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I. INTRODUCTION

Today's control systems are frequently implemented over networks since these offer many advantages in terms of flexibility and cost. In this setup, the controllers communicate with the sensors and the actuators through the network, not in a continuous fashion but rather at discrete time instants when the channel is available for the control system. Traditionally, the time interval between two successive transmissions is constrained to be less than a fixed constant T , which is called the maximum allowable transmission interval (MATI) (see, e.g., [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], [START_REF] Walsh | Asymptotic behavior of nonlinear networked control systems[END_REF]). In order to achieve a desired performance, T is generally chosen as small as technology and network load permit. This strategy, although easy to implement, represents a conservative solution that may unnecessarily overload the communication channel. Indeed, one would expect that the transmission instants should not satisfy a prefixed bound but rather be based on the current state of the system, the channel occupancy and the desired performance. Drawing intuition from this idea, event-triggered control has been developed to reduce the need for communication while guaranteeing satisfactory levels of performance. It involves closing the loop whenever a predefined state-dependent triggering condition is satisfied, e.g., [START_REF] Arzén | A simple event-based PID controller[END_REF], [START_REF] Aström | Comparison of periodic and event based sampling for first-order stochastic systems[END_REF], [START_REF] Aström | Comparison of Riemann and Lebesgue sampling for first order stochastic systems[END_REF], [START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Wang | On event design in event-triggered feedback systems[END_REF]. This technique reduces the usage of the communication bandwidth and of the CPU and provides a high degree of robustness since the state is continuously monitored.

In this paper, we propose a framework for the eventtriggered stabilization of nonlinear systems using hybrid systems tools, and we use it to develop new event-triggering schemes and to revisit and generalize the techniques in [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF], [START_REF] Miskowicz | Send-on-delta concept: An event-based data reporting strategy[END_REF], [START_REF] Otanez | Using deadbands to reduce communication in networked control systems[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Wang | On event design in event-triggered feedback systems[END_REF]. We model event-triggered control nonlinear systems as hybrid systems using the formalism of [START_REF] Goebel | Hybrid dynamical systems[END_REF] (see also [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized eventtriggering[END_REF], [START_REF] Forni | Lazy sensors for the scheduling of measurement samples transmission in linear closed loops over networks[END_REF] where linear systems are considered). We show that set stability conveniently describes the desired stability properties of these systems. This property is established using a novel Lyapunov theorem which extends the results in [START_REF] Goebel | Hybrid dynamical systems[END_REF] to the case where the Lyapunov function is locally Lipschitz (and not necessarily continuously differentiable), which is essential in event-triggered control where Lyapunov functions are often given by the maximum of continuously differentiable functions (which are locally Lipschitz), as we show. In addition, the Lyapunov theorem relies on a different condition on the flow set which weakens the corresponding one in Theorem 3.18 in [START_REF] Goebel | Hybrid dynamical systems[END_REF]. We provide sufficient conditions for guaranteeing the existence of a uniform minimum amount of time between control updates. Although this is not necessary to guarantee stability, this is crucial in practice as the communication hardware cannot generate transmissions which are arbitrarily close in time. We also explain how to redesign the triggering condition to enforce the existence of such a minimum amount of time between two transmissions when the aforementioned conditions are not met because of the behaviour of the solutions near the attractor. Similar results have been derived in different contexts and for specific classes of systems and triggering conditions in [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized eventtriggering[END_REF], [START_REF] Tallapragada | On event triggered tracking for nonlinear systems[END_REF].

The proposed approach is flexible and offers the possibility to introduce additional variables to construct the triggering condition. We emphasize the potential of these extra variables through two new strategies which may further reduce the usage of the communication resources compared to existing techniques. In the first strategy, we use a threshold variable to close the loop, which allows generating longer transmission intervals than in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Wang | On event design in event-triggered feedback systems[END_REF] as illustrated on a jet engine compressor example. This technique is especially well-suited for real-time scheduling as we can tune the threshold dynamics according to the available resources. The second strategy is inspired by [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] where a time-triggered implementation is studied. The idea here is to make the dynamics of the clock variable used in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] state-dependent in order to adapt transmissions to the system state. This strategy is compared with [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] on a van der Pol oscillator. We also show that the approach is general enough to capture many of the eventtriggering laws available in the literature [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF], [START_REF] Miskowicz | Send-on-delta concept: An event-based data reporting strategy[END_REF], [START_REF] Otanez | Using deadbands to reduce communication in networked control systems[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Wang | On event design in event-triggered feedback systems[END_REF]. By doing so, we revisit and generalize these techniques by relaxing the conditions on which they rely and by allowing general holding functions. Indeed, the results of the paper not only apply to zero-order-holds but to various holding functions such as the model-based one proposed in [START_REF] Lunze | A state-feedback approach to event-based control[END_REF] for linear systems. In addition, the proposed new techniques can be used as starting points to address other event-based control problems, such as the stabilization of systems with distributed sensors and actuators ( [START_REF] Postoyan | Event-triggered and self-triggered stabilization of distributed networked control systems[END_REF]), or the coordination of cyberphysical systems for instance ( [START_REF] De Persis | A Lyapunov redesign of coordination algorithms for cyberphysical systems[END_REF]). Note that a related study has been independently proposed in [START_REF] Seuret | Stability of nonlinear systems by means of event-triggered sampling algorithms[END_REF] where strategies similar to those in [START_REF] Forni | Lazy sensors for the scheduling of measurement samples transmission in linear closed loops over networks[END_REF] and [START_REF] Velasco | On Lyapunov sampling for eventdriven controllers[END_REF] are investigated. Contrary to [START_REF] Seuret | Stability of nonlinear systems by means of event-triggered sampling algorithms[END_REF], we ensure the existence of a uniform inter-execution time for all our strategies, which is essential in practice as explained above; furthermore we develop different eventtriggering policies and we revisit existing techniques.

The remainder of the paper is organized as follows. Preliminaries are stated in Section II. Event-triggered control systems are modeled as hybrid systems in Section III. The analytical tools used to prove stability as well as the existence of a minimum amount of time between any two transmissions are stated in Section IV. In Section V, we propose new triggering rules and we show how several existing eventtriggering policies can be addressed with the proposed approach. The event-triggering techniques are compared on illustrative examples in Section VI and conclusions are proposed in Section VII. The proofs are given in the Appendix.

II. PRELIMINARIES Let

R := (-∞, ∞), R ≥0 := [0, ∞), R >0 := (0, ∞), Z ≥0 := {0, 1, 2, . . .}, Z >0 := {1, 2, . . .}. A function γ : R ≥0 → R ≥0 is of class K if it
is continuous, zero at zero and strictly increasing, and it is of class K ∞ if in addition it is unbounded. The notation I denotes the identity mapping from

R ≥0 to R ≥0 . Let (x, y) ∈ R n+m , (x, y) stand for [x T , y T ] T . The distance of a vector x to a set A ⊂ R n is denoted by |x| A := inf{|x -y| : y ∈ A}. The notation f -1 (M) for a function f : R n → R m and a set M ⊂ R m stands for {x : f (x) ∈ M}. When f : R n → R, f -1 ≤ (m) := {x : f (x) ≤ m} and f -1 ≥ (m) := {x : f (x) ≥ m} for m ∈ R. The notation | • |
stands for the Euclidean norm. We use U • (x; v) to denote the generalized directional derivative of Clarke of a locally Lipschitz function U at x in the direction v, i.e. U • (x; v) := lim sup h→0 + , y→x (U (y + hv) -U (y))/h, which reduces to the standard directional derivative ∇U (x), v when U is continuously differentiable; see [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF] for more detail. We will use the following result which corresponds to Proposition 1.1 in [START_REF] Nešić | A Lyapunov-based small-gain theorem for hybrid ISS systems[END_REF].

Lemma 1: Consider two continuously differentiable functions

U 1 : R n → R and U 2 : R n → R. Let A := {x : U 1 (x) > U 2 (x)}, B := {x : U 1 (x) < U 2 (x)} and Γ := {x : U 1 (x) = U 2 (x)}. For any v ∈ R n , the function U : x → max{U 1 (x), U 2 (x)} satisfies U • (x; v) = ∇U 1 (x), v for all x ∈ A, U • (x; v) = ∇U 2 (x), v for all x ∈ B, and U • (x; v) = max{ ∇U 1 (x), v , ∇U 2 (x), v } for all x ∈ Γ.
The lemma below will be useful for lower bounding Lyapunov functions. Its proof follows from the fact that α(s

1 + s 2 ) ≤ α(2s 1 ) + α(2s 2 ) for any α ∈ K ∞ , s 1 , s 2 ≥ 0. Lemma 2: For any α 1 , α 2 ∈ K ∞ , α 1 (s 1 ) + α 2 (s 2 ) ≥ α(s 1 + s 2 ) for any s 1 , s 2 ≥ 0 where α : s → min{α 1 (s/2), α 2 (s/2)} ∈ K ∞ .
The following technical lemma is an extension of Lemma 4.3 in [START_REF] Khalil | Nonlinear systems[END_REF], which is convenient when designing Lyapunov functions to investigate set stability.

Lemma 3: Let O ⊆ R n and A ⊂ O be non-empty and compact sets and let V : O → R ≥0 be a continuous function which is equal to zero only on A. There exist

α 1 , α 2 ∈ K ∞ such that α 1 (|x| A ) ≤ V (x) ≤ α 2 (|x| A ) ∀x ∈ O. (1) 
When O is non-empty, closed and unbounded and V tends to infinity as

|x| A → ∞, (1) holds. 
We recall the definition of the tangent cone to a set at a given point and state a useful lemma.

Definition 1: [START_REF] Goebel | Hybrid dynamical systems[END_REF] The tangent cone to a set S ⊂ R n at a point x ∈ R n , denoted T S (x), is the set of all vectors w ∈ R n for which there exist

x i ∈ S, τ i > 0 with x i → x, τ i → 0 as i → ∞ such that w = lim i→∞ (x i -x)/τ i . Lemma 4: Let f : R n → R n be continuous, C = {q : V (x) ≥ W (x)} and D = {q : V (x) ≤ W (x)} for some continuously differentiable functions V and W from R n to R. For any x ∈ C ∩ D, f (x) ∈ T C (x) implies that ∇V (x), f (x) ≥ ∇W (x), f (x) .

III. SYSTEM MODELS

We will write event-triggered control systems as hybrid systems using the formalism of [START_REF] Goebel | Hybrid dynamical systems[END_REF], like in [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized eventtriggering[END_REF], [START_REF] Forni | Lazy sensors for the scheduling of measurement samples transmission in linear closed loops over networks[END_REF], [START_REF] Seuret | Stability of nonlinear systems by means of event-triggered sampling algorithms[END_REF]. Thus, we consider systems of the form

q = F (q) for q ∈ C, q + = G(q) for q ∈ D, (2) 
where q ∈ R nq is the state and n q ∈ Z >0 . The sets C ⊂ R nq and D ⊂ R nq are closed and respectively denote the flow and the jump sets. The vector fields F and G are assumed to be continuous on C and D, respectively. The continuity of F and G together with the closedness of the sets C and D ensure that the system is 'well-posed', see Chapter 6 in [START_REF] Goebel | Hybrid dynamical systems[END_REF].

In event-triggered control, the transmissions occur whenever a state-dependent criterion is satisfied. The hybrid model ( 2) is well-equipped to describe these systems. Indeed, a transmission can be modeled as a jump of (2) that occurs whenever the event-triggering condition is violated, which corresponds to the fact that the state of system (2) enters in the jump set D. When q ∈ C, the system flows and, when q ∈ C ∩ D, the system can either jump or flow, the latter only if flowing keeps q in C.

In this paper, the model ( 2) is obtained by following an emulation-like approach (see, e.g., [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Walsh | Asymptotic behavior of nonlinear networked control systems[END_REF]), i.e. a controller is first assumed to be designed without considering the resource limitations, afterwards, we take into account the effects induced by the latter and we derive an appropriate event-triggering condition to ensure stability for the obtained system.

Suppose that there is no resource constraints and consider the plant

ẋp = f p (x p , u), (3) 
where x p ∈ R np is the plant state and u ∈ R nu is the control input, for which a stabilizing dynamic state-feedback controller is designed

ẋc = f c (x c , x p ), u = g c (x c , x p ), (4) 
where x c ∈ R nc is the controller state. Note that when the controller is static, (4) reduces to u = g c (x p ). We now take into account the digital nature of the communication medium.

At each transmission instant1 , the controller receives the plant measurements, updates its knowledge of it, sends the control input and the actuators update the signal sent to the plant. As a consequence, the plant and the controller no longer have access to u and x p , respectively. Instead, they only know the corresponding sampled versions, i.e. û and xp , which are reset to the actual values of u and x p at each transmission instant, i.e.

x+ p = x p , û+ = u. (5) 
Between two transmissions, û and xp are generated by given holding functions which are respectively implemented at the actuators and at the controller

ẋp = fp (x p , x c , xp , û), u = fu (x p , x c , xp , û). (6) 
The use of zero-order-hold devices lead to fp = 0 and fu = 0. This formulation also allows to consider the model-based technique in [START_REF] Lunze | A state-feedback approach to event-based control[END_REF], as we show in Section V-C. We allow fp and fu to depend on x p , x c , xp , û for the sake of generality to capture the cases where they depend on a part of these vector variables. We introduce the sampling-induced error to model the impact of the sampling

e := xp -x p û -u (7) 
which is reset to 0 at each jump in view of [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized eventtriggering[END_REF]. We assume that the dynamics of the controller (4) is sufficiently fast compared to the transmissions rate so that we can ignore its sampling due to its implementation on a digital platform (as in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], [START_REF] Walsh | Asymptotic behavior of nonlinear networked control systems[END_REF] for instance). To define the event-triggering law, we may introduce auxiliary variables which we denote by a single vector variable η ∈ R nη . Indeed, it is common in the hybrid literature to use additional variables like clocks to ensure or analyze the stability, see [START_REF] Goebel | Hybrid dynamical systems[END_REF]. We will see for instance in Section V-E that we need to introduce a threshold variable to revisit the work in [START_REF] Wang | On event design in event-triggered feedback systems[END_REF]. The η-system has for dynamics η = h(x, e, η) between two successive transmission instants and η + = ℓ(x, e, η) at each transmission instant where h and ℓ are designed by the user.

In that way, we obtain system (2) with The main problem in event-triggered control is to define the triggering condition, i.e. the flow and jump sets C and D in (2), (and the dynamics of η if needed) in order to reduce the resource usage, i.e. the amount of jumps, while ensuring asymptotic stability properties together with the existence of a uniform minimum inter-execution time.

q =   x e η   F (q) =   f (x, e) g(x, e) h(x, e, η)   G(q) =   x 0 ℓ(x,
Remark 1: The assumptions allow for triggering rules that depend both on x and e. However, the specific choice of triggering rule needs to be done according to the implementation scenario. In the case of dynamic controllers, a triggering rule depending on x c requires continuous communication between the sensors and the controller. This is difficult to achieve in practice since sensors do not have, in general, access to the state of the controller. We have chosen to present the problem in a general setting because it allows to recover as particular cases the stabilization using a static controller (as in [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF], [START_REF] Miskowicz | Send-on-delta concept: An event-based data reporting strategy[END_REF], [START_REF] Otanez | Using deadbands to reduce communication in networked control systems[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Wang | On event design in event-triggered feedback systems[END_REF] for example) and the cases where only the plant states (i.e. e = xp -x p ) or the inputs (i.e. e = û -u) are sampled.

IV. ANALYTICAL TOOLS

By writing general event-triggered control systems as hybrid systems using the formalism of [START_REF] Goebel | Hybrid dynamical systems[END_REF], we can use a wide range of tools to study system [START_REF] Aström | Comparison of periodic and event based sampling for first-order stochastic systems[END_REF]. In this paper, we focus on set stability, which is a natural property when investigating eventtriggered control systems as we show in the forthcoming section. We present a new Lyapunov theorem to guarantee set stability, which extends the corresponding statements in [START_REF] Goebel | Hybrid dynamical systems[END_REF]. This result is used in Section V to analyse the stability of various event-triggered control systems. We conclude this section with sufficient conditions for the existence of a uniform amount of time between any two transmissions.

A. Definitions

We recall some definitions related to the hybrid framework of [START_REF] Goebel | Hybrid dynamical systems[END_REF]

. A subset E ⊂ R ≥0 × Z ≥0 is a hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ] × {0, . . . , J}) = i∈{0,1,...,I-1} ([t i , t i+1 ], i) for some finite sequence of times 0 = t 0 ≤ t 1 ≤ . . . ≤ t I . A function φ : E → R nq is a hybrid arc if E is a hybrid time domain and if for each j ∈ Z ≥0 , t → φ(t, j) is locally absolutely continuous on I j := {t : (t, j) ∈ E}. The hybrid arc φ : dom φ → R nq is a solution to (2) if: (i) φ(0, 0) ∈ C ∪ D; (ii) for any j ∈ Z ≥0 , φ(t, j) ∈ C and d dt φ(t, j) = F (φ(t, j))
for almost all t ∈ I j ; (iii) for every (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ, φ(t, j) ∈ D and φ(t, j + 1) = G(φ(t, j)). A solution φ is maximal when it cannot be extended, and is complete when dom φ is unbounded. We recall the following invariance definition for hybrid systems, see Definition 6.25 in [START_REF] Goebel | Hybrid dynamical systems[END_REF].

Definition 2: A set S ⊂ R nq is strongly forward preinvariant if for every solution φ to (2), φ(t, j) ∈ S for some (t, j) ∈ dom φ implies that φ(t ′ , j ′ ) ∈ S for any

(t ′ , j ′ ) ∈ dom φ with t + j ≤ t ′ + j ′ .
We introduce the definition below to characterize hybrid systems that generate solutions which have a uniform semiglobal minimum amount of time between two jumps, except, possibly, on a given set of the state space (the attractor in this study).

Definition 3: The solutions to (2) have a uniform semiglobal dwell-time outside A where A ⊆ R nq is strongly forward pre-invariant for system (2), if for any ∆ ≥ 0, there exists τ (∆) > 0 such that for any solution φ to (2) with |φ(0, 0)| A ≤ ∆ and any (s, i), (t, j) ∈ dom φ with s+i ≤ t+j,

φ(t, j) / ∈ A ⇒ j -i ≤ (t -s)/τ (∆) + 1. (9) 
The solutions to (2) have a uniform semiglobal dwell-time if for any ∆ ≥ 0, there exists τ (∆) > 0 such that for any solution φ to (2) with |φ(0, 0)| ≤ ∆ and for any (s, i), (t, j) ∈ dom φ with s + i ≤ t + j, j -i ≤ (t -s)/τ (∆) + 1.

We will see in the following sections that it is natural to work with set stability when studying event-triggered control systems. We consider the definition below which comes from Definition 3.6 in [START_REF] Goebel | Hybrid dynamical systems[END_REF].

Definition 4: The closed set A ⊂ R nq is uniformly globally pre-asymptotically stable (UGpAS) for system (2) if the following holds.

(

i) [Uniform global stability]

There exists α ∈ K ∞ such that for any solution φ to (2), |φ(t, j)| A ≤ α(|φ(0, 0)| A ) for all (t, j) ∈ dom φ. (ii) [Uniform global pre-attractivity] For each ε, r > 0, there exists T > 0 such that for any solution φ to (2) with |φ(0, 0)| A ≤ r, (t, j) ∈ dom φ and t + j ≥ T imply |φ(t, j)| A ≤ ε.
We say that A is uniformly globally asymptotically stable (UGAS) when, in addition, the maximal solutions to (2) are complete.

B. Lyapunov conditions

As mentioned above, we resort to a locally Lipschitz Lyapunov function R to prove that a given closed set A is UG(p)AS for system [START_REF] Aström | Comparison of periodic and event based sampling for first-order stochastic systems[END_REF]. This function R is typically composed of a known Lyapunov function for the closed-loop system when ignoring the sampling and extra terms which involve the variables induced by the sampling, i.e. the error e and the potential additional variable η. Explicit constructions of R are presented in Section V. We use the following result to conclude stability of A which states that R is required: (i) to be positive definite and radially unbounded with respect to A; (ii) to decrease on flows as long as F (q) belongs to the tangent cone of C at q ∈ C (denoted T C (q)) and as q / ∈ A; (iii) not to increase at jumps. The item (ii) is motivated by the fact that, when F (q) does not belong to T C (q) (which can only happen at the boundary of C), a solution which would reach this point cannot keep flowing as it would leave the set C and a jump will immediately occur or the solution will stop to exist. Hence, it is not necessary to require R to decrease at such points. The stability of A is then deduced by assuming that there exists a minimum amount of time between two jumps. This last condition is sufficient but not necessary to obtain the desired stability result, nevertheless it is fundamental when dealing with event-triggered control as the hardware always has a certain latency which prevents the occurrence of arbitrarily close in time transmissions. The theorem below formalizes these ideas.

Theorem 1: Consider system (2) and let A be a nonempty closed subset of R nq . Suppose that there exists R :

C ∪ D ∪ G(D) → R ≥0 which is locally Lipschitz on an open set containing C, such that the following conditions hold. (i) There exist α R , α R ∈ K ∞ such that for any q ∈ C ∪ D ∪ G(D) α R (|q| A ) ≤ R(q) ≤ α R (|q| A ). (10) 
(ii) There exists a continuous positive definite function α R :

R ≥0 → R ≥0 such that R • (q; F (q)) ≤ -α R (R(q)) for all q ∈ C such that F (q) ∈ T C (q). ( 11 
) (iii) For all q ∈ D R(G(q)) ≤ R(q). (12) 
(iv) Solutions to (2) have a uniform semiglobal dwell-time outside A. Then the set A is UGpAS. When, in addition A is compact, G(D) ⊂ C ∪ D and F (q) ∈ T C (q) for any q ∈ C\D, the set A is UGAS.

Compared to Proposition 3.27 in [START_REF] Goebel | Invariance principles for switching systems via hybrid systems techniques[END_REF], the Lyapunov function is not required to be continuously differentiable on an open set containing C but only locally Lipschitz on this set. We will see in Section V that the analysis of event-triggered control systems often leads to such Lyapunov functions. Moreover, R is not required to strictly decrease on the whole set C\A (see item (ii) of Theorem 1), but only on a subset of C\A where F (q) belongs to T C (q). This condition appears to be crucial in the analyses carried out in Section V. Finally, no condition is imposed on the persistency of flows in the attractor A.

In all the strategies investigated in this paper (except the one in Section V-E), the attractor is compact. In this case, the facts that A is UG(p)AS and that system (2) is well-posed (see Chapter 6 in [START_REF] Goebel | Hybrid dynamical systems[END_REF]) ensure that this stability property is robust to small uncertainties on the measurements, the plant dynamics, and the jump instants, see for more detail Theorem 7.21 in [START_REF] Goebel | Hybrid dynamical systems[END_REF].

It has to be noted that the only region of the state space where the existence of a uniform semiglobal dwell-time may not be guaranteed is in the attractor A. While it may be difficult to ensure that all solutions to (2) which lie in A have a uniform semiglobal dwell-time, A is typically a subset of C as it is the case for all the event-triggering schemes studied in this paper (except in Section V-D where the solutions to the corresponding hybrid system have a uniform semiglobal dwelltime on the whole state space). In that way, for a given initial condition in A, there always exists a solution starting from this point which never jumps. This means that in practice, if a solution to system (2) reaches A, we can turn off the triggering mechanism. Further insight about the existence of dwell-time outside the set A is given in the following subsection.

C. Existence of uniform semiglobal dwell-times

The following proposition lists a set of requirements for the existence of uniform semiglobal dwell times outside the attractor A. These conditions are used in Section V to verify the existence of such times.

Proposition 1: Consider system (2) and suppose the following holds.

(i) Items (i)-(iii) of Theorem 1 hold.

(ii) For any ∆ ≥ 0 there exists ψ : S(∆) → R ≥0 , where S(∆) is an open set containing R -1 ≤ (∆)\A, which is locally Lipschitz and verifies the following: (ii-a) there exists a ≥ 0 such that ψ(G(q)) ≤ a for any q ∈ S(∆) ∩ D with G(q) ∈ S(∆); (ii-b) there exists b > a such that for any q ∈ S(∆), ψ(q) < b implies q ∈ C\D; (ii-c) there exists a continuous non-decreasing function λ : R ≥0 → R ≥0 such that for almost all q ∈ S(∆), ∇ψ(q), F (q) ≤ λ(ψ(q)). Then the solutions to (2) have a uniform semiglobal dwelltime outside A. In addition, when item (i) holds with A compact and item (ii) is verified with S(∆) an open set containing R -1 ≤ (∆), the solutions to (2) have a uniform semiglobal dwell-time.

The conditions of Proposition 1 can be interpreted as follows. Item (i) simply states that all the conditions of Theorem 1 are verified except item (iv) which is established using Proposition 1. The function ψ in item (ii) of Proposition 1 is used to guarantee that there exists a uniform minimum amount of time between two successive jumps outside A. By estimating the time it takes for ψ to grow from a to b using the growth condition in item (ii-c), we are able to obtain the desired result. Note that ψ does not need to be defined on A since the purpose of Proposition 1 is to ensure the existence of uniform semiglobal dwell-time outside A.

For some systems, it may happen that the conditions of Proposition 1 are not met because of the behaviour of the solutions to (2) near the set A (as discussed later in Remark 6 for example). In this case, we can modify the triggering condition (i.e. the sets C and D) to guarantee a weaker asymptotic stability property for system (2) than the one ensured by Theorem 1. Suppose that we can prove that the solutions to (2) have a uniform semiglobal dwell-time outside A where A := R -1 ≤ (ε) for some ε > 0. We modify the flow and the jumps sets for system (2) as follows

C = C ∪ R -1 ≤ (ε), D = D ∩ R -1 ≥ (ε). (13) 
In that way, we obtain the result below. Proposition 2: Consider system (2) with the flow and jump sets defined as in [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF] with ε > 0 and suppose the following holds.

(i) Items (i)-(iii) of Theorem 1 hold with R continuously differentiable, and A compact. (ii) Solutions to (2) have a uniform semiglobal dwell-time outside A. Then the set A is UGpAS. When, in addition G(D) ⊂ C ∪ D and F (q) ∈ T C (q) for any q ∈ C\ D, the set A is UGAS. Furthermore, in this case, when item (ii) of Theorem 1 holds for all q ∈ C with F (q) ∈ T C (q), the maximal solutions converge in finite hybrid time to A, i.e. for any maximal solution φ there exists (t ⋆ , j ⋆ ) ∈ dom φ such that for all (t, j) ∈ dom φ with t ⋆ + j ⋆ ≤ t + j, φ(t, j) ∈ A. Noting that Theorem 1 ensures the UG(p)AS of A = R -1 (0), we see that Proposition 2 guarantees the same stability property for the larger set R -1 ≤ (ε) provided that we inflate the flow set and restrict the jump set as in [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF]. We emphasize that Proposition 2 still applies when R is the maximum of a finite number of continuously differentiable functions (as it is the case in Sections V-A, V-C, V-D for instance). Proposition 2 can be used to relax the conditions which are imposed in Sections V to ensure that solutions have a uniform semiglobal dwelltime outside the attractor A. We will only explicitly mention this relaxation for the event-triggering scheme in Section V-C; similar conclusions can be drawn for the other techniques for which A is compact.

V. MAIN RESULTS

In this section, we first present two new triggering rules. We then revisit and generalize the strategies in [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF], [START_REF] Miskowicz | Send-on-delta concept: An event-based data reporting strategy[END_REF], [START_REF] Otanez | Using deadbands to reduce communication in networked control systems[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Wang | On event design in event-triggered feedback systems[END_REF].

A. Using a threshold variable

We assume that the system ẋ = f (x, e) (see Section III) is input-to-state stable (ISS) with respect to the samplinginduced errors, like in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. This is equivalent to the following assumption (see Theorem 1 in [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF]).

Assumption 1: There exist a continuously differentiable Lyapunov function V : R nx → R and α

V , α V , α, γ ∈ K ∞ such that for all x ∈ R nx α V (|x|) ≤ V (x) ≤ α V (|x|), (14) 
and for all (x, e) ∈ R nx+ne

∇V (x), f (x, e) ≤ -α(V (x)) + γ(|e|). (15) 
From ( 15), we deduce that σ •α(V (x)) ≥ γ(|e|) with σ ∈ K ∞ and σ(s) < s for s > 0, implies

∇V (x), f (x, e) ≤ -(I -σ) • α(V (x)). ( 16 
)
We rewrite the condition σ • α(V (x)) ≥ γ(|e|) as

V (x) ≥ α -1 • σ -1 • γ(|e|) =: W (e). (17) 
In [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], transmissions occur when W (e) ≥ V (x) (see Section V-C). Here, the triggering condition is derived by defining a threshold on the Lyapunov function V (x) and W (e). The idea is similar to what is done in [START_REF] Wang | On event design in event-triggered feedback systems[END_REF], as we will see in Section V-E, where a threshold is applied to V (x) only. Here, we tolerate V (x) to become larger than the threshold (which is not the case in [START_REF] Wang | On event design in event-triggered feedback systems[END_REF]) which may have the effect of enlarging the interexecution time as illustrated in Section VI-A. We define the threshold variable η ∈ R ≥0 as the solution of the following differential equation on flows

η = -δ(η), ( 18 
)
where δ is any locally Lipschitz class-K function, and at jumps,

η + = W (e). (19) 
A natural choice of triggering rule is W (e) ≥ η. Nevertheless, in the case where W (e) ≤ V (x), V decreases according to ( 16) and therefore we do not need to close the loop. This suggests considering the following triggering condition instead

W (e) ≥ max{η, V (x)}. ( 20 
)
The problem is modeled as follows

ẋ = f (x, e) ė = g(x, e) η = -δ(η)    q ∈ C, x + = x e + = 0 η + = W (e)    q ∈ D, (21) 
where q = (x, e, η), and

C = q : max{V (x), η} ≥ W (e), η ≥ 0 D = q : max{V (x), η} ≤ W (e), η ≥ 0 . ( 22 
)
To guarantee the existence of a uniform semiglobal minimum interval of time between two transmissions outside the origin, the following conditions are assumed to hold like in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. Assumption 2: For any compact set S ⊂ R nx+ne , there exist

L 1 , L 2 , L 3 ∈ R ≥0 such that for all (x, e) ∈ S |f (x, e)| ≤ L 1 (|x| + |e|), α -1 V • W (e) ≤ L 2 |e|, |g(x, e)| ≤ L 3 (|x| + |e|). ( 23 
)
The following theorem ensures the stability of system [START_REF] De Persis | A Lyapunov redesign of coordination algorithms for cyberphysical systems[END_REF]. Its proof is an application of Theorem 1 with R(q) = max{V (x), W (e), η}.

Theorem 2: Consider system (21), [START_REF] Postoyan | Periodic event-triggered control for nonlinear systems[END_REF], let A = {q : (x, e, η) = 0}, and suppose Assumptions 1-2 hold with W continuously differentiable. The solutions to [START_REF] De Persis | A Lyapunov redesign of coordination algorithms for cyberphysical systems[END_REF] have a uniform semiglobal dwell-time outside A and A is UGAS.

Remark 2: In Theorem 2, W is required to be continuously differentiable. When it is not the case, we can always upper-bound it by a class-K ∞ function which is continuously differentiable on R >0 (see Lemma B.1.2. in [START_REF] Grüne | Asymptotic behavior of dynamical and control systems under pertubation and discretization[END_REF]) and define the triggering condition using this upper-bound instead of W (e). When the differentiability of W (or its upper-bound) is not guaranteed at the origin, the triggering condition can be modified as in [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF] to ensure a uniform practical asymptotic stability property for the origin of the obtained system in view of Proposition 2.

Remark 3: In [START_REF] Seuret | Stability of nonlinear systems by means of event-triggered sampling algorithms[END_REF], an event-triggering technique is proposed which combines the ideas of [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] and [START_REF] Velasco | On Lyapunov sampling for eventdriven controllers[END_REF]. It essentially consists in allowing V to grow as long as it remains below its value at the last jump multiplies by a constant λ ∈ (0, 1), which leads to a piecewise constant threshold as opposed to the continuously decreasing threshold presented above.

B. Using a clock variable

In [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], sampled-data systems with time-triggered execution are modeled as a hybrid system similar to (2) by introducing a clock variable τ . The flow and the jump sets are defined as τ being smaller or not than a given fixed bound T known as the MATI. This constant T corresponds to the time it takes for the solution of the ordinary differential equation ζ = -2Lζ -γ(ζ 2 + 1) to decrease from ρ -1 to ρ, where L and γ are some constants (see [START_REF] Donkers | Output-based event-triggered control with guaranteed L∞-gain and improved and decentralized eventtriggering[END_REF] in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF]) and ρ ∈ (0, 1) is arbitrarily small. In this subsection, we modify the strategy in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] by making the ordinary differential equation that defines ζ state-dependent. This allows us to consider a larger class of systems and to potentially enlarge the inter-execution intervals compared to [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] as the clock velocity depends on the current state of the system (see Remark 4 below). We make the following assumption.

Assumption 3: There exist locally Lipschitz functions V : R nx → R, W : R ne → R and continuous functions H :

R nx → R ≥0 , L, G : R nx+ne → R ≥0 , α V , α V , α W , α W ∈ K ∞ , ̺ ∈ K such that the following conditions holds:                α W (|e|) ≤ W (e) ≤ α W (|e|) ∀e ∈ R ne ∇W (e), g(x, e) ≤ L(x, e)W (e) + H(x) a.a. e ∈ R ne , ∀x ∈ R nx α V (|x|) ≤ V (x) ≤ α V (|x|) ∀x ∈ R nx ∇V (x), f (x, e) ≤ -̺(|x|) -̺(|e|) -H 2 (x) +G(x, e)W (e) 2 a.a. x ∈ R nx , ∀e ∈ R ne . (24) 
In [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], L and G are supposed to be constant that implies that system ẋ = f (x, e) is L 2 -gain stable from W to H. Making L and G state-dependent allows us to enlarge the studied class of systems and to eventually obtain less conservative upper bounds in the second and the fourth inequalities of Assumption 3 that will help to enlarge the inter-event intervals. Note that Assumption 3 does not necessarily imply that the system ẋ = f (x, e) is ISS with respect to e. An example of nonlinear systems which verifies Assumption 3 is given in Section VI-B. Model (2) becomes here

ẋ = f (x, e) ė = g(x, e) η = -2ηL(x, e) -η 2 -G(x, e)    q ∈ C x + = x e + = 0 η + = c    q ∈ D, (25) 
where q = (x, e, η), 0 < c < c are design parameters and η plays the role of ζ mentioned above and is called a clock variable. The sets C and D are

C = q : η ∈ [c, c] D = q : η = c . (26) 
Note that, instead of letting η to decrease from ρ -1 to ρ like in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], we consider any constants 0 < c < c. This gives more flexibility and may help generating larger interexecution intervals. The following theorem ensures the stability of system [START_REF] Prajna | Sostools: sum of squares optimization toolbox for matlab[END_REF] and the existence of uniform semiglobal dwell-times. It follows from Theorem 1 using the Lyapunov function R(q) = V (x) + ηW (e) 2 . Theorem 3: Consider system (25), ( 26) and suppose Assumption 3 holds. The solutions to [START_REF] Prajna | Sostools: sum of squares optimization toolbox for matlab[END_REF] have a uniform semiglobal dwell-time and the set A = {q : (x, e) = 0 and η ∈ [c, c]} is UGAS .

Remark 4: Suppose that L(x, e) ≤ L and G(x, e) ≤ G for any (x, e) ∈ R nx+ne and some L ≥ 0, G ≥ 1. Then, the event-triggering condition in [START_REF] Seuret | Stability of nonlinear systems by means of event-triggered sampling algorithms[END_REF] will generate longer intertransmission intervals than the corresponding time-triggered one in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] with L = L and γ 2 = G in ( 9), [START_REF] Heemels | Periodic eventtriggered control for linear systems[END_REF] in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], respectively. Indeed, transmissions are triggered in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] when the solution to ζ = -2Lζ -γ(ζ 2 + 1) with ζ(0) = ρ -1 is equal to ρ for some ρ ∈ (0, 1). By selecting c = ρ -1 and c = ρ, we deduce from the comparison principle that ζ will be equal to ρ -1 before η becomes equal to c, which results in smaller inter-transmission intervals for the time-triggering rule. [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] The system ẋ = f (x, e) is assumed to be input-to-state stable (ISS) with respect to the sampling-induced errors. The model ( 2) is here

C. Strategy in

ẋ = f (x, e) ė = g(x, e) q ∈ C, x + = x e + = 0 q ∈ D, (27) 
where q = (x, e). From ( 16), [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], we have that V (x) ≥ W (e) implies

∇V (x), f (x, e) ≤ -(I -σ) • α(V (x)), (28) 
The triggering rule in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] corresponds to W (e) ≥ V (x) and leads to the following flow and jump sets for ( 27)

C = q : W (e) ≤ V (x) , D = q : W (e) ≥ V (x) . ( 29 
)
The following result is derived by applying Theorem 1 with R(q) = max{V (x), W (e)}. The proof is omitted as it follows similar lines as the proof of Theorem 2.

Theorem 4: Consider system ( 27), [START_REF] Tallapragada | On event triggered tracking for nonlinear systems[END_REF], let A = {q : (x, e) = 0} and suppose Assumptions 1-2 hold with W is continuously differentiable 2 . The solutions to [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF] have a uniform semiglobal dwell-time outside A and A is UGAS.

When the controller is implemented using zero-order-hold devices as in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], g(x, e) = -f (x, e) in ( 27) and the third condition of Assumption 2 coincides with the first one in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF]. Theorem 1 can also be used to analyse the implementation of the controller using the model-based technique proposed in [START_REF] Lunze | A state-feedback approach to event-based control[END_REF]. In this setup, the control input applied to the plant is 2 See Remark 2.

based on an estimate of the plant state between two successive transmissions, which is generated using a copy of the plant dynamics. Assume the control law applied to the plant dynamics ẋp = f p (x p , u) is static, i.e. u = g c (x p ). In this case, ẋp = f p (x p , g c (x p )) on flows and x+ p = x p at jumps. Recalling that x = x p and e = xp -x p in this case, we obtain the model [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF] with f (x, e) = f p (x p , g c (x p )) = f p (x p , g c (x p + e)) and g(x, e) = f p (x p , g c (x p ))-f p (x p , g c (x p )) = f p (x p +e, g c (x p + e)) -f p (x p , g c (x p + e)). The conclusions of Theorem 4 then apply when f p and g c are locally Lipschitz and are equal to zero at the origin. We make this observation about the modelbased approach explicit for this event-triggering technique, but it can also be done for the other strategies studied in this paper.

Remark 5: The condition W (e) ≤ V (x) is selected to ensure that V always decreases. We could thus have defined the sets C and D for system [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF] as in [START_REF] Forni | Lazy sensors for the scheduling of measurement samples transmission in linear closed loops over networks[END_REF], [START_REF] Seuret | Stability of nonlinear systems by means of event-triggered sampling algorithms[END_REF]:

C = q : ∇V (x), f (x, e) ≤ -(I -σ) • α(V (x)) , D = q : ∇V (x), f (x, e) ≥ -(I -σ) • α(V (x)
) . The conclusions of Theorem 4 immediately apply in this case.

Remark 6: We explain how Proposition 2 can be used to relax the assumptions of Theorem 4 at the price of a weaker stability property. Instead of the first inequality in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF], suppose that for any µ > 0 and any compact S ⊂ R nx+ne , there exists L 1 ∈ R ≥0 such that for any (x, e) ∈ S, |f (x, e)| ≤ L 1 (|x| + |e|) + µ. This is the case for instance when f is equal to zero at the origin and is locally Lipschitz everywhere except at zero. We can apply Proposition 2 to conclude that the set R -1 ≤ (ε) is UGAS, where ε = α R (θµ) for any θ > 0 and α R comes from the satisfaction of item (i) of Theorem 1 for R(q) = max{V (x), W (e)}. Indeed, let µ = θ -1 α -1 R (ε) > 0, S ⊂ R nx+ne be compact and fix

L 1 ∈ R ≥0 . Let (x, e) ∈ S ∩R -1 ≥ (ε), |f (x, e)| ≤ L 1 (|x|+|e|)+θ -1 α -1 R (ε) ≤ L 1 (|x|+ |e|) + θ -1 α -1 R (R(q)) ≤ L 1 (|x| + |e|) + θ -1 α -1 R (α R (|(x, e)|)). Hence |f (x, e)| ≤ L 1 (|x| + |e|) + θ -1 |(x, e)| ≤ (L 1 + θ -1 )(|x| + |e|).
We use Proposition 1 with ψ(q) = |e| |x| when M |e| ≤ |x| and ψ(q) = M -1 otherwise for some M > 0 (which is well-defined and locally Lipschitz on an open set containing R -1 ≤ (∆)\R -1 ≤ (ε)) like in the proof of Theorem 2, to derive that the solutions to [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF] with the flow and jump sets modified as in ( 13) have a uniform semiglobal dwell-time outside R -1 ≤ (ε). We then apply Proposition 2 to obtain the desired result. It is interesting to note that the set R -1 ≤ (ε) can be rendered as small as desired by decreasing ϑ in this case (at the price of shorter minimum inter-transmission times). [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF], [START_REF] Miskowicz | Send-on-delta concept: An event-based data reporting strategy[END_REF], [START_REF] Otanez | Using deadbands to reduce communication in networked control systems[END_REF] We suppose that Assumption 1 is satisfied. The idea is to constrain the error e to remain less than a given constant. In that way, transmissions are triggered whenever the condition below is satisfied

D. Strategies in

γ(|e|) ≥ ρ ( 30 
)
where ρ > 0 is a design parameter and γ is defined in Assumption 1. We obtain the following hybrid model

ẋ = f (x, e) ė = g(x, e) q ∈ C, x + = x e + = 0 q ∈ D, (31) 
where q = (x, e) and

C = q : γ(|e|) ≤ ρ D = q : γ(|e|) ≥ ρ . ( 32 
)
The following result is an application of Theorem 1 with R(q) = max{V (x)-α -1 (2ρ), 0} + max{γ(|e|)-ρ, 0} where α comes from Assumption 1. Theorem 5: Consider system (31), [START_REF] Walsh | Asymptotic behavior of nonlinear networked control systems[END_REF] and suppose Assumption 1 holds and e → γ(|e|) is continuously differentiable. The solutions to [START_REF] Velasco | On Lyapunov sampling for eventdriven controllers[END_REF] have a uniform semiglobal dwelltime and the set A = {q : V (x) ≤ α -1 (2ρ) and γ(|e|) ≤ ρ} is UGAS. [START_REF] Wang | On event design in event-triggered feedback systems[END_REF] The main idea of [START_REF] Wang | On event design in event-triggered feedback systems[END_REF] is to construct the event-triggering condition such that a known Lyapunov function V for the closed-loop system in the absence of sampling remains below a designed threshold which decreases to the origin. In that way, the convergence of the plant state to the origin is immediately guaranteed and the function V is not forced to decrease all the time contrary to [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], which may reduce the need for control updates. We revisit this idea by introducing a variable to model the threshold.

E. Strategy in

We assume that the controller is designed to ensure Assumption 1. The threshold variable is denoted by η ∈ R ≥0 and it has the following dynamics on flows

η = -δ(η) ( 33 
)
where δ is a designed continuous and positive definite function such that δ(s) ≤ σ • α(s) for any s ≥ 0, with α is defined in Assumption 1 and σ is any class-K ∞ function such that σ(s) < s for any s > 0. The selection of δ depends on the desired performances in terms of the convergence of the Lyapunov function V . The dynamics in [START_REF] Wang | Event design in event-triggered feedback control systems[END_REF] generalizes the corresponding one in [START_REF] Wang | On event design in event-triggered feedback systems[END_REF] as the threshold is only required to asymptotically (and not necessarily exponentially) decrease to the origin. At jumps, η takes the value of V (x), i.e.

η + = V (x). (34) 
Following [START_REF] Wang | On event design in event-triggered feedback systems[END_REF], the triggering condition is designed such that V (x) is always below η (except potentially at the initial time instant) which leads to the hybrid model below

ẋ = f (x, e) ė = g(x, e) η = -δ(η)    q ∈ C, x + = x e + = 0 η + = V (x)    q ∈ D, (35) 
where q = (x, e, η) and

C = q : V (x) ≤ η, η ≥ 0 , D = q : V (x) ≥ η, η ≥ 0, ∇V (x), f (x, e) ≥ -α(V (x)) .
(36) The condition ∇V (x), f (x, e) ≥ -α(V (x)) is needed in the definition of D to avoid the Zeno behaviour. Indeed, after a jump η = V (x) but it is not necessary to jump again since V (x) will decrease faster than η in view of Assumption 1 and the way δ is designed in [START_REF] Wang | Event design in event-triggered feedback control systems[END_REF]. The theorem below is an application of Theorem 1 with R(q) = max{V (x), η}.

Theorem 6: Consider system (35), (36), let A = {q : (x, η) = 0}, and suppose Assumptions 1-2 hold. The solutions to (35) have a uniform semiglobal dwell-time outside the origin and A is UGpAS.

Remark 7: The satisfaction of Assumption 2.1-2.2 in [START_REF] Wang | On event design in event-triggered feedback systems[END_REF] implies the satisfaction3 of Assumptions 1-2 (when using zero-order-hold devices) but the opposite is not true. Hence Theorem 6 relies on weaker conditions than Theorem 3.3 in [START_REF] Wang | On event design in event-triggered feedback systems[END_REF] (when task delays are ignored); see Section VI-A for an example where the Lyapunov function V is quadratic which is not allowed by [START_REF] Wang | On event design in event-triggered feedback systems[END_REF].

Remark 8: Similar results can be obtained for the policy proposed in [START_REF] Wang | Event design in event-triggered feedback control systems[END_REF], see Section V.A in [START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF].

VI. ILLUSTRATIVE EXAMPLES

We compare the event-triggering techniques presented in Sections V-A-V-B with those in Sections V-C and V-E on two physical examples.

A. Jet engine compressor

We borrow the model from [START_REF] Krstić | Lean backstepping design for a jet engine compressor model[END_REF]:

ẋ1 = -x 2 -3 2 x 2 1 -1 2 x 3
1 , ẋ2 = u, where x 1 represents the mass flow, x 2 is the pressure rise and u is the throttle mass flow. In this model the origin has been translated to the desired equilibrium point, and the objective is to steer

(x 1 , x 2 ) to zero. The control law u = 4x 1 -4x 2 -9 2 x 2 1 -3 2 x 3
1 is designed to stabilize the origin. This controller is then implemented using zero-orderhold devices and is connected to the two sensors measuring x 1 and x 2 through a network. The objective is to stabilize the system while limiting the number of control inputs in order to reduce the usage of the communication channel (and not necessarily of the processor time) as well the actuator energy consumption. Thus, it is more convenient to work with the sampling-induced error on the control input u, i.e. e = û -u, which means that we compute all the time u and trigger transmission according to the selected event-triggering policy. The system under sampling-induced constraints is

ẋ1 = -x 2 -3 2 x 2 1 -1 2 x 3 1 , ẋ2 = u + e. (37) 
We want to compare the results given by the strategy presented in Section V-A and those obtained with [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] and [START_REF] Wang | On event design in event-triggered feedback systems[END_REF]. We first need to verify that the required conditions are satisfied. Assumption 1 holds with

4 V (x) = 1 2 x 2 1 + 1 2 (x 2 -3x 1 ) 2 , α V (s) = 0.045s 2 , α V (s) = 5.455s 2 ,
α(s) = 2s, γ(s) = 5.2591s 6 + 3.5797s4 -0.0032626s 3 + 4.6086s 2 for s ≥ 0. We have obtained 4 W (e) = 1.62 -1 e 2 with σ(s) = 0.9s for s ≥ 0 which is directly computed to ensure [START_REF] Miskowicz | Send-on-delta concept: An event-based data reporting strategy[END_REF]. Assumption 2 holds as f and α -1 • W are locally Lipschitz and are equal to zero at the origin. As a consequence, the conditions of Theorems 2, 4 and 6 are verified (as W is continuously differentiable). We can therefore apply the three corresponding event-triggering policies. It has to be noted that we cannot apply the technique in [START_REF] Wang | On event design in event-triggered feedback systems[END_REF] as the conditions ( 7) and ( 9) in [START_REF] Wang | On event design in event-triggered feedback systems[END_REF] are not satisfied.

We therefore consider the results in Section V-E. We take the same scalar field δ for the strategies of Sections V-A and V-E, namely δ(s) = σ • α(s) = 1.8s for s ≥ 0.

We consider 100 initial conditions for the x-system, which are uniformly distributed on the circle centered at the origin and of radius 10. We compare the average inter-transmission times generated by each event-triggering condition for a simulation time of 100 seconds in Table I and for the time it takes for V (x) to become less than 0.01V (x(0, 0)), which we denote T ⋆ , in Table II. We see that the strategy in Section V-A can lead to less transmissions and that playing with η(0, 0) allows to trade performance (i.e. time T * in this case) for the number of transmissions.

It has to be emphasized that the results obtained in this section depend on the considered Lyapunov function V and on the parameters of the event-triggering mechanisms. Moreover, each of the presented event-triggering techniques ensures a different asymptotic stability property. That is the reason why we cannot assess whether one method is better than another in general. Nevertheless, we have seen that the proposed technique in Section V-A exhibits great potential for real-time scheduling, since its parameters can be designed according to the available resources. For instance, functions δ in [START_REF] Nešić | A Lyapunov-based small-gain theorem for hybrid ISS systems[END_REF] with slow increasing slopes could be chosen in case of overload in the network or in the processor executing the controller for example.

B. van der Pol oscillator

We consider the forced van der Pol oscillator: ẋ1 = x 2 , ẋ2 = (1-x 2 1 )x 2 -x 1 +u, where x = (x 1 , x 2 ) ∈ R 2 is the state and u is the control input. The controller u = -x 2 -(1-x 2 1 )x 2 is designed to exponentially stabilize the origin of the system. We envision the scenario where a network is used to close the feedback loop. As in Section VI-A, we consider the error induced on the control input e = û -u, we thus obtain the system below

ẋ1 = x 2 , ẋ2 = -x 1 -x 2 + e. (38) 
We either use the event-triggering policy of Section V-B or the one5 in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. We first need to verify that the required conditions are satisfied. For the technique in Section V-B, Assumption 3 is ensured with 6 

V (x) = 1.3815x 6 1 + 1.4349x 5 1 x 2 + 3.6869x 4 1 x 2 2 + 1.928x 3 1 x 3 2 + 4.7197x 2 1 x 4 2 + 0.83432x 2 1 + 4.054x 1 x 5 2 -1.9823x 1 x 2 + 2.2712x 6 2 + 3.4733x 2 2 , α V (s) = 0.5s 2 , α V (s) = 10(s 2 + s 6 ), W (e) = |e|, α W (s) = α W (s) = s, L(x, e) = |x 2 1 -2|, H(x) = | -x 3 1 -x 2 1 x 2 + 2x 1 x 2 2 + 2x 1 + 2x 2 |, G(x, e) = 8
.001 and ̺(s) = 0.001s for s ≥ 0. In that way, the conditions of Theorem 3 are verified. We have heuristically selected c small, c = 0.001, and we take different values for c in order to study its impact on the amount of transmissions. [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] Section V-B c = 1 c = 10 c = 1000 0.0350 0.0622 0.0727 0.0847

TABLE III AVERAGE INTER-TRANSMISSION TIME FOR 50 INITIAL CONDITIONS FOR

A SIMULATION TIME OF 5S.

To verify Assumption 1, we choose not to use the same Lyapunov function as above because it would typically lead to conservative estimates of α and γ in [START_REF] Lunze | A state-feedback approach to event-based control[END_REF], which would give rise to many transmissions. Instead, we take V to be V (x) = 0.0058679x 2 1 + 0.0040791x 1 x 2 + 0.0063684x 2 2 for the strategy in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] which ensures Assumption 1 with α(s) = 0.5s, γ(s) = 0.01s 2 for s ≥ 0. The function W in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF] is different from the one used in Assumption 3: W (e) = 2.222e 2 for σ(s) = 0.9s for s ≥ 0. In that way, the conditions of Theorem 4 are verified.

The obtained average inter-transmissions times for each strategies are summarized in Table III, where 50 initial conditions for the x-system have been taken uniformly on the circle of the center the origin and of radius 10. We notice that the policy in Section V-B may allow to reduce the usage of the network by adjusting the parameter c. It has to be noted that we could not compare these results with the time-triggered setup of [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] as we were not able to show that the required conditions hold.

VII. CONCLUSION

We have investigated the event-triggered stabilization of nonlinear systems using the hybrid formalism of [START_REF] Goebel | Hybrid dynamical systems[END_REF]. This approach allows to capture in a unified manner many eventtriggering conditions available in the literature [START_REF] Kofman | Level crossing sampling in feedback stabilization under data-rate constraints[END_REF], [START_REF] Miskowicz | Send-on-delta concept: An event-based data reporting strategy[END_REF], [START_REF] Otanez | Using deadbands to reduce communication in networked control systems[END_REF], [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Wang | On event design in event-triggered feedback systems[END_REF]. Moreover, two new policies have been presented which both make use of additional variables. They have been shown to potentially reduce the amount of transmissions compared to [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Wang | On event design in event-triggered feedback systems[END_REF] on two physical examples. All the studied strategies are guaranteed to ensure the existence of a uniform minimum amount of time between any two jumps.

The envisioned setup requires the continuous evaluation of the triggering condition. In practice, the triggering mechanism is typically implemented on a digital platform, hence the transmission criterion is only periodically evaluated, leading to a periodic event-triggered control paradigm, see, e.g., [START_REF] Arzén | A simple event-based PID controller[END_REF], [START_REF] Heemels | Periodic eventtriggered control for linear systems[END_REF]. The results of this paper can be combined with those in [START_REF] Postoyan | Periodic event-triggered control for nonlinear systems[END_REF] to derive triggering strategies which take into account the hardware sampling. On the other hand, throughout the paper, we have focused on the so-called one packet transmission problem as all the states are sent together in a single packet. This generally implies the collocation of all sensors and, for multiple-input control systems, collocation of all actuators as well. The extension of this work to distributed event-triggered control would be an interesting direction to follow. Preliminary results are presented in [START_REF] Postoyan | Event-triggered and self-triggered stabilization of distributed networked control systems[END_REF]. ACKNOWLEDGMENT Romain Postoyan would like to thank Luca Zaccarian for his help on Theorem 1 and Constantin Morȃrescu for fruitful discussions.

Section V-A [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] Section V-E η(0, 0) = V (x(0, 0)) η(0, 0) = max |x|≤10 V (x) η(0, 0) = 10 4 0.5472 0.5645 0.6199 0.5030 0.4750

TABLE I AVERAGE INTER-TRANSMISSION TIME FOR A SIMULATION TIME OF 100S.

Section V-A [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] Section V-E η(0, 0) = V (x(0, 0)) η(0, 0) = max |x|≤10 V (x) η(0, 0) = 10 We need to ensure that χ is continuous at 0 in order to be able to upper-bound it by a class-K ∞ function α 2 . Let ε > 0, there exists δ ≥ 0 such that |x -y| ≤ δ implies

|V (x) -V (y)| ≤ ε by continuity of V . Let η ∈ [0, δ], χ(η) = sup |x|A≤η, x∈O V (x) = V (y) for some y ∈ O with |y| A ≤ η, as V is continuous and the set {x ∈ O : |x| A ≤ η} is compact. Because A is closed, there exists z ∈ A such that |y -z| = |y| A ≤ η ≤ δ. By continuity of V , V (y) -V (z) = V (y) -0 ≤ ε. Hence χ(η) ≤ ε for any η ∈ [0, δ]
which proves the continuity of χ at 0. As a consequence, we can always construct α 2 ∈ K ∞ which upper-bounds χ.

Proof of Lemma 4.

Let x ∈ C ∩ D with f (x) ∈ T C (x).
According to the definition of the tangent cone (see Definition 1), there exist sequences {x i } i∈Z ≥0 and {τ i } i∈Z ≥0 with x i ∈ C and τ i > 0 for any i ∈ Z ≥0 and x i → x, τ i → 0 as i → ∞, such that f (x) = lim i→∞ (x i -x)/τ i . On the other hand,

∇V (x), f (x) -∇W (x), f (x) = lim h→0 V (x+hf (x))-V (x)-W (x+hf (x))+W (x) h
(39) which simplifies to, as

V (x) = W (x) since x ∈ C ∩ D, ∇V (x), f (x) -∇W (x), f (x) = lim h→0 V (x+hf (x))-W (x+hf (x)) h . ( 40 
)
We proceed by contradiction and suppose that lim h→0

V (x+hf (x))-W (x+hf (x)) h < 0. Since τ i > 0 and τ i → 0 as i → ∞, lim h→0 V (x+hf (x))-W (x+hf (x)) h = lim i→∞ V (x+τif (x))-W (x+τif (x)) τi = lim i→∞ V (x+τif (x))-W (x+τif (x)) τi + V (xi)-W (xi) τi -V (xi)-W (xi) τi = lim i→∞ V (xi)-W (xi) τi + lim i→∞ V (x+τif (x))-V (xi) τi -lim i→∞ W (x+τif (x))-W (xi) τi (41) 
where x i , i ∈ Z ≥0 are defined above. Since V is continuously differentiable, it is locally Lipschitz. Consequently, there exists L ≥ 0 such that

lim i→∞ V (x+τif (x))-V (xi) τi ≤ lim i→∞ L |x-xi+τif (x)| τi = lim i→∞ L x-xi τi + f (x) = 0 (42) since f (x) = lim i→∞ (x i -x)/τ i . By applying the same arguments on lim i→∞ W (x+τif (x))-W (xi) τi
, we derive from (41) that

∇V (x), f (x) -∇W (x), f (x) = lim i→∞ V (xi)-W (xi) τi . (43) Since x i ∈ C for any i ∈ Z ≥0 , V (x i ) ≥ W (x i ). Hence 0 ≤ lim i→∞ V (xi)-W (xi) τi ≤ lim h→0 V (x+hf (x))-W (x+hf (x)) h (44) which contradicts lim h→0 V (x+hf (x))-W (x+hf (x)) h < 0. Hence ∇V (x), f (x) ≥ ∇W (x), f (x) in view of (40) which concludes the proof.
We need the lemma below in the proof of Theorem 1. Lemma 5: Let φ be a solution to [START_REF] Aström | Comparison of periodic and event based sampling for first-order stochastic systems[END_REF], it holds that d dt φ(t, j) ∈ {F (φ(t, j))} ∩ T C (φ(t, j)) for all j ∈ Z ≥0 and almost all t ∈ I j , where I j = {t : (t, j) ∈ dom φ}. Proof. The proof follows the same lines as the proof of the necessity of (a) in Lemma 5.26 in [START_REF] Goebel | Hybrid dynamical systems[END_REF], which we recall. Since φ is a solution to (2) and C is closed, φ(t, j) ∈ C for all j ∈ Z ≥0 and t ∈ I j . Furthermore d dt φ(t, j) exists and belongs to and F (q) ∈ T C (q), R • (q; F (q)) ≤ 0 = -α( R(q)) (as q ∈ A in this case and R is equal to zero on A). We have shown that R • (q; F (q)) ≤ -α( R(q)) for any q ∈ C with F (q) ∈ T C (q). Let q ∈ D, R(G(q)) = max{R(G(q)) -ε, 0} ≤ max{R(q) -ε, 0} in view of item (iii) of Theorem 1. Hence R(G(q)) ≤ R(q). Finally, in view of item (ii) of Proposition 2, we apply the same arguments as in the proof of Theorem 1 to conclude that

A is UGpAS. Noting that G( D) ⊂ G(D) ⊂ C ∪ D ⊂ C ∪ D,
we follow the same lines as those in the proof of Theorem 1 to ensure that A is UGAS. The last part of Proposition 2 is obtained by using the function R (instead of R), the fact that R • (q; F (q)) ≤ -α R (ε) when q ∈ C, R(q) ≥ ε and F (q) ∈ T C (q) and by following similar arguments as in the proof of Theorem 1.

Proof of Theorem 2. We consider the locally Lipschitz Lyapunov function, for all q ∈ R nq , R(q) = max{V (x), W (e), η}.

Item (i) of Theorem 1 holds with A = {0} by using ( 14), Lemma 2 and noting that η ≥ 0 on C ∪ D ∪ G(D). Let q ∈ C and F (q) ∈ T C (q). When R(q) = V (x) > max{W (e), η}, we derive from ( 16) and Lemma 1 that R

• (q; F (q)) = ∇V (x), f (x, e) ≤ -(I -σ) • α(V (x)) = -(I -σ) • α(R(q)). Similarly, when R(q) = η > max{V (x), W (e)}, R • (q; F (q)) = -δ(η) = -δ(R(q)). When R(q) = η = V (x) > W ( 
e), R • (q; F (q)) = max{ ∇V (x), f (x, e) , ∇η, -δ(η) } according to Lemma 1 which is less than or equal to -min{(I -σ) • α(R(q)), δ(R(q))}. Consider the case where R(q) = W (e) = max{η, V (x)}, i.e. q ∈ C ∩ D. We write C = C 1 ∪ C 2 where C 1 = {q : V (x) ≥ W (e)} and C 2 = {q : η ≥ W (e)}. When q ∈ C 1 \C 2 , necessarily F (q) ∈ T C1 (q) and we again apply Lemma 1 to obtain R • (q; F (q)) = max{ ∇V (x), f (x, e) , ∇W (e), g(x, e) }.

Since ∇V (x), f (x, e) ≤ -(I -σ) • α(V (q)) = -(I -σ) • α(R(q)) for any q ∈ C 1 , by applying Lemma 4, we derive that R • (q; F (q)) = ∇V (x), f (x, e) ≤ -(I -σ) • α(R(q)).

A similar conclusion holds when q ∈ C 2 \C 1 . Suppose now that q ∈ C 1 ∩ C 2 ∩ D. Since F (q) ∈ T C (q), F (q) belongs to T C1 (q) or to T C2 (q). Take F (q) ∈ T C1 (q) without loss of generality. We obtain that R • (q; F (q)) ≤ -(I -σ) • α(R(q)) by invoking the same arguments as above. Consequently, item (ii) of Theorem 2 holds with α R = min{(I -σ) • α, δ}. Let q ∈ D, R(G(q)) = max{V (x), 0, W (e)} ≤ R(q) (50) so that item (iii) of Theorem 1 holds. We now show that item (iv) of Theorem 1 is satisfied using Proposition 1. Let ∆ ≥ 0 and ∆ := α R (∆). We work on the set R -1 ≤ (∆) which is compact and strongly forward pre-invariant (see Definition 2) as items (i)-(iii) of Theorem 1 hold. The inter-jump time is the time it takes for W (e) to grow from 0 to max{V (x), η}. We look for a lower bound on this time. For any q ∈ R -1 ≤ (∆), W (e) ≤ M |e| and α -1 V •W (e) ≤ M |e| for some M > 0 as W is continuously differentiable and Assumption 2 holds. Hence, the inter-jump time is lower bounded by the time it takes for M |e| to grow from 0 to max{|x|, η}. For any q ∈ R nq \A, we define ψ(q) = |e| max{|x|,η} when |e| ≤ M -1 max{|x|, η} and ψ(q) = M -1 otherwise. We note that ψ is indeed locally Lipschitz on an open set containing S(∆) = R -1 ≤ (∆)\A. Let q ∈ S(∆) ∩ D and G(q) ∈ S(∆). It holds that G(q) = (x, 0, W (e)), hence ψ(G(q)) = 0: item (ii-a) of Proposition 1 holds with a = 0. In view of the above discussions, item (ii-b) of Proposition 1 is satisfied with b = M -1 . For almost all q ∈ S(∆), ∇|x|, f (x, e) ≤ L 1 (|x| + |e|) ≤ L 1 (max{|x|, η}+|e|) for some L 1 ≥ 0 in view of Assumption 2 and ∇η, -δ(η) ≤ L 4 η ≤ L 4 max{|x|, η} for some L 4 ≥ 0 as δ is locally Lipschitz. Thus, for almost all q ∈ S(∆), max{ ∇|x|, f (x, e) , ∇η, -δ(η) } ≤ N (max{|x|, η} + |e|) for some N ≥ 0. Consequently, for almost all q ∈ S(∆), ∇ψ(q), F (q) ≤ |g(x,e)| max{|x|,η}+N |e|(max{|x|,η}+|e|) max{|x|,η} 2 , (51) since |g(x, e)| ≤ L 3 (|x| + |e|) ≤ L 3 (max{|x|, η} + |e|) for some L 3 ≥ 0 according to Assumption 2, ∇ψ(q), F (q) ≤ L3(max{|x|,η}+|e|) max{|x|,η}+N |e|(max{|x|,η}+|e|) max{|x|,η} 2 = L3 max{|x|,η} 2 +L3|e| max{|x|,η}+N |e| max{|x|,η}+N |e| 2 max{|x|,η} 2 = L 3 +(L 3 +N )ψ(q)+N ψ(q) 2 . Hence item (ii-c) of Proposition 1 holds with λ(s) = L 3 + (L 3 + N )s + N s 2 for any s ≥ 0. By applying Proposition 1, item (iv) of Theorem 1 is verified and we derive that A is UGpAS. We note that A is compact and that G(D) ⊂ C ∪ D. Let q ∈ C\D, if q belongs to the interior of C, T C (q) = R nx+ne+1 and F (q) ∈ T C (q). Otherwise q is such that η = 0, in this case T C (q) = R nx+ne × R ≥0 and F (q) = (f (x, e), g(x, e), 0) ∈ T C (q). According to Theorem 1, A is UGAS.

Proof of Theorem 3. We consider the locally Lipschitz function, for all q ∈ R nq , R(q) = V (x) + ηW (e) 2 , (52) which satisfies item (i) of Theorem 1 with α R (s) = α V (s) + c α W (s) 2 and α R (s) = min{α V ( s 2 ), c α W ( s 2 ) 2 } for s ≥ 0 using Assumption 3 and the fact that η ∈ [c, c] on C ∪D ∪G(D). For almost all q ∈ C, ∇R(q), F (q) = ∇V (x), f (x, e) + η ∇W (e) 2 , g(x, e) + (-2ηL(x, e) -η 2 -G(x, e))W (e) 2 . From Assumption 3 and in view of ( 23)-( 24) in [START_REF] Teel | On assigning the derivative of a disturbance attenuation control Lyapunov function[END_REF], for all q ∈ C, R • (q; F (q)) ≤ -̺(|x|) -̺(|e|) -H 2 (x) + G(x, e)W (e) 2 +(-2ηL(x, e) -η 2 -G(x, e))W (e) 2 +2ηW (e) L(x, e)W (e) + H(x) = -̺(|x|) -̺(|e|) -H 2 (x) -η 2 W (e) 2 +2ηH(x)W (e).

Therefore, for all q ∈ C, R • (q; F (q)) ≤ -̺(|x|) -̺(|e|) -H 2 (x) -η 2 W (e) 2 +2ηH(x)W (e).

Using the fact that 2ηW (e)H(x) ≤ η2 W (e) + H 2 (x), we obtain R • (q; F (q)) ≤ -̺(|x|) -̺(|e|) ≤ -ρ(|(x, e)|) for some class-K function ρ. Consequently, item (ii) of Theorem 1 is satisfied with α R = ρ • α -1 R . Let q ∈ D, R(G(q)) = V (x) ≤ R(q): item (iii) of Theorem 1 is ensured. We apply Proposition 1 to show that the solutions to [START_REF] Prajna | Sostools: sum of squares optimization toolbox for matlab[END_REF], [START_REF] Seuret | Stability of nonlinear systems by means of event-triggered sampling algorithms[END_REF] have a uniform semiglobal dwell-time. Let ∆ ≥ 0 and define ψ(q) = 1 η which is well-defined on an open set containing R -1 ≤ (∆) (since η ∈ [c, c] on C ∪ D ∪ G(D)). Let q ∈ R -1 ≤ (∆) ∩ D, ψ(G(q)) = c -1 : item (ii-a) of Proposition 1 holds with a = c -1 . In view of the definition of the jump set in [START_REF] Seuret | Stability of nonlinear systems by means of event-triggered sampling algorithms[END_REF], for any q ∈ R -1 ≤ (∆), ψ(q) < c -1 implies q ∈ C\D: item (iib) of Proposition 1 holds with b = c -1 . Noting that ψ is continuously differentiable on R -1 ≤ (∆), let q ∈ R -1 ≤ (∆) ∇ψ(q), F (q) = -∇η,-2ηL(x,e)-η 2 -G(x,e) η 2 γ(|e|) -ρ = 0, i.e. q ∈ C ∩ D and assume F (q) ∈ T C (q). According to Lemma 4, 0 = ∇ρ, F (q) ≥ ∇γ(|e|), g(x, e) , hence R • 2 (e; g(x, e)) = max{0, ∇γ(|e|), g(x, e) } ≤ 0. We have proved that item (ii) of Theorem 1 is verified with α R = 1 2 α. Let q ∈ D, R(G(q)) = R 1 (x) + 0 ≤ R(q): item (iii) of Theorem 1 holds. We now prove that the solutions to [START_REF] Velasco | On Lyapunov sampling for eventdriven controllers[END_REF], [START_REF] Walsh | Asymptotic behavior of nonlinear networked control systems[END_REF] have a uniform semiglobal dwell-time. Define ψ(q) = γ(|e|) for q ∈ R nq , which is locally Lipschitz on an open set containing R -1 ≤ (∆) as desired. Let ∆ ≥ 0 and q ∈ R -1 ≤ (∆) ∩ D, ψ(G(q)) = 0: item (ii-a) of Proposition 1 holds with a = 0. Let q ∈ R -1 ≤ (∆), ψ(q) < ρ implies that q ∈ C\D: item (ii-b) of Proposition 1 is verified with b = ρ. Since the function ψ is continuously differentiable, there exists M ≥ 0 such that for almost all q ∈ R -1 ≤ (∆), ∇γ(|e|), g(x, e) ≤ M . Hence item (ii-c) of Proposition 1 is verified with λ(s) = M for s ≥ 0. We deduce that the solutions to [START_REF] Velasco | On Lyapunov sampling for eventdriven controllers[END_REF], [START_REF] Walsh | Asymptotic behavior of nonlinear networked control systems[END_REF] have a uniform semiglobal dwell-time by applying Proposition 1 (as A is compact). According to Theorem 1, A is UGpAS. Note that A is compact and G(D) ⊂ C ∪ D. Let q ∈ C\D, i.e. γ(|e|) < ρ, then F (q) ∈ T C (q) = R nx+ne . Consequently, A is UGAS in view of Theorem 1.

Proof of Theorem 6. We consider R(q) = max{η, V (x)} which is locally Lipschitz on R nq . Item (i) of Theorem 1 holds with α R (s) = max{s, α V (s)} and α R (s) = 1 2 min{s/2, α V (s/2)} for s ≥ 0. Let q ∈ C and F (q) ∈ T C (q). When η > V (x), R • (q; F (q)) = -δ(η) according to Lemma 1. Hence R • (q; F (q)) = -δ(R(q)). When η = V (x), R • (q; F (q)) = max{ ∇V (x), f (x, e) , -δ(η)} according to Lemma 1. We apply Lemma 4 with V (x) = η and W (x) = V (x) to derive that ∇V (x), f (x, e) ≤ -δ(η), therefore R • (q; F (q)) = -δ(η) = -δ(R(q)). Consequently, item (ii) of Theorem 1 is verified with α R = δ. Let q ∈ D, R(G(q)) = V (x) ≤ R(q): item (iii) of Theorem 1 holds. From the fact that δ ≤ σ • α, the next jump instant cannot occur before W (e) grows from 0 to σ • α(V (x)), which corresponds to the event-triggering condition studied in Section V-C. We know from Theorem 4 that this time is lower bounded by a uniform semiglobal constant as long we are not in à := {q : (x, e) = 0}, since Assumptions 1-2 are verified. On the other hand, if a solution lies in à with η = 0, no jump will occur as V (x) will never become equal to η. As a consequence, the solutions to (35), (36) have a uniform semiglobal dwell-time outside the origin, and hence outside A. We conclude the proof by applying Theorem 1.

  where x = (x p , x c ), F and G are assumed to be continuous and f (x, e) = f p (x p , g c (x c , x p + e xp ) + e u ), f c (x c , x p + e xp ) , g(x, e) = fp (x p , x c , x p + e xp , g c (x c , x p + e xp ) + e u )f p (x p , g c (x c , x p + e xp ) + e u ), fu (x p , x c , x p + e xp , g c (x c , x p + e xp ) + e u ) -∂gc ∂xc (x c , x p + e xp )f c (x c , x p + e xp ) with e xp = xp -x p and e u = û -u.

  We only consider the case where O is non-empty, closed and unbounded. The proof follows similar lines when O is non-empty and compact. Letψ : s → inf |x|A≥s, x∈O V (x) which is well-defined on R ≥0 .Indeed, the set {x ∈ O : |x| A ≥ s} is non-empty and closed for any s ≥ 0 (as A is a compact subset of the unbounded set O), furthermore V is non-negative and continuous. The function ψ is positive definite, non-decreasing and grows unbounded as s → ∞ in view of the assumptions on V . Furthermore, for any x ∈ O, ψ(|x| A ) ≤ V (x). The function ψ is a priori neither continuous nor strictly increasing, however we can always construct α 1 ∈ K ∞ such that α 1 (s) ≤ ψ(s) for any s ≥ 0. Let χ : s → sup

				4		
	T *	1.7563	1.9805	2.0103	1.8549	1.0572
	Number of transmissions	32.02	19.87	7.68	34.32	12.37
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A ) for any x ∈ O.

We suppose that this process occurs in a synchronized manner and we ignore the effects of the induced delays, noting that they may be analyzed by following similar lines as in[START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF].

Assumption 1 generalizes Assumption 2.1 in[START_REF] Wang | On event design in event-triggered feedback systems[END_REF]. Equation[START_REF] Forni | Lazy sensors for the scheduling of measurement samples transmission in linear closed loops over networks[END_REF] in[START_REF] Wang | On event design in event-triggered feedback systems[END_REF] corresponds to the first inequality in (23) and (7)-(9) in[START_REF] Wang | On event design in event-triggered feedback systems[END_REF] ensure the second inequality in[START_REF] Postoyan | A unifying Lyapunovbased framework for the event-triggered control of nonlinear systems[END_REF] holds; noting that ᾱ • α -1 2 (s) ≥ ās for s ≥ 0 is used in the proof of Theorem 3.3 in[START_REF] Wang | On event design in event-triggered feedback systems[END_REF] instead of (9) in[START_REF] Wang | On event design in event-triggered feedback systems[END_REF], which guarantees that the corresponding function α -1 in (15) is locally Lipschitz.

SOSTools ([START_REF] Prajna | Sostools: sum of squares optimization toolbox for matlab[END_REF]) was used to compute α, γ and W .

We do not compare the results with those given by the event-triggering technique in Section V-E, because different Lyapunov functions will be designed to verify Assumptions 1 and 3, adding to this the flexibility of the triggering condition in Section V-E in terms of the choice of the dynamics of η and its initial condition render fair comparisons difficult.

SOSTools ([START_REF] Prajna | Sostools: sum of squares optimization toolbox for matlab[END_REF]) was used to compute V , W , L, G, ̺, γ, α .

(e; g(x, e)) = 0. Consider the case where
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{F (φ(t, j))} for all j ∈ Z ≥0 and almost all t ∈ I j according to (6.1) in [START_REF] Goebel | Hybrid dynamical systems[END_REF] (note that system (2) satisfies Assumption 6.5 in [START_REF] Goebel | Hybrid dynamical systems[END_REF]). Hence for any j ∈ Z ≥0 and almost all t ∈ I j , for any sequence {t i } i∈Z>0 with t i > 0, t i → 0 as i → ∞, and t + t i ∈ I j , d dt φ(t, j) = lim i→∞ (φ(t + t i , j) -φ(t, j))/t i . By definition of the tangent cone (see Definition 1), as φ(t + t i , j) ∈ C for any i ∈ Z >0 (as t + t i ∈ I j ), lim i→∞ (φ(t + t i , j) -φ(t, j))/t i ∈ T C (φ(t, j)). Hence, we have proved that d dt φ(t, j) ∈ {F (φ(t, j))} ∩ T C (φ(t, j)) for all j ∈ Z ≥0 and almost all t ∈ I j .

Proof of Theorem 1. Let φ be a solution to [START_REF] Aström | Comparison of periodic and event based sampling for first-order stochastic systems[END_REF], (t, j) ∈ dom φ and 0 = t 0 ≤ t 1 ≤ . . . ≤ t j+1 = t satisfy dom φ ∩ ([0, t] × {0, . . . , j}) = i∈{0,...,j} [t i , t i+1 ] × {i}.

(45) For each i ∈ {0, . . . , j} and almost all s ∈ [t i , t i+1 ], φ(s, i) ∈ C and d ds φ(s, i) ∈ {F (φ(s, i))} ∩ T C (φ(s, i)) (according to Lemma 5). Hence, [START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF] implies that, for each i ∈ {0, . . . , j} and for almost all s ∈ [t i , t i+1 ],

As a consequence, since R is locally Lipschitz, it holds that (see p. 99 in [START_REF] Teel | On assigning the derivative of a disturbance attenuation control Lyapunov function[END_REF]),

In view of ( 46) and (47), for each i ∈ {0, . . . , j} and for almost all s ∈ [t i , t i+1 ],

We derive that the set A is uniformly globally stable by following the same lines as in the proof of Theorem 3.18 in [START_REF] Goebel | Hybrid dynamical systems[END_REF]. To prove uniform global pre-attractivity, we follow similar arguments as in the proof of Proposition 3.27 in [START_REF] Goebel | Hybrid dynamical systems[END_REF]. For this purpose, we show that the last condition of Proposition 3.27 in [START_REF] Goebel | Hybrid dynamical systems[END_REF] is verified. Let r > 0 and φ be a solution to [START_REF] Aström | Comparison of periodic and event based sampling for first-order stochastic systems[END_REF] with |φ(0, 0)| A ≤ r. Take (t, j) ∈ dom φ with t + j ≥ T for some T ≥ 0. If there exists t ′ + j ′ ≤ t + j such that φ(t ′ , j ′ ) ∈ A, φ(t, j) ∈ A since the set A = R -1 (0) is strongly forward pre-invariant (see Definition 2). Then the solution has reached the attractor A. If it is not the case, then t ≥ τ (r)(j -1), i.e. t τ (r) + 1 ≥ j, where τ (r) comes from Definition 3 according to item (iv) of Theorem 1. Therefore t

We can thus invoked the same arguments as for the proof of Proposition 3.27 in [START_REF] Goebel | Hybrid dynamical systems[END_REF] to conclude that A is UGpAS. When A is compact, the fact that it is UGpAS for system (2) prevents the existence of finite escape times. Hence, the conditions at the end of Theorem 1 allow us to apply Proposition 6.10 in [START_REF] Goebel | Hybrid dynamical systems[END_REF] to conclude that any maximal solution is complete.

Proof of Proposition 1. Let ∆ ≥ 0 and φ be a solution to [START_REF] Aström | Comparison of periodic and event based sampling for first-order stochastic systems[END_REF] with |φ(0, 0)| A ≤ ∆. Since items (i)-(iii) of Theorem 1 hold, R(φ(t, j)) ≤ ∆ for any (t, j) ∈ dom φ with ∆ = α R (∆). Suppose there exist 0 ≤ t 1 ≤ t 2 such that (t 1 , 0), (t 1 , 1) ∈ dom φ and (t 2 , 1), (t 2 , 2) ∈ dom φ; otherwise the solution never jumps or jumps only once and the desired result trivially holds. Suppose also that φ(t, 1) / ∈ A for all t ∈ [t 1 , t 2 ]; otherwise the solution enters in the attractor A and remains in it for all future times as this set is strongly forward pre-invariant for system (2) (see Definition 2) since it is closed and uniformly globally stable in view of the proof of Theorem 1. Hence φ(t, 1) ∈ S(∆) for all t ∈ [t 1 , t 2 ]. We also have that φ(t 1 , 0) belongs to R -1 ≤ (∆) and to D (by definition of t 1 ), however it does not belong to A as otherwise φ(t 1 , 1) ∈ A by strong forward pre-invariance of A. In other words, φ(t 1 , 0) ∈ S(∆) ∩ D. Consider the function ψ from item (ii) of Proposition 1 which is defined on an open set containing S(∆). Since φ(t 1 , 0) ∈ S(∆) ∩ D and φ(t 1 , 1) ∈ S(∆), ψ(φ(t 1 , 1)) ≤ a according to item (ii-a) of Proposition 1. By continuity of t → φ(t, 1) on [t 1 , t 2 ) and of ψ on S(∆), we deduce that the next jump instant cannot occur before ψ(φ(t, 1)

)) in view of item (ii-c) of Proposition 1 and p.99-100 in [START_REF] Teel | On assigning the derivative of a disturbance attenuation control Lyapunov function[END_REF]. Therefore, the next jump cannot occur before θ, the solution to θ = λ(θ) with θ(0) = a, becomes equal to b, in view of the standard comparison principle. We denote by τ (∆) this time which is strictly positive (note that a, b, λ may depend on ∆ and thus on ∆). Hence we have proved that t 2 -t 1 > τ (∆). We deduce that the solutions to (2) have a uniform semiglobal dwell-time outside A by induction. Assume now that A compact and that item (ii) of Proposition 1 holds with S(∆) = R -1 ≤ (∆). Let ∆ ≥ 0 and φ be a solution to [START_REF] Aström | Comparison of periodic and event based sampling for first-order stochastic systems[END_REF] with |φ(0, 0)| ≤ ∆. Since A is compact, there exists ∆ ≥ 0 such that |φ(0, 0)| A ≤ ∆. It then suffices to follow similar lines as above to conclude that the solutions to (2) have a uniform semiglobal dwell-time in this case.

Proof of Proposition 2. Let

This function is non-negative, locally Lipschitz on an open set containing C (thus continuous) and is equal to zero only on A. Moreover, R(q) tends to

We then use the left hand-side of item (i) of Theorem 1. Hence there exist

and F (q) ∈ T C (q). Consider the case where R(q) -ε > 0, i.e. q ∈ C\R -1 ≤ (ε), then T C (q) = T C (q) and thus F (q) ∈ T C (q). As a consequence, we use item (ii) of Theorem 1 (which is assumed to hold) to derive that R

If R(q)-ε < 0, then R • (q; F (q)) = 0. Consider now the case where R(q) -ε = 0 and note that T C (q) = T C (q) ∪ T R -1 ≤ (ε) . If F (q) ∈ T C (q), we deduce that R • (q; F (q)) = max{ ∇R(q), F (q) , 0} ≤ max{-α R (R(q)), 0} ≤ 0 (using Lemma 1). If F (q) ∈ T R -1 ≤ (ε) , we apply Lemma 4 with V (x) = ε and W (x) = R(q) to derive ∇R(q), F (q) ≤ ∇ε, F (q) = 0. Hence, when R(q)-ε = 0

is compact and L, G are continuous, there exists M ≥ 0 such that max{L(x, e), G(x, e)} ≤ M , thus

and item (ii-c) of Proposition 1 holds with λ(s) = 2M s + 1 + M s 2 for any s ≥ 0. Proposition 1 guarantees that the solutions to ( 25), ( 26) have a uniform semiglobal dwell-time (since A is compact). Noting that A is compact, G(D) ⊂ C ∪ D, we only need to prove that F (q) ∈ T C (q) for any q ∈ C\D to conclude the proof using Theorem 1. Let q ∈ C\D, when η ∈ (c, c) the result holds as T C (q) = R nx+ne+1 . Suppose η = c, T C (q) = R nx+ne × (-∞, 0]. Since F (q) = (f (x, e), g(x, e), -2ηL(x, e) -η 2 -G(x, e)) and L and G are non-negative, F (q) ∈ T C (q). As a consequence, A is UGAS in view of Theorem 1.

Proof of Theorem 5. We consider the following locally Lipschitz function R(q) := R 1 (x) + R 2 (e) for all q ∈ R nq , where

We note that R only becomes equal to zero on the compact set A = {(x, e) : V (x) ≤ α -1 (2ρ) and γ(|e|) ≤ ρ}, is continuous and tends to ∞ only as |q| A → ∞. Hence item (i) of Theorem 1 holds by applying Lemma 3. Let q ∈ C. When V (x) -α -1 (2ρ) > 0, it holds that, in view of ( 15) and Lemma 1,

) since on the set C we have R(q) = R 1 (x), we derive that

We note that 1 2 α(R(q)) + ρ =

). In view of Lemma 1 and above, when V (x) -α -1 (2ρ) ≤ 0, we have that R • 1 (x; f (x, e)) ≤ 0 = -1 2 α(R(q)) as q ∈ A and R is equal to zero on A . We now consider R 2 still for q ∈ C. Note that we cannot have γ