer tasks” of a given size were used to represent data transfer, we

showed that they can be efficiently approximated. One key idea was the observation

that the exclusive usage of the transfer channel and the priority rule of the transfer pol-

icy could actually be simulated by a bandwidth-sharing model. We have proven that

the approximation error with respect to the real transfer policy is fixed and extremely

small compared to the large amount of data being transferred. This approach therefore

provides a much higher level of precision in the evolution of the memory usage, hence

a greater confidence that the proposed plans will not entail any data loss.

Second, this new approach also greatly reduced the computational cost for solving

the overall planning problem. We proposed an efficient sweep-based method to check

the feasibility of data transfers and compute memory usage through time. Thanks to

this algorithm, scenarios that required several hours of computation with the previous

model can now be solved in a few seconds.

Although such exploration missions are extremely rare, from a constraint program-

ming viewpoint, there are several lessons to be learned from this study. First, such data

transfer problems are common in space applications, for instance for Earth observa-

tion satellites. Moreover, there are other scenarios where we want to model continuous

or very finely grained quantities produced by activities requiring an exclusive resource

shared through a fixed policy. For instance in a logistics problem, we might have a set

of suppliers sending orders to a set of customers through a common transportation re-

source. In such cases, the sharing policy should be either impartial, or dependent on

the premiums paid by the suppliers or customers. In either case, it is fixed externally

and our approach of modeling an exclusive resource with some fine grained sharing

policy by a bandwidth model would apply. Other potential examples concern makespan

minimization in project scheduling with inventory constraints including both renew-

able and storage resources, reliability and quality of service in wireless sensor networks

that require collecting all data without any loss, or spatio-temporal resolution of oper-

ational data in pipeline infrastructures and time/bandwidth complex sharing policies in

frequency allocation problems.

Moreover, if we consider even more general situations where a potentially very

complex system is functionally dependent on a schedule, a sweep-based algorithm

seems to be a very robust approach. It has a low time complexity, and can easily be

adapted to model even very complex systems. For instance, in our case, there are as-

pects that we voluntarily did not cover in this paper, as they have little “computer sci-

entific” interest, whilst making the presentation much more complex. Direct transfers

from experiment memory to the orbiter when the mass memory is empty, or dedicated

partition and allocation of the mass memory to each experiment are such additional

features. Even though some of these changes were brought up after the basic algorithm

had been implemented, the sweep architecture was relatively easy to adapt, for instance

by introducing new types of events.

Finally, we proposed two filtering rules for the constraint DATATRANSFER. Un-

fortunately, the scenarios generated by SONC’s engineers are solved with almost no

failure when using this new constraint. Therefore, the impact of the two filtering algo-

rithms is difficult to assert. We can observe an improvement when relaxing the domains

and restricting the memory capacities, however only from the first filtering rule.

Moreover, our experimental evaluation indicates that with the previous approach

search was necessary to handle data transfers. With our approach, however, it seems

relatively easy to schedule the experiments in such a way that there is no data loss. So

far, we have not seen a real scenario that would be hard when using the DATATRANSFER

constraint.

Acknowledgements

This work has been supported by CNES. We would like to thank members of the Sci-

ence Operations and Navigation Centre (SONC) in Toulouse for their invaluable input.

References

1. Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to solve complex

scheduling and placement problems. Mathematical and Computer Modelling, 17(7):57–73,

1993.

2. Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-Based Scheduling. Springer,

2001.

3. Nicolas Beldiceanu and Mats Carlsson. Sweep as a generic pruning technique applied to the

non-overlapping rectangles constraint. In Seventh International Conference on Principles and

Practice of Constraint Programming (CP 2001), LNCS 2239, pages 377–391. Springer, 2001.

4. Amedeo Cesta, Gabriella Cortellessa, Michel Denis, Alessandro Donati, Simone Fratini, An-

gelo Oddi, Nicola Policella, Erhard Rabenau, and Jonathan Schulster. Mexar2: AI solves

mission planner problems. IEEE Intelligent Systems, 22(4):12–19, 2007.

5. Philippe Laborie. Algorithms for propagating resource constraints in AI planning and schedul-

ing: existing approaches and new results. Artificial Intelligence, 143(2):151–188, February

2003.

6. Catherine Mancel and Pierre Lopez. Complex optimization problems in space systems. In

13th International Conference on Automated Planning & Scheduling (ICAPS’03), Doctoral

Consortium, 2003.

7. Angelo Oddi and Nicola Policella. Improving robustness of spacecraft downlink schedules.

IEEE Transactions on Systems, Man, and Cybernetics, Part C, 37(5):887–896, 2007.

8. Giovanni Righini and Emanuele Tresoldi. A mathematical programming solution to the Mars

Express memory dumping problem. IEEE Transactions on Systems, Man, and Cybernetics,

Part C, 40(3):268–277, 2010.

	Scheduling Scientific Experiments for Comet Exploration

