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We investigate the nonhomogeneous initial boundary value problem for the Camassa-Holm equation on an interval. We provide a local in time existence theorem and a weak strong uniqueness result. Next we establish a result on the global asymptotic stabilization problem by means of a boundary feedback law.

Introduction 1.Origins of the equation and presentation of the problems

This article presents results concerning the initial boundary value problem and the possibility of asymptotic stabilization of the Camassa-Holm equation on a compact interval by means of a stationary feedback law acting on the boundary. The Camassa-Holm equation reads as follows (with κ a real constant):

∂ t v -∂ 3 txx v + 2κ.∂ x v + 3v.∂ x v = 2∂ x v.∂ 2 xx v + v.∂ 3 xxx v for (t, x) ∈ [0, T ] × [0, 1]. (1) 
The Camassa-Holm equation describes one-dimensional surface waves at a free surface of shallow water under the influence of gravity. Here v(t, x) represents the fluid velocity at time t and position x. It is interesting to note that according to [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF], it can equally represents the water elevation.

Equation [START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF] was first introduced by Fokas and Fuchssteiner [START_REF] Fokas | Symplectic structures, their Bäcklund transformations and hereditary symmetries[END_REF] as a bi-Hamiltonian model, and was derived later as a water wave model by Camassa and Holm [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF]. It turns out that this equation was also obtained as a model for propagating waves in cylindrical elastic rods, see Dai [START_REF] Dai | Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod[END_REF]. Equation (1) shares many features with the KdV equation, see [START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF]. It is bi-Hamiltonian, completely integrable, and admits soliton solutions see [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Constantin | Inverse scattering transform for the CamassaHolm equation[END_REF][START_REF] Constantin | Stability of peakons[END_REF][START_REF] Fokas | Symplectic structures, their Bäcklund transformations and hereditary symmetries[END_REF][START_REF] Lenells | Traveling wave solutions of the Camassa-Holm equation[END_REF]. However, it can also model breaking waves, in fact in H s (T) (s > 3 2 ) the solution generally develops singularity in finite time, see [START_REF] Constantin | Global existence and blow-up for a shallow water equation[END_REF][START_REF] Constantin | Wave breaking for nonlinear nonlocal shallow water equations[END_REF][START_REF] Constantin | On the blow-up rate and the blow-up set of breaking waves for a shallow water equation[END_REF]. The Cauchy problem of (1) has been investigated in great details both on the torus and on the real line, see [START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF][START_REF] Coclite | Global weak solutions to a generalized hyperelastic-rod wave equation[END_REF][START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF][START_REF] Danchin | A few remarks on the Camassa-Holm equation[END_REF][START_REF] Danchin | A note on well-posedness for Camassa-Holm equation[END_REF][START_REF] Himonas | Wellposedness of the Cauchy problem for a shallow water equation on the circle[END_REF][START_REF] Li | Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation[END_REF][START_REF] Xin | On the weak solutions to a shallow water equation[END_REF]. On the other hand, the study of the initial boundary value problem is much less complete, the homogeneous case was treated in [START_REF] Escher | Initial boundary value problems of the Camassa-Holm equation[END_REF] and in a more general setting in [START_REF] Escher | Initial boundary value problems for nonlinear dispersive wave equations[END_REF]. Finally a special case of the inhomogeneous case is considered in [START_REF] Zhang | Cusp and smooth solitons of the Camassa-Holm equation under an inhomogeneous boundary condition[END_REF] (the boundary condition is that there is a constant C such that ∀t ≥ 0 we have v(t, x) → |x|→+∞ C).

The first part of this article will be devoted to the proofs of a local in time existence theorem and of a weak-strong uniqueness result for the initial boundary value problem of [START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF]. To explain our boundary formulation of [START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF], let us first remark that (1) is equivalent to the system:

∂ t y + v.∂ x y = -2y.∂ x v, y -κ = (1 -∂ 2 xx )v.
(

) 2 
This formulation of (1) and the vorticity formulation of the two dimensional Euler equation for incompressible perfect fluids (U is the speed and ω its vorticity) share similarities:

     ∂ t ω + (U.∇)ω = 0, div U = 0, curl U = ω. (3) 
In both [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] and [START_REF] Coclite | Global weak solutions to a generalized hyperelastic-rod wave equation[END_REF] there is a coupling between a transport equation and a stationary elliptic one. The initial boundary value problem for the two dimensional incompressible Euler equation was treated by Yudovitch in [START_REF] Yudovich | A two dimensional problem of unsteady flow of an ideal incompressible fluid across a given domain[END_REF], where he showed that the problem is well-posed in a classical sense with strong solutions if one prescribes the initial velocity or vorticity, the normal velocity on the boundary and also the vorticity of the fluid on the parts of the boundary where fluid enters.

Similarly we will study the initial boundary value problem of [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] with v prescribed on the boundary, and y prescribed at time 0 and on the parts of the boundary where fluid enters.

Remark 1. Note that (2) is even more similar to the vorticity formulation of the three dimensional incompressible Euler equation which reads:

     ∂ t ω + (U.∇)ω = (ω.∇)U div U = 0 curl U = ω (4) 
because here we have a stretching term (ω.∇)U similar to the term -2y ∂ x v in [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF]. Kazhikov has studied the local in time initial boundary value problem in three dimensions see [START_REF] Kazhikhov | Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid[END_REF]. However the Euler equation is much less understood in three dimensions. For example it is still unknown whether a singularity may appear in finite time, see [START_REF] Majda | Vorticity and incompressible flow[END_REF]. Furthermore the asymptotic stabilization problem is still open for the three dimensional incompressible Euler equation which is not the case in two dimensions thanks to the papers of Coron [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF] and Glass [START_REF] Glass | Asymptotic stabilizability by stationary feedback of the two-dimensional Euler equation: the multiconnected case[END_REF].

In the second part of the article we will investigate equation [START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF] from the perspective of control theory. For a general control system ẋ = f (x, u), x(t 0 ) = x 0 ,

(x being the state of the system and u the so called control), we can consider two classical problems among others in control theory.

1. First the exact controllability problem which asks, given two states x 0 and x 1 and a time T to find a certain function u(t) such that the solution to (5) satisfies x(T ) = x 1 .

2. If f (0, 0) = 0, the problem of asymptotic stabilization by a stationary feedback law asks to find a function u(x), such that for any state

x 0 a solution x(t) to ẋ(t) = f (x(t), u(x(t))), x(t 0 ) = x 0 is global, satisfies x(t) → t→+∞ 0 and also ∀R > 0, ∃r > 0 such that ||x 0 || ≤ r ⇒ ∀t ∈ R, ||x(t)|| ≤ R. (6) 
It may seem that if we have controllability, the asymptotic stabilization property is weaker. Indeed for any initial state x 0 , we can find T and u(t) such that the solution to (5) satisfies x(T ) = 0 in this way we stabilize 0 in finite time. However this control suffers from a lack of robustness with respect to perturbation. Indeed with any error on the model, or on the initial state, the state at time T will only be approximately 0. This can be disastrous if x = 0 is unstable for the equation ẋ = f (x, 0). This motivates the problem of asymptotic stabilization by a stationary feedback law which is clearly more robust. In fact in finite dimension, it automatically provides a Lyapunov function.

Concerning the Camassa-Holm equation, O. Glass provided in [START_REF] Glass | Controllability and asymptotic stabilization of the Camassa-Holm equation[END_REF] the first results for the controllability and stabilization. More precisely he considered:

∂ t v -∂ 3 txx v + 2κ.∂ x v + 3v.∂ x v = 2∂ x v.∂ 2 xx v + v.∂ 3 xxx v + g(t, x)1 ω (x) for (t, x) ∈ [0, T ] × T, (7) 
where the control is the function g, and ω is a nonempty open subset of the torus T. He proved that for any time T > 0 we have exact controllability in H s (T) (s > 3 2 ), and also proposed a stationary feedback law g : H 2 (T) → H -1 (ω) that stabilizes the state v = -κ in H 2 (T). We will consider those problems, but in our case the control will be the boundary values of v and y. Since [0, 1] can be seen as T \ ω the result of Glass on exact controllability by a distributed term on the torus implies a controllability result by boundary terms as soon as the initial boundary value problem makes sense, which will be the case by the end of the first part of this article (we also need enough regularity on the solution). Therefore we will only investigate the asymptotic stabilization by a stationary feedback law acting on the boundary of [START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF]. This time again we will consider the analogy with the asymptotic stabilization of the two dimensional Euler equation of incompressible fluids result by Coron [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF] for a simply connected domain and Glass [START_REF] Glass | Asymptotic stabilizability by stationary feedback of the two-dimensional Euler equation: the multiconnected case[END_REF] for a general domain. It should be remarked that in three dimension the problem of asymptotic stabilization is still open. In both cases one of the main difficulty is that the linearized system around the equilibrium (which are (y, v) = (0, -κ) for ( 2) and (ω, U ) = (0, 0) for (3)) is not stabilizable, so we will use the so called return method introduced by Coron in [START_REF] Coron | Global Asymptotic Stabilization for controllable systems without drift[END_REF]. Since the evolution equation of ( 2) is on y, it will be much easier to work if we consider y and not v to be the state of the system.

Results

We begin with a general remark that will be used many times later.

Remark 2. Changing v(t, x) in -v(t, 1x) and y(t, x) in -y(t, 1x) we change κ into -κ, therefore from now on we will suppose that κ ≤ 0 (this choice is more convenient for the stabilization part).

Let T be a positive number. In the following we take

Ω T = [0, T ] × [0, 1]. Let v l and v r be in C 0 ([0, T ], R) and y 0 ∈ L ∞ (0, 1). We set Γ l = {t ∈ [0, T ] | v l (t) > 0} and Γ r = {t ∈ [0, T ] | v r (t) < 0}.
In the following, we will always suppose that the sets

P l = {t ∈ [0, T ] | v l (t) = 0} and P r = {t ∈ [0, T ] | v r (t) = 0} (8) 
have a finite number of connected components. Finally let y l ∈ L ∞ (Γ l ) and y r ∈ L ∞ (Γ r ). The functions v l , v r , y l and y r will be the boundary values for the equation and y 0 is the initial data. Let now A be the auxiliary function which lifts the boundary values v l and v r and is defined by:

(1 -∂ 2 xx )A(t, x) = 0, ∀(t, x) ∈ Ω T , A(t, 0) = v l (t), A(t, 1) = v r (t), ∀t ∈ [0, T ]. (9) 
Setting v = u + A, we can further rewrite the system (2) as:

y(t, x) -κ = (1 -∂ 2 xx )u(t, x), dx , u(t, 0) = u(t, 1) = 0, dt a.e., (10) 
∂ t y + (u + A).∂ x y = -2y.∂ x (u + A),
y(0, .) = y 0 , y(., 0) |Γ l = y l and y(., 1) |Γr = y r .

The meaning of being a solution to (10)-(11) will be specified later but we will have u ∈ L ∞ ((0, T ); Lip([0, 1])) and y ∈ L ∞ (Ω T ). In the first part of this article, we will be interested in the initial boundary value problem on the interval for the system (10)- [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF]. We will first prove a local in time existence theorem:

Theorem 1. For T > 0, we consider v l , v r ∈ C 0 ([0, T ]) such that the sets P l and P r have only a finite number of connected components. Let y 0 ∈ L ∞ (0, 1), y l ∈ L ∞ (Γ l ) and y r ∈ L ∞ (Γ r ). There exist T > 0, and (u, y) a weak solution of the system (10)- [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF] with u ∈ L ∞ (0, T ); C 1,1 ([0, 1]) ∩ Lip [0, T ]; H 1 0 (0, 1) and y ∈ L ∞ (Ω T ). Moreover any such solution u is in fact in C 0 ([0, T ]; W 2,p (0, 1)) ∩ C 1 ([0, 1]; W 1,p 0 (0, 1)), ∀p < +∞.

Furthermore the existence time of a maximal solution is larger than min( T , T * ), with

T * = max β>0 ln(1 + β/C 0 ) 2(C 1 + (2 + sinh(1))(C 0 + |κ| + β)) (12) 
C 0 = max ||y 0 || L ∞ (0,1) , ||y l || L ∞ (Γ l ) , ||y r || L ∞ (Γ l ) , (13) 
C 1 = 1 tanh(1) .(||v r || L ∞ (0,T ) + ||v l || L ∞ (0,T ) ). ( 14 
)
In a second step, we will show a weak-strong uniqueness property:

Theorem 2. Let (u, y) ∈ L ∞ (0, T ); C 1,1 ([0, 1]) ∩ Lip [0, T ]; H 1 0 (0, 1) × L ∞ ([0, T ]; Lip([0, 1]
)) be a weak solution of [START_REF] Coron | Global Asymptotic Stabilization for controllable systems without drift[END_REF] and [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF] 

then it is unique in L ∞ (0, T ); C 1,1 ([0, 1]) × L ∞ (Ω T ).
In the second part of the paper, we will be interested in the asymptotic stabilization of the system (1) by a boundary feedback law. Let A l > 2. sinh(1), A r > A l . cosh(1) + sinh(2), M > 0 and T > 0. Our feedback law for (2) reads:

y ∈ C 0 ([0, 1]) →      v l (y) = A l .||y|| C 0 ([0,1]) -κ v r (y) = A r .||y|| C 0 ([0,1]) -κ ẏl (t) + M.y l (t) = 0 . ( 15 
)
This allows us to get the following theorem:

Theorem 3. For any y 0 ∈ C 0 ([0, 1]) there exists (y, v) ∈ C 0 (Ω T ) × C 0 ([0, T ], C 2 ([0, 1])) a weak solution of (2) and (15) satisfying ∀x ∈ [0, 1], y(0, x) = y 0 (x). ( 16 
)
Furthermore any maximal solution of (2), [START_REF] Escher | Initial boundary value problems of the Camassa-Holm equation[END_REF] 

Initial boundary value problem

We first define what we mean by a weak solution to [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF]. Our test functions will be in the space:

Adm(Ω T ) = {ψ ∈ C 1 (Ω T ) | ψ(t, x) = 0 on [0, T ] \ Γ l × {0} ∪ [0, T ] \ Γ r × {0} ∪ {T } × [0, 1]}. ( 17 
) Definition 1. When u ∈ L ∞ ((0, T ); Lip([0, 1])), a function y ∈ L ∞ (Ω T ) is a weak solution to (11) if ∀ψ ∈ Adm(Ω T ): ΩT y(∂ t ψ + (u + A)∂ x ψ -∂ x (u + A)ψ)dtdx = - 1 0 y 0 (x)ψ(0, x)dx + T 0 (ψ(t, 1)v r (t)y r (t) -ψ(t, 0)v l (t)y l (t))dt.
Remark 3. It is obvious that C 1 0 (Ω T ) ⊂ Adm(Ω T ) therefore a weak solution to [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF] is also a solution to [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF] in the distribution sense. And it is then clear that a regular weak solution is a classical solution.

Strategy

In this part we will prove Theorems 1 and 2. Let us first explain the general strategy. We want to solve [START_REF] Coron | Global Asymptotic Stabilization for controllable systems without drift[END_REF] and [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF]. Equation ( 10) is a linear elliptic equation, and with u fixed (11) is a linear transport equation in y, with boundary data. Even when the flow is regular enough (and it will be in our case) to use the method of characteristics to solve the equation, singularity will generally appear, no matter how smooth the initial and boundary datas are, because of the boundary. It is therefore useful to deal with weak solution of [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF] belonging to L ∞ (Ω T ). This is done in the appendix. Once we know how to deal with each equation separately and have appropriate linear estimates, we use a fixed point strategy. It is interesting to remark that Yudovitch dealt with the two dimensional incompressible Euler equation with nonhomogeneous boundary conditions in a similar way. However with y only essentially bounded, we cannot easily estimate the difference of two couples (u 1 , y 1 ) and (u 2 , y 2 ), therefore we will rather use a compactness argument and a Schauder fixed point instead of a Banach fixed point. The auxiliary function A may be less regular in time than u and this is why we will be able to transfer the time regularity of y on u. We will only prove a weak-strong uniqueness property, for the same reason that prevented us from using a Banach fixed point theorem. Therefore in Subsection 2.2 we will define precisely the fixed point operator F and study some of its properties. In Subsection 2.3 we will precise the domain on which we will apply Schauder's fixed point theorem, we will prove the continuity of F in Subsection 2.4 and also study the additional properties of a fixed point. Finally in Subsection 2.5 we will prove the weak-strong uniqueness property.

The operator F

The operator F is obtained as follows. Given u in L ∞ (0, T ); C 1,1 ([0, 1]) ∩Lip [0, T ]; H 1 0 (0, 1) we will define y to be the solution of [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF], and once we have y in L ∞ (Ω T ), we introduce ũ solution of

(1 -∂ 2 xx )ũ = y -κ. ( 18 
)
Then F is defined as the operator associating ũ to u. Now let us describe the auxiliary function A once and for all.

Proposition 2.1. The function A defined by (9) satisfies:

∀(t, x) ∈ Ω T A(t, x) = 1 sinh(1) .(sinh(x).v r (t) + sinh(1 -x).v l (t)) A ∈ C 0 ([0, T ]; C ∞ ([0, 1])),
and hence

||A|| L ∞ ((0,T );C 1,1 ([0,1])) ≤ cosh(1) sinh(1) .(||v r || L ∞ (0,T ) + ||v l || L ∞ (0,T ) ). As in Subsection A.1, for a function u ∈ L ∞ (0, T ); C 1,1 ([0, 1]) ∩ Lip [0, T ]; H 1 0 (0, 1)
we consider φ the flow of u + A. For (t, x) ∈ Ω T , φ(., t, x) is defined on a set [e(t, x), h(t, x)], here e(t, x) is basically the entrance time in Ω T of the characteristic curve going through (t, x).

Lemma 1. The flow φ satisfies the following properties:

1. φ is C 1 with the following partial derivatives

∂ 1 φ(s, t, x) = (u + A)(s, φ(s, t, x)), ∂ 2 φ(s, t, x) = -(u + A)(t, x). exp( s t ∂ x (u + A)(r, φ(r, t, x))dr), ∂ 3 φ(s, t, x) = exp( s t ∂ x (u + A)(r, φ(r, t, x))dr), 2. ∀j ∈ {1, 2, 3}, ||∂ j φ|| C 0 ≤ (1 + ||u + A|| C 0 (ΩT ) )e T.||∂x(u+A)|| C 0 (Ω T ) , 3. if e(t, x) > 0 then φ(e(t, x), t, x) ∈ {0, 1}, 4. if h(t, x) < T then φ(h(t, x), t, x) ∈ {0, 1}.
We introduce a partition of Ω T , which allows us to distinguish the different influence zones in Ω T .

Definition 2. Let

• P = (t, x) ∈ Ω T | ∃s ∈ [e(t, x), h(t, x)] for which (φ(s, t, x) = 0 and v l (s) = 0) or (φ(s, t, x) = 1 and v r (s) = 0) ∪ {φ(s, 0, 0) | s ≤ h(0, 0)} ∪ {φ(s, 0, 1) | s ≤ h(0, 1)}, • I = {(t, x) ∈ Ω T \ P | e(t, x) = 0}, • L = {(t, x) ∈ Ω T \ P | e(t, x) > 0 and φ(e(t, x)t, x) = 0}, • R = {(t, x) ∈ Ω T \ P | e(t, x) > 0 and φ(e(t, x)t, x) = 1}.
Remark 4. The set P is constituted of the problematic points. Indeed those points belong to the characteristics tangent to the boundary, which are precisely the singular points of e and h.

Proposition 2.2. We have the following properties.

1. The sets P , I, L and R constitute a partition of Ω T .

2. The set P is negligible and each spatial section of P is negligible for the 1d lebesgue measure.

The function

e is C 1 on L ∪ R ∪ I. 4. If (t, x) ∈ L then e(t, x) ∈ Γ l and if (t, x) ∈ R then e(t, x) ∈ Γ r .
5. All those sets are invariant by the flow φ.

6. If (t, x) ∈ L then ∀x ∈ [0, x], (t, x) ∈ P ∪ L, if (t, x) ∈ R then ∀x ∈ [x, 1], (t, x) ∈ P ∪ R and if (t, x) ∈ I and (t, x + x ′ ) ∈ I then ∀x ∈ [x, x + x ′ ], (t, x) ∈ P ∪ I.
Proof. The points 1, 4, 5, 6 are easy. The second point is true because for any t 

∈ [0, T ] the set {(t, x) | x ∈ [0, 1]} ∩ P } is injected in the set
r s 0 x 0 1 φ(s, r, 0) For u ∈ L ∞ (0, T ); C 1,1 ([0, 1]) ∩ Lip [0, T ]; H 1 0 (0, 1) , we define y ∈ L ∞ (Ω T ) by: • if (t, x) ∈ I y(t, x) = y 0 (φ(0, t, x)). exp -2 t 0 ∂ x (u + A)(s, φ(s, t, x))ds , • if (t, x) ∈ L y(t, x) = y l (e(t, x)). exp -2 t e(t,x) ∂ x (u + A)(s, φ(s, t, x))ds , • if (t, x) ∈ R y(t, x) = y r (e(t, x)). exp -2 t e(t,x) ∂ x (u + A)(s, φ(s, t, x))ds .
And we have:

1. the function y is the unique weak solution of [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF] in the sense of definition 1, thanks to Theorem 6 and Proposition A.7(which can be applied because u ∈ C 0 (Ω T ) and

∂ x u ∈ C 0 (Ω T )),
2. since y ∈ L ∞ (Ω T ) and satisfies [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF], we immediately get y ∈ W 1,∞ (0, T, H -1 (0, 1)),

3. the function y satisfies the estimates:

||y|| L ∞ (ΩT ) ≤ max(||y 0 || L ∞ , ||y l || L ∞ , ||y r || L ∞ ) exp 2T ||∂ x u|| L ∞ (ΩT ) + ||∂ x A|| L ∞ (ΩT ) , (19) 
||∂ t y|| L ∞ ((0,T ),H -1 ) ≤ 3. max ||y 0 || L ∞ (0,1) , ||y l || L ∞ (Γ l ) , ||y r || L ∞ (Γ l ) × exp 2T ||∂ x u|| L ∞ (ΩT ) + ||∂ x A|| L ∞ (ΩT ) × ||u|| L ∞ ((0,T );Lip([0,1])) + ||A|| L ∞ ((0,T );Lip([0,1])) , (20) 4 
. if (t, x) ∈ I ∪ L ∪ R and if (s, s ′ ) ∈ [e(t, x), h(t, x)] 2
, one has the following property:

y(s, φ(s, t, x)) = y(s ′ , φ(s ′ , t, x)). exp -2 s s ′ ∂ x (u + A)(r, φ(r, t, x))dr .
We can now focus on the elliptic equation ( 10).

Lemma 2. There exists a unique ũ ∈ L ∞ (0, T ), H 1 0 (0, 1) such that ∀t ∈ (0, T ), y(t, .)

-κ = (1 -∂ 2 xx )ũ(t, .) in D ′ (0, 1). Furthermore ũ ∈ L ∞ (0, T ); C 1,1 ([0, 1]) ∩ Lip (0, T ), H 1 0 (0, 1) since y ∈ L ∞ (Ω T ) ∩ Lip([0, T ]; H -1 (0, 1)
). Moreover we have the bounds

||ũ|| L ∞ ((0,T );C 1,1 ([0,1])) ≤ (1 + 2 sinh(1)).(|κ| + ||y|| L ∞ (ΩT ) ), ( 21 
) ||∂ t ũ|| L ∞ ((0,T );H 1 0 (0,1)) ≤ ||∂ t y|| L ∞ ((0,T ),H -1 (0,1)) . (22) 
Proof. In the first point, the constant comes from:

ũ(t, x) = x 0 sinh(x -x).(κ -y(t, x))dx - sinh(x) sinh(1) . 1 0 sinh(x).(κ -y(t, x))dx. ( 23 
)
The second point is classical

Finally we can define F by:

∀u ∈ L ∞ (0, T ); C 1,1 ([0, 1]) ∩ Lip [0, T ]; H 1 0 (0, 1) , F (u) = ũ ∈ L ∞ (0, T ); C 1,1 ([0, 1]) ∩ Lip [0, T ]; H 1 0 (0, 1) . ( 24 
)
We now introduce a domain for the operator F .

The domain

Let B 0 and B 1 be positive numbers, then we set:

C B0,B1,T = {u ∈ L ∞ (0, T ); C 1,1 ([0, 1]) ∩ Lip [0, T ]; H 1 0 (0, 1) | such that both ||u|| L ∞ ((0,T );C 1,1 ([0,1])) ≤ B 0 and ||u|| Lip([0,T ];H 1 0 (0,1)) ≤ B 1 }. ( 25 
)
Obviously C B0,B1,T is convex. We will endow C B0,B1,T with the norm ||.|| L ∞ ((0,T );Lip([0,1])) .

Lemma 3. There exist positive numbers B 0 , B 1 , T , such that F maps C B0,B1,T into itself.

Proof. Let us first introduce the two following constants depending only on the initial and boundary conditions

C 0 = max ||y 0 || L ∞ (0,1) , ||y l || L ∞ (Γ l ) , ||y r || L ∞ (Γr) , C 1 = cosh(1) sinh(1) .(||v r || L ∞ (0,T ) + ||v l || L ∞ (0,T ) ).
Estimates ( 19), ( 20), ( 21) and ( 22) on y and ũ now read:

||y|| L ∞ (ΩT ) ≤ C 0 . exp 2T ||∂ x u|| L ∞ (ΩT ) + C 1 , ||ũ|| L ∞ ((0,T );C 1,1 ([0,1])) ≤ (1 + 2 sinh(1)).(|κ| + ||y|| L ∞ (ΩT ) ), ||∂ t y|| L ∞ ((0,T );H -1 (0,1)) ≤ 3.C 0 . exp 2T ||∂ x u|| L ∞ (ΩT ) + C 1 . ||u|| L ∞ ((0,T );Lip([0,1])) + C 1 , ||∂ t ũ|| L ∞ ((0,T );H 1 0 (0,1)) ≤ ||∂ t y|| L ∞ ((0,T );H -1 (0,1)) .
Combining those estimates we get:

||ũ|| L ∞ ((0,T );C 1,1 ([0,1])) ≤ (1 + 2 sinh(1)). |κ| + C 0 . exp 2T ||∂ x u|| L ∞ (ΩT ) + C 1 , ||∂ t ũ|| L ∞ ((0,T );H 1 0 (0,1)) ≤ 3.C 0 . exp 2T ||∂ x u|| L ∞ (ΩT ) + C 1 . ||u|| L ∞ ((0,T );Lip([0,1])) + C 1 . Now if u ∈ C B0,B1,T we have ||ũ|| L ∞ ((0,T );C 1,1 ([0,1])) ≤ (1 + 2 sinh(1)). (|κ| + C 0 . exp (2T (B 0 + C 1 ))) , ||∂ t ũ|| L ∞ ((0,T );H 1 0 (0,1)) ≤ 3.C 0 . exp (2T (B 0 + C 1 )) . (B 0 + C 1 ) .
Finally, to obtain ũ ∈ C B0,B1,T it is sufficient that

(1 + 2 sinh(1)). (|κ| + C 0 . exp (2T (B 0 + C 1 ))) ≤ B 0 and B 0 + 3.C 0 . exp (2T (B 0 + C 1 )) . (B 0 + C 1 ) ≤ B 1 .
Once we have chosen T and B 0 , it is easy to choose B 1 to satisfy the second inequality. For the first one we just choose B 0 sufficiently large and then T close to 0 . More precisely:

B 0 > (1 + 2 sinh(1)).(|κ| + C 0 ), T ≤ ln( B0 1+2 sinh(1) -|κ|) -ln(C 0 ) 2(B 0 + C 1 )
.

It only to remains to maximize the bound of T to get the minimum existence, and with Proof. The fact that C B0,B1,T is closed in L ∞ ((0, T ); Lip([0, 1])) follows from the weak* compactness of the domain in L ∞ (0, T ); C 1,1 ([0, 1]) and in Lip [0, T ]; H 1 0 (0, 1) , and a classical use of a limit uniqueness. We now show the relative compactness of

C B0,B1,T in L ∞ ((0, T ); Lip([0, 1])). Let (u n ) be a sequence of C B0,B1,T . Since H 1 0 (0, 1) ֒→ C 1 2 ([0, 1]) we can extract by Ascoli's theorem a subsequence (u n ′ ) converging in L ∞ (Ω T ). But since we have ∀u ∈ L ∞ ((0, T ); W 2,∞ (0, 1)), ||∂ x u|| L ∞ (ΩT ) ≤ 2. ||u|| L ∞ (ΩT ) .||∂ 2 xx u|| L ∞ (ΩT ) ,
we can conclude that (u n ′ ) actually converges in L ∞ ((0, T ); Lip([0, 1])).

Before applying Schauder's fixed point theorem, it only remains to prove the continuity of the operator F .

Continuity of F and properties of the fixed points

We begin with a result about the continuity of F .

Proposition 2.4. The operator

F : C B0,B1,T → C B0,B1,T is continuous with respect to ||.|| L ∞ ((0,T );Lip([0,1])) .
Proof. Let us take a sequence (u n ) which tends to u with respect to ||.|| L ∞ ((0,T );Lip([0,1])) . We call ũn = F (u n ) and ũ = F (u). Denote by φ n the flow of u n + A and φ the flow of u + A. Thanks to Proposition A.4, we have that φ n -----→ n→+∞ φ locally in C 1 . Let us show first that ||y n (t, .)y(t, .)|| L 1 (0,1) ---→ n→0 0 dt a.e.. Let t ∈ [0, T ], having supposed that P l and P r have only a finite number of connected components (see ( 8)), we can assume, reducing t if necessary that v l and v r do not change sign on [0, t]. We will focus on the case where v l ≥ 0 and v r ≤ 0, the situation:

0 0 1 t φ(t, 0, 0) φ(t, 0, 1)
φn (t, 0, 0) φn (t, 0, 1)

The charasteristics of φ n and φ may or may not cross before time t, but we are only interested in their relative positions at time t, which here correspond to φ(t, 0, 0) ≤ φ n (t, 0, 0) ≤ φ(t, 0, 1) ≤ φ n (t, 0, 1). The other cases are proved in the same way. We first point out that since u n ∈ C B0,B1,T we have a bound for (y n ) in L ∞ (Ω T ). Now 

1 0 |y(t, x) -y n (t, x)|dx = φ(t,0,0) 0 |y(t, x) -y n (t, x)|dx + φn(t,0,0) φ(t,0,0) |y(t, x) -y n (t, x)|dx + φ(t,
|y(t, x) -y n (t, x)|dx = I 1 + I 2 + I 3 + I 4 + I 5 .
Since φ n (t, 0, 0) -----→ n→+∞ φ(t, 0, 0) and φ n (t, 0, 1) -----→ n→+∞ φ(t, 0, 1) and thanks to the uniform bound on

||y n || L ∞ (ΩT )
we see that both I 2 and I 4 tend to 0 when n goes to infinity.

For I 1 we have: )) the dominated convergence theorem would provide:

I 1 = φ(t,
I 1 = φ(t,0,0) 0 |y(t, x) -y n (t, x)|dx -----→ n→+∞ 0.
The same idea can be applied to I 3 and I 5 .

Hence for y l , y r and y 0 continuous we have ||y n (t, .)y(t, .)|| L 1 (0,1) -----→ n→+∞ 0.

But now thanks to inequality (56), we have:

||y(t, .)|| L 1 (0,1) ≤ ||y 0 || L 1 (0,1) + ||y l || L 1 ((0,t)∩Γ l ) + ||y r || L 1 ((0,t)∩Γr) × ||u + A|| L ∞ (ΩT ) .e 3t.||∂x(u+A)|| L ∞ (Ω T ) , ( 26 
)
||y n (t, .)|| L 1 (0,1) ≤ ||y 0 || L 1 (0,1) + ||y l || L 1 ((0,t)∩Γ l ) + ||y r || L 1 ((0,t)∩Γ-r) × ||u n + A|| L ∞ (ΩT ) .e 3t.||∂x(un+A)|| L ∞ (Ω T ) . (27) 
So by density of C 0 in L 

≤||y n (t 1 , .) -ỹn (t 1 , .)|| L 1 (0,1) .||u n + A|| L ∞ (ΩT ) .e 3(t-t1)||∂x(un+A)|| L ∞ (Ω T ) + ||ỹ n (t, .) -y(t, .)|| L 1 (0,1) ≤||y n (t 1 , .) -y(t 1 , .)|| L 1 (0,1) .||u n + A|| L ∞ (ΩT ) .e 3(t-t1)||∂x(un+A)|| L ∞ (Ω T ) + ||ỹ n (t, .) -y(t, .)|| L 1 (0,1) -----→ n→+∞ 0.
Therefore the convergence in L 1 (0, 1) propagates on each interval where v l and v r do not change sign, thanks to the hypothesis on P r and P l we have:

∀t ∈ [0, T ] ||y n (t, .) -y(t, .)|| L 1 (0,1) -----→ n→+∞ 0. ( 28 
)
Combining this first convergence result with the uniform bound of y n -y in L ∞ (Ω T ) and using the dominated convergence theorem in the time variable we obtain:

y n → y in L 1 (Ω T ).
In term of ũ and ũn it implies that ũn → ũ in L 1 (0, T, W 2,1 (0, 1)).

But we also have ∀n ∈ N F (u n ) ∈ C B0,B1,T , and we know (see 2.3) that C B0,B1,T is compact therefore ũn → ũ in C B0,B1,T (as the unique accumulation point of the sequence).

Now we can apply Schauder's fixed point theorem to F and we get a solution

u ∈ L ∞ (0, T ); C 1,1 ([0, 1]) ∩ Lip [0, T ]; H 1 0 (0, 1) .
The additional regularity properties of any solution u, meaning

∀p > +∞ u ∈ C 0 ([0, T ], W 2,p (0, 1)) ∩ C 1 ([0, 1], W 1,p 0 (0, 1)),
follow directly from the construction of F and from Proposition A.8. To obtain the minimum existence time announced we just have to realize that the only possible reduction of T occured in subsection 2.3. This concludes the proof of Theorem 1.

Uniqueness

To conclude the part about the initial boundary value problem, we prove a weak-strong uniqueness property.

Theorem 4. Let (y, u) and (ỹ, ũ) be two solutions of (10) and (11) for the same initial and boundary data, and such that ỹ ∈ L ∞ ((0, T ); Lip([0, 1])). Then y = ỹ and u = ũ.

Proof. Define Y = ỹy and U = ũu. Then we have:

U ∈ Lip [0, T ]; H 1 0 (0, 1) , (1 -∂ 2 xx )U (t, .) = Y (t, .) dt a.e.,
and Y ∈ L ∞ (Ω T ) is the unique weak solution of:

∂ t Y + (u + A)∂ x Y = -2.Y.∂ x (u + A) -∂ x ỹ.U -2ỹ.∂ x U,
with Y 0 = 0, Y l = 0, Y r = 0. Using Theorem 6 and formula (50) we get with b = -2.∂ x (u + A) and f = -U.∂ x ỹ -2ỹ.∂ x U :

For (t, x) ∈ P, Y (t, x) = 0, For (t, x) ∈ I, Y (t, x) = t 0 f (r, φ(r, t, x)). exp t r b(r ′ , φ(r ′ , t, x))dr ′ dr, For (t, x) ∈ L, Y (t, x) = t e(t,x) f (r, φ(r, t, x)). exp t r b(r ′ , φ(r ′ , t, x))dr ′ dr, For (t, x) ∈ R, Y (t, x) = t e(t,x) f (r, φ(r, t, x)). exp t r b(r ′ , φ(r ′ , t, x))dr ′ dr.
Now since ||U (t, .)|| L ∞ (0,1) ≤ 5.||Y (t, .)|| L ∞ (0,1) and ỹ, ∂ x ỹ bounded, we see that for some C > 0:

||f (t, .)|| L ∞ (0,1) ≤ C.||Y (t, .)|| L ∞ (0,1) dt a.e.,
and since b is bounded, we get that for some C ′ > 0:

||Y (t, .)|| ≤ C ′ . t 0 ||Y (s, .
)|| L ∞ (0,1) ds dt a.e., and we conclude using Gronwall's lemma.

Stabilization

In this part we prove Theorem 3. Here again we suppose that κ ≤ 0. We begin by reformulating (2) and we also give the corresponding statement to Theorem 3 for this new formulation. Rather than (2) we will work on:

   ∂ t y + (ǔ + Ǎ -κ).∂ x y = -2y.∂ x (ǔ + Ǎ) (1 -∂ 2 xx )ǔ = y, ǔ(t, 0) = ǔ(t, 1) = 0 (1 -∂ 2 xx ) Ǎ = 0, Ǎ(t, 0) = v l (t) + κ, Ǎ(t, 1) = v r (t) + κ . ( 29 
)
This system is equivalent to (2) with the change of unknown

v = Ǎ + ǔ -κ.
And our stationary feedback law still reads [START_REF] Escher | Initial boundary value problems of the Camassa-Holm equation[END_REF]. One can check that Theorem 3 can be reformulated in terms of those new unknowns as:

Theorem 5. Let A l > 2. sinh(1), A r > A l . cosh(1) + sinh(2), M > 0, T > 0.
For any y 0 ∈ C 0 ([0, 1]) there exists y ∈ C 0 (Ω T ) such that if we define ǔ and Ǎ by:

∀(t, x) ∈ Ω T (1 -∂ 2 xx )ǔ(t, x) = y(t, x), ǔ(t, 0) = ǔ(t, 1) = 0, ∀(t, x) ∈ Ω T (1 -∂ 2 xx ) Ǎ(t, x) = 0, Ǎ(t, 0) = A l .||y(t, .)|| C 0 ([0,1]) and Ǎ(t, 1) = A r .||y(t, .)|| C 0 ([0,1]) ,
then y is the weak solution of

∂ t y + (ǔ + Ǎ -κ).∂ x y = -2.y.∂ x (ǔ + Ǎ). ( 30 
)
This function y also satisfies:

∀t ∈ [0, T ] ∂ t y(t, 0) + M.y(t, 0) = 0, ∀x ∈ [0, 1] y(0, x) = y 0 (x).
Besides, if y is a maximal solution of the closed loop system (15),(29) then y is defined on [0, +∞) × [0, 1].

And finally if we let c = min(A l -2. sinh(1), Ar-A l . cosh(1)-sinh (2) sinh( 1)

) and τ = 1 M . ln(

2.c.||y0|| C 0 ([0,1]) M
), we have:

∀t ≥ τ ||y(t, .)|| C 0 ([0,1]) ≤ M 2c . 1 1 + M (t -τ ) . (31) 
We now prove Theorem 5.

Strategy

Let us first describe the main steps of the proof of Theorem 5. In terms of the new unknowns, the equilibrium state that we want to stabilize is y = 0, ǔ = Ǎ = 0. A first natural idea would be to look at the linearized system around the equilibrium state. Its stabilization would provide a local stabilization result on the nonlinear system. But the linearized system reads:

   ∂ t y -κ.∂ x y = 0 (1 -∂ 2 xx )ǔ = y, ǔ(t, 0) = ǔ(t, 1) = 0 (1 -∂ 2 xx ) Ǎ = 0, Ǎ(t, 0) = v l (t) + κ, Ǎ(t, 1) = v r (t) + κ . ( 32 
)
In the case κ = 0, the state y is constant therefore the system is not stabilizable.

In this situation we will apply a rough version of the return method that J.-M. Coron introduced in [START_REF] Coron | Global Asymptotic Stabilization for controllable systems without drift[END_REF]. We will try to use the control in order to put the system in a simpler dynamic where it is easier to stabilize.

When we look at the transport equation we see that the sign of ǔ + Ǎκ controls the geometry of the characteristics, and the sign of ∂ x (ǔ + Ǎ) controls the growth of y along the characteristics. Therefore we would like our feedback law to provide ǔ + Ǎ ≥ 0 (since -κ ≥ 0) and ∂ x (ǔ + Ǎ) ≥ 0.

Considering the estimates ((33),( 34)) on ǔ we can get from the elliptic equation of (29) we see that with v l (t) = A l .||y(t, .)|| C 0 ([0,1])κ, v r (t) = A r .||y(t, .)|| C 0 ([0,1])κ, Ǎ will dominate ǔ and we will have the desired signs.

For the existence of a solution we cannot adapt our proof of existence for the initial boundary value problem completely. Our feedback law makes us lose some regularity in time because Ǎ is now an unknown and it has exactly the time regularity of ||y(t, .)|| C 0 ([0,1]) . To compensate for this, we will work in the space of continuous functions for y. This is now possible because the flow will always point toward x = 1. Therefore we have to prescribe y l , and we just need to make a continuous transition at (t, x) = (0, 0) and have y l decreasing in time. This is garanteed by ∂ t y l (t) + M.y l (t) = 0. In the next part we will prove the existence part of Theorem 5. The asymptotic properties will be proved in the last part.

Existence of a solution to the closed loop system

Once again, we use a fixed point strategy on an operator S we describe now. We begin by defining the domain of the operator.

Definition 3. Let X be the space of (g,

N ) ∈ C 0 ([0, T ] × [0, 1]) × C 0 ([0, T ]) satisfying: 1. ∀(t, x) ∈ [0, T ] × [0, 1] g(0, x) = y 0 (x) g(t, 0) = y 0 (0).e -M.t , 2. ∀t ∈ [0, T ] ||g(t, .)|| C 0 ([0,1]) ≤ N (t), 3. N is nonincreasing and N (0) ≤ ||y 0 || C 0 ([0,1]) .
Proposition 3.1. The domain X is non empty, convex, bounded and closed with respect to the uniform topology.

The proof is elementary and one notices that (y 0 (x).e -Mt , ||y 0 || C 0 ([0,1]) .e -Mt ) ∈ X. Now for (y, N ) ∈ X we define ǔ and Ǎ as the solutions of:

∀(t, x) ∈ Ω T (1 -∂ 2 xx )ǔ(t, x) = y(t, x
) and ǔ(t, 0) = ǔ(t, 1) = 0,

∀(t, x) ∈ Ω T (1 -∂ 2 xx ) Ǎ(t, x) = 0, Ǎ(t, 0) = A l N (t) and Ǎ(t, 1) = A r N (t).
One has the following exact formulas:

∀(t, x) ∈ Ω T ǔ(t, x) = - x 0 sinh(x -x).y(t, x)dx, ∀(t, x) ∈ Ω T Ǎ(t, x) = N (t) sinh(1)
.(A r . sinh(x) + A l . sinh(1x)).

Therefore we have the following inequalities:

∀(t, x) ∈ [0, T ] × [0, 1] |ǔ(t, x)| ≤ 2 sinh(1)||y(t, .)|| C 0 ([0,1]) , (33) 
|∂ x ǔ(t, x)| ≤ 2 cosh(1)||y(t, .)|| C 0 ([0,1]) , |∂ 2 xx ǔ(t, x)| ≤ (1 + 2 sinh(1))||y(t, .)|| C 0 ([0,1]) , (34) 
|∂ x Ǎ(t, x)| ≥ A r -2 cosh(1)A l sinh(1) .N (t), | Ǎ(t, x)| ≥ A l .N (t). ( 35 
)
And in turn those provide:

∀(t, x) ∈ [0, T ] × [0, 1] (ǔ + Ǎ)(t, x) ≥ (A l -2. sinh(1)).||y(t, .)|| C 0 ([0,1]) , (36) 
∀(t, x) ∈ [0, T ] × [0, 1] ∂ x (ǔ + Ǎ)(t, x) ≥ A r -2. cosh(1).A l -sinh(2) sinh(1) .||y(t, .)|| C 0 ([0,1]) . ( 37 
)
Now if φ is the flow of ǔ + Ǎκ, φ is C 1 and since ǔ + Ǎκ ≥ 0 (thanks to the inequalities above), φ(., t, x) is nondecreasing. This allows us to define the entrance time and then the operator S as follows. Let e(t, x) = min{s ∈ [0, T ] | φ(s, t, x) = 0} with the convention that min

∅ = 0. Now for (t, x) ∈ [0, T ] × [0, 1], S(y, N ) = (ỹ, Ñ ) with: 1. if x ≥ φ(t, 0, 0) ỹ(t, x) = y 0 (φ(0, t, x)). exp(-2 t 0 ∂ x (ǔ + Ǎ)(s, φ(s, t, x))ds),
2. if x ≤ φ(t, 0, 0) ỹ(t, x) = y 0 (0).e -M.e(t,x) . exp(-2.

t e(t,x) ∂ x (ǔ + Ǎ)(s, φ(s, t, x))ds),

3. Ñ (t) = ||ỹ(t, .)|| C 0 ([0,1]) .
From Theorem 6 we know that ỹ is the weak solution of:

∂ t ỹ + (ǔ + Ǎ -κ)∂ x ỹ = -2ỹ∂ x (ǔ + Ǎ) ỹ(0, .) = y 0 ỹ(t, 0) = y 0 (0) e -M t . ( 38 
)
Before applying Schauder's fixed point theorem to S we prove the following identities.

Proposition 3.2.

1. The operator S maps X to X.

2. The family S(X) is uniformly bounded and equicontinuous.

3. S is continuous w.r.t. the uniform topology.

Proof.

1. It will be useful to distinguish the cases where y 0 (0) = 0 (case 1) and y 0 (0) = 0 (case 2). First remark that ỹ being continuous, Ñ is continuous. Now in case 1, we have that ∀(t, x) ∈ Ω T , x ≤ φ(t, 0, 0) ⇒ ỹ(t, x) = 0 and both the continuity on {(t, x) ∈ Ω T | x > φ(t, 0, 0)} and the continuity at the interface {(t, x) ∈ Ω T | x = φ(t, 0, 0)} are obvious. In case 2, one must first remark that ∀t ∈ [0, T ], y(t, 0) = 0, so ∀t ∈ [0, T ], 0 < ||y(t, .)|| C 0 ([0,1]) ≤ N (t). This implies that every characteristic curve points to the right and so e corresponds to Definition A.1. Therefore e is C 1 on {(t, x) ∈ Ω T | x < φ(t, 0, 0)} and continuous at the interface {(t, x) ∈ Ω T | x = φ(t, 0, 0)}, once again we see that ỹ is continuous in Ω T , and so is Ñ . Now it is straightforward from its definition that

∀(t, x) ∈ [0, T ] × [0, 1], ỹ(0, x) = y 0 (x), ỹ(t, 0) = y 0 (0).e -M.t .
It only remains to see that Ñ = ||ỹ(t, .)|| C 0 ([0,1]) is nonincreasing. Since ∂ x (ǔ + Ǎ) ≥ 0 (see (37)), we see from the definition of ỹ that |ỹ| does not increase along the characteristics, and since |ỹ(t, 0)| is also nonincreasing we can conclude.

2. Since X is already bounded and thanks to the first part of the proof, S(X) is bounded.

The equicontinuity of the family { Ñ } being implied by the one of the family {ỹ}, we will show that we have a common continuity modulus for all {ỹ}. For now let us focus only on {(t, x) ∈ Ω T | x ≤ φ(t, 0, 0)}. On this set ỹ(t, x) = 0 in case 1. In the second case, we need the following inequalities valid on Ω T and which follow from the definition of ǔ and Ǎ:

||ǔ|| C 0 (ΩT ) ≤ 2. sinh(1).||y 0 || C 0 ([0,1]) , (39) 
||∂ x ǔ|| C 0 (ΩT ) ≤ 2. cosh(1).||y 0 || C 0 ([0,1]) , (40) 
||∂ 2 xx ǔ|| C 0 (ΩT ) ≤ (1 + 2. sinh(1)).||y 0 || C 0 ([0,1]) , (41) 
|| Ǎ|| C 0 (ΩT ) = ||∂ 2 xx Ǎ|| C 0 (ΩT ) ≤ (A r + A l )||y 0 || C 0 ([0,1]) , (42) 
||∂ x Ǎ|| C 0 (ΩT ) ≤ A r + A l tanh(1) .||y 0 || C 0 ([0,1]) . (43) 
And since φ is the flow of ǔ + Ǎκ we also have:

||∂ 1 φ|| C 0 ([0,1]) ≤ -κ + (2 sinh(1) + A l + A r )||y 0 || C 0 ([0,1]) , ||∂ 2 φ|| C 0 ([0,1]) ≤ (-κ + (2 sinh(1) + A l + A r )||y 0 || C 0 ([0,1]) ). exp 2.T. cosh(1). 2 + A r + A l sinh(1) ||y 0 || C 0 ([0,1]) , ||∂ 3 φ|| C 0 ([0,1]) ≤ exp 2.T. cosh(1). 2 + A r + A l sinh(1) ||y 0 || C 0 ([0,1]) .
Now since we have ỹ(t, x) = y 0 (0).e -M.e(t,x) . exp(-2. 

∂ x (ǔ + Ǎ)(r, φ(r, t, x))dr),
we see that we only need a uniform bound on ||e|| C 1 to conclude about the equicontinuity on {(t, x) ∈ Ω T | x ≤ φ(t, 0, 0)}. We have 0 ≤ e(t, x) ≤ T , and thanks to the definition of e, to (39), (42) and ||y(t, .)|| C 0 ([0,1]) ≥ |y(t, 0)| = |y 0 (0)|.e -M.t ≥ |y 0 (0).e -M.T | we get:

|∂ t e(t, x)| ≤ (κ + (2 sinh(1) + A l + A r )||y 0 || C 0 ([0,1]) ). exp(2.T. cosh(1).(2 + Ar+A l sinh(1) )||y 0 || C 0 ([0,1]) ) (A l -2 sinh(1)
).e -M.T .|y 0 (0)| .

In the same way:

|∂ x e(t, x)| ≤ exp(2.T. cosh(1).(2 + Ar +A l sinh(1) )||y 0 || C 0 ([0,1]) ) (A l -2 sinh(1)
).e -M.T .|y 0 (0)| .

In the end, we see that both in case 1 and case 2, the family {ỹ} is uniformly Lipschitz on

{(t, x) ∈ Ω T | x ≤ φ(t, 0, 0)}. Now on {(t, x) ∈ Ω T | x ≥ φ(t, 0, 0)}, we know ỹ(t, x) = y 0 (φ(0, t, x)). exp(-2. t 0 ∂ x (ǔ + Ǎ)(r, φ(r, t, x))dr).
Clearly y 0 is continuous on [0, 1] therefore it is both bounded and uniformly continuous, the family of functions φ is uniformly Lipzschitz and the family {exp(-2.

t 0 ∂ x (ǔ + Ǎ)(r, φ(r, t, x)
)dr)} is uniformly bounded and equicontinuous. We can conclude that the family {ỹ} is also equicontinuous on {(t, x) ∈ Ω T | x ≥ φ(t, 0, 0)}. Since we have continuity on {(t, x) ∈ Ω T | x = φ(t, 0, 0)}, we can conclude that the family S(X) is uniformly bounded and equicontinuous on Ω T , S(X) is therefore relatively compact in X.

3. It remains to prove that S is continuous w.r.t. to the uniform convergence.

Let (y n ) be a sequence in X converging uniformly to y ∈ X. We only have to show that ỹn converges uniformly to ỹ, since it immediatly implies that Ñn converges uniformly to Ñ . First the uniform convergence of y n and N n implies the uniform convergence of ǔn and Ǎn . Then by Gronwall's lemma, we also have φ n → φ uniformly in C 1 (Ω T ). Using Proposition A.2, we then obtain e n → e uniformly in C 0 (Ω T ). Now we decompose Ω T in three parts depending on n.

L n = {(t, x) ∈ Ω T | x ≤ min(φ n (t, 0, 0), φ(t, 0, 0))}, R n = {(t, x) ∈ Ω T | x ≥ max(φ n (t, 0, 0), φ(t, 0, 0))}, I n = Ω T \ (L n ∪ R n ).
Let us point out first that when n → +∞:

lim inf L n = {(t, x) ∈ Ω T | x ≤ φ(t, 0, 0)}, lim inf R n = {(t, x) ∈ Ω T | x ≥ φ(t, 0, 0)}, and lim sup I n = {(t, x) ∈ Ω T | x = φ(t, 0, 0)}.
• For (t, x) ∈ L n if y 0 (0) = 0 then y n and ỹ are equal to zero otherwise we have the formulas: ỹ(t, x) = y 0 (0).e -M.e(t,x) . exp(-2 t e(t,x)

∂ x (ǔ + Ǎ)(r, φ(r, t, x))dr), ỹn (t, x) = y 0 (0).e -M.en(t,x) . exp(-2 t en(t,x) ∂ x (ǔ n + Ǎn )(r, φ n (r, t, x))dr),
and the uniform convergence of ỹn follows from the uniform boundedness and convergence of ∂ x ǔn , ∂ x Ǎn , e n and φ n .

• For (t, x) ∈ R n the proof is similar.

• It remains only to prove the convergence in I n . But the width of I n tends to zero, and the family {ỹ n } is equicontinuous. Therefore the uniform convergence of ỹn in I n follows from those in L n and R n .

Now we can apply Schauder's fixed point theorem to S and get (y, N ) fixed point of S. It remains to show that it satisfies all of the properties of Theorem 5 except (31) which will be proven in the next subsection. First we have y(t, 0) = ỹ(t, 0) = y 0 (0).e -M.t and it implies ∂ t y(t, 0) = -M.y(t, 0). But also

N (t) = Ñ (t) = ||ỹ(t, .)|| C 0 ([0,1]) = ||y(t, .)|| C 0 ([0,1]) , therefore ||y(t, .)|| C 0 ([0,1]
) is nonincreasing and, thanks to Theorem 6, y = ỹ is a weak solution of

   (1 -∂ 2 xx )ǔ = y, ǔ(t, 0) = ǔ(t, 1) = 0 (1 -∂ 2 xx ) Ǎ = 0, Ǎ(t, 0) = A l .||y(t, .)|| C 0 ([0,1]) , Ǎ(t, 1) = A r .||y(t, .)|| C 0 ([0,1]) ∂ t y + (ǔ + Ǎ -κ).∂ x y = -2y.∂ x (ǔ + Ǎ) . ( 44 
)
Remark 5.

• Since (ǔ + Ǎκ)(t, 1) = A r .||y(t, .)|| C 0 ([0,1])κ ≥ 0 we had all along Γ r = ∅.

• Since (ǔ + Ǎκ)(t, 0) = A l .||y(t, .)|| C 0 ([0,1])κ, we see that a priori, Γ l depends on y. But in fact if y 0 (0) = 0 then ∀t, y(t, 0) = 0 and Γ l = R+. And if y 0 (0) = 0 then ∀t, y l (t) = y(t, 0) = 0 and it makes no difference in the weak formulation(53) if we enlarge Γ l to R+. Therefore the space of test functions is always:

Adm(Ω T ) = {φ ∈ C 1 (Ω T ) | ∀x ∈ [0, 1] φ(T, x) = 0, ∀t ∈ [0, T ] φ(t, 1) = 0}.
• It must be noted that while we required T < ∞, we did not need T to be small.

Stabilization and global existence

To finish the proof of Theorem 5 we have to prove the global existence of a maximal solution and estimate (31).

Proof. First we rewrite (36),(37) as:

∀(t, x) ∈ Ω T (ǔ + Ǎ)(t, x) ≥ c||y(t, .)|| C 0 ([0,1]) , ∂ x (ǔ + Ǎ)(t, x)) ≥ c||y(t, .)|| C 0 ([0,1]) .
But y is the solution of the transport equation (30) and it satisfies: y(t, x) = y(s, φ(s, t, x)). exp(-2 t s ∂ x (ǔ + Ǎ)(r, φ(r, t, x))dr).

Combining those facts, we get for t ≥ s:

|y(t, x)| ≤ |y(s, φ(s, t, x))|. exp(-2 t s c.||y(r, .)|| C 0 ([0,1]) dr).
This implies that |y| decreases along the characteristics (strictly for the times where y(t, .) ≡ 0). But we have also imposed y(t, 0) = y(s, 0).e -M(t-s) , therefore |y| also decreases along x = 0. This already shows, thanks to the existence theorem that a maximal solution of the closed loop system is global. To get a more precise statement, we consider all the characteristics between time t and s and we obtain:

for 0 ≤ s ≤ t ||y(t, .)|| C 0 ([0,1]) ≤ ||y(s, .)|| C 0 ([0,1]) . max r∈[s,t]
e -M(r-s) . exp(-2c And conclude with a classical comparison principle for ODES.

Remark 6.

• For κ = 0 the result is easily improved. Indeed if t ≥ τ -2 sinh(1)+A l +Ar κ.c we have -κ + ǔ + Ǎ ≥ -κ 2 . And therefore t ≥ τ -2 sinh(1)+A l +Ar κ.c

-2 κ ⇒ ||y(t, .)|| C 0 ([0,1]) ≤ |y 0 (0)|.e -M(t+ 2 κ )
• In particular if y 0 (0) = 0 we see that we stabilize the null state in finite time.

• Of course similar results hold for κ ≥ 0 thanks to Remark 2.

Proposition A.2. Let (t, x) ∈ Ω T \ P , (a n ) ∈ C 0 (Ω T ) ∩ L ∞ ((0, T ); Lip([0, 1])) a sequence such that ||a n -a|| C 0 (ΩT ) → 0, ||a n || L ∞ (0,1;Lip([0,1])) is bounded and (t n ; x n ) ∈ Ω T such that (t n , x n ) → (t, x)
. Then e n (t n , x n ) → e(t, x).

Proof. Once again we will use a Lipschitzian extension operator Π and we set ãn = Π(a n ) and ã = Π(a). Now let φn and φ be their respective flows. Using Gronwall's lemma we have:

|( φn -φ)(s, t, x)| ≤ T.||ã n -ã|| C 0 (ΩT ) .e T.||ã|| L ∞ ((0,T );Lip([0,1])) . (47) 
But we can see that:

e n (t n , x n ) = min{s ∈ [0, t n ] | ∀r ∈ [s, t n ] φn (r, t, x) ∈ [0, 1]}.
• If (t, x) ∈ I since we have excluded the characteristics coming from (0, 0) and (0, 1) we have that inf

s∈[0,T ] (d(φ(s, t, x), [0, t] × {0} ∪ [0, t] × {1})) > 0.
So we can conclude from (47) that for n large enough φ n (., t, x) is defined back to 0 that is e n (t, x) = 0. From now on (t, x) ∈ L ∪ R.

• Now we can take s strictly lower and close enough to e(t, x), φ(s, t, x) / ∈ [0, 1], since (t, x) / ∈ P ⇒ e(t, x) ∈ Γ l ∪ Γ r . But φn (s, t n , x n ) → φ(s, t, x), therefore for n large enough φn (s, t n , x n ) / ∈ [0, 1] and s < t n and we can conclude that lim inf e n (t n , x n ) ≥ s. But s is arbitrarly close to e(t, x) and we get lim inf e n (t n , x n ) ≥ e(t, x).

• If e(t, x) = t then lim sup e n (t n , x n ) ≤ lim sup t n = t and e n (t n , x n ) → e(t, x). Otherwise since (t, x) / ∈ P then ∀s ∈]e(t, x), t[ φ(s, t, x) ∈]0, 1[. And now ∀ǫ > 0 ∃α > 0 such that ∀s ∈ [e(t, x) + ǫ, tǫ] min(φ(s, t, x), 1φ(s, t, x)) ≥ α. But for n large enough we have:

||φ n -φ|| C 0 (ΩT ) ≤ α 4 , |φ n (s, t n , x n ) -φ n (s, t, x)| ≤ α 4 ,
(the second estimate comes from the uniform bound on ||a n || L ∞ ((0,1);Lip([0,1])) ). But now, combining those two inequalities we see that for n large and for all s between e(t, x) + ǫ and tǫ we have min(φ n (s, t n , x n ), 1φ n (s, t n , x n )) ≥ α 2 , this provides lim sup e n (t n , x n ) ≤ e(t, x) + ǫ, and since ǫ is arbitrarly small we obtain:

lim sup e n (t n , x n ) ≤ e(t, x).

Remark 8.

• For a n = a it shows that e is continuous outside of P .

• If P = ∅, since Ω T is compact the proposition implies that e n converges uniformly toward e.

Proposition A. 

Proof. The regularity of φ is a classical result. If (t, x) ∈ I, e(t, x) = 0 and it is obvious. For (t, x) ∈ L we have φ(e(t, x), t, x) = 0 and e(t, x) ∈ Γ l therefore ∂ 1 φ(e(t, x), t, x) > 0 and the implicit function theorem let us conclude, we can proceed in the same way for R. The inclusion of the characteristics of (0, 0) and (0, 1) in P is needed here. Proof. Once again using a C 1 extension operator on a n and a we deduce the result from the classical standard case, which follows from applications of Gronwall's lemma.

A.2 Strong solutions

Here we consider the case of data a ∈ C 0 ([0, T ]; f (r, φ(r, t, x)). exp t r b(r ′ , φ(r ′ , t, x))dr ′ dr.

C 1 ([0, 1])), y l ∈ C 1 c (Γ l ), y r ∈ C 1 c (Γ r ), y 0 ∈ C 1 c (0, 1), b ∈ C 1 (Ω T ) and f ∈ C 1 c (Ω T \ P ).
Proposition A.5. We have y ∈ C 1 (Ω T ), supp(y) ⊂ Ω T \ P and y is a strong solution of (45) with the additional conditions that for all x in [0, 1] y(0, x) = y 0 (x), for all t in Γ l y(t, 0) = y l (t) and for all t in Γ r y(t, 1) = y r (t). Besides we have the estimate:

||y|| C 0 (ΩT ) ≤ max ||y 0 || C 0 (0,1) , ||y l || C 0 (Γ l ) , ||y r || C 0 (Γr) + T.||f || C 0 (ΩT ) .e T.||b|| C 0 (Ω T ) . (51) 
Proof. First, y is equal to 0 in a neighbourhood of P because we chose y 0 , y l , y r , f to be null close to P and because of(50). Outside of this neighbourhood, the regularity of y comes from the integral formulas (50) and from the regularity of y 0 , y l , y r , f , b, φ and e (proved in proposition A.3). The fact that y satisfies (45) is a straightforward calculation.

Remark 9. We have that: 

∀(t,

A.3 Weak solutions

In this section we will consider the case of data a

∈ C 0 ([0, T ]; C 1 ([0, 1])), b, f ∈ L ∞ (Ω T ), y 0 ∈ L ∞ (0, 1), y l ∈ L ∞ (Γ l ) and y r ∈ L ∞ (Γ r ).
We introduce the space of test functions: This legitimates the following definition of a weak solution.

Adm(Ω T ) = {φ ∈ C 1 (Ω T ) | ∀x ∈ [0, 1] φ(T, x) = 0 ∀t ∈ [0, T ] \ Γ l φ(t, 0) = 0 ∀t ∈ [0, T ] \ Γ r φ(t, 1) = 0} Proposition A.6. For y ∈ C 1 (Ω T ),
•

y n ∈ C 1 c (Ω T \ P ) such that ||y n -y|| L 2 (ΩT ) → 0 and ||y n || L ∞ (ΩT ) is bounded, • d n ∈ C 1 (Ω T ) such that ||d n -(b + ∂ x a)|| L 2 (ΩT ) → 0 and ||d n || L ∞ (ΩT ) is bounded.
We want φ n ∈ Adm(Ω T ) to be a strong solution of ∂ t φ n + a.∂ x φ n + d n .φ n = y n , but the boundary conditions for functions in Adm(Ω T ) makes it a backward problem. Indeed for φ n to be a test function we must have ∀x ∈ [0, 1], φ n (T, x) = 0, ∀t ∈ [0, T ] \ Γ l , φ n (t, 0) = 0 and ∀t ∈ [0, T ] \ Γ r , φ n (t, 1) = 0. As we said previously the change of variables t → Tt transforms a backward problem in a regular forward one, which we can solve thanks to section A.2. We just need to realize that the change of variables t → Tt sends the old P on the new P , the old [0, T ] \ Γ l on the new Γ l ∪ P l and the old [0, T ] \ Γ r on the new Γ l ∪ P r .

And therefore: ∀n ∈ N, 

A.5 Additional properties of y

Until now weak solutions had only the L ∞ regularity but in fact we have more. Proof. Let t ∈ [0, T ] and ǫ ≥ 0. Reducing ǫ if necessary we can suppose that a(s, 0) and a(s, 1) have a constant sign on [t, t + ǫ]. Hence we will prove the result in the case a(t, 0) ≥ 0 and a(t, 1) ≥ 0 (the other cases being similar). This implies h(t, 0) ≥ t + ǫ and e(t + ǫ, 1) ≤ t: The other geometries of the characteristics are treated in the same way. And the argument is clearly reversible in time so we also have the case ǫ ≤ 0.

0
For the second integral we have: 

I 2 = φ(t,
This time we perform the change of variables: x = φ(r, t, x). And we get:

I 2 ≤ e t(||∂xa|| L ∞ (Ω T ) +||b|| L ∞ (Ω T ) ) × t 0 φ(r,0,0) 0 |f (t, x)|dxdr. ( 64 
)
In the same way we obtain:

I 3 ≤ e t(||b|| L ∞ (Ω T ) +||∂xa|| L ∞ (Ω T ) ) ×
φ(0,t,1)

0 |y 0 (x)|dx.
And finally for I 4 we use x = φ(r, t, x) to obtain: ).e (t1-t0)(||∂xa|| L ∞ (Ω T ) +||b|| L ∞ (Ω T ) )

I 4 ≤ e t(||b|| L ∞ (Ω T ) +||∂xa|| L ∞ (Ω T ) ) t 0 φ(r,
||y(t, .)|| L 1 (0,1) ≤ (||f || L 1 ((t1,t)×(0,1)) + ||y(t 1 , .)|| L 1 (0,1) + ||y l || L 1 ((t1,t)∩Γ l ) + ||y r || L 1 ((t1,t)∩Γr) )

×||a|| L ∞ (ΩT ) ).e (t-t1)(||∂xa|| L ∞ (Ω T ) +||b|| L ∞ (Ω T ) )

And now we can substitute ||y(t 1 , .)|| L 1 (0,1) in the right side of (A.5) with the right side of (A.5), which provides (56) on the whole interval [t 0 , t 2 ]. Finally since we know that a(s, 0) and a(s, 1) change sign only a finite number of time, the previous argument allows us to extend (56) to [0, T ].

Remark 10. The previous estimate and the well posedness in L ∞ (Ω T ) of the initial boundary value problem [START_REF] Coron | On the null asymptotic stabilization of 2-D incompressible Euler equation in a simply connected domain[END_REF] for data y 0 , y l , y r and f in L ∞ show that the same problem is well posed in C([0, T ]; L 1 (0, 1)) with data in L 1 . And then since the equation is linear and because we have both the well-posedness in L ∞ (Ω T ) with essentially bounded data, and also the well-posedness in C 0 ([0, T ]; L 1 (0, 1)) with summable data we can interpolate the two results and get well posedness in C 0 ([0, T ]; L p (0, 1)) with data in L p .

B0

  1+2 sinh[START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF] = |κ|+C 0 +β we get the result announced.Let us now prove the compactness of the domain. Proposition 2.3. C B0,B1,T is compact with respect to the norm ||.|| L ∞ ((0,T );Lip([0,1])) .

  , .)|| C 0 ([0,1]) dα) . Now we define g(r) = e -M(r-s) . exp(-2c t r ||y(α, .)|| C 0 ([0,1]) dα), then g ′ (r) = (2c||y(r, .)|| C 0 ([0,1]) -M )g(r) and we know that as long as the quantity ||y(r, .)|| C 0 ([0,1]) is not equal to zero, it strictly decreases. So if||y 0 || C 0 ([0,1]) > M2c , for t small enough ||y(t, .)|| C 0 ([0,1]) ≥ M 2c and we have:||y(t, .)|| C 0 ([0,1]) ≤ ||y 0 || C 0 ([0,1]) .e -M.twhich implies ||y(τ, .)|| C 0 ([0,1]) ≤ M 2c . This provides for τ ≤ s ≤ t, the inequality (which was clear when||y 0 || C 0 ([0,1]) ≤ M 2c ) ||y(t, .)|| C 0 ([0,1]) ≤ ||y(s, .)|| C 0 ([0,1]) . exp(-2c t s ||y(r, .)|| C 0 ([0,1]) dr).

Proposition A. 4 .

 4 Let (a n ) be a sequence of C 0 ([0, T ]; C 1 ([0, 1])) and a ∈ C 0 ([0, T ]; C 1 ([0, 1])) such that ||a n -a|| L ∞ ((0,T );Lip([0,1])) -----→n→+∞ 0. If we call φ n the flow of a n and φ the flow of a then φ n -----→ n→+∞ φ locally in C 1 .

  ΩT y.(yn + φ n (b + ∂ x ad n ))dxdt = 0.Now thanks to the hypothesis on y n and d n , and to (51), when n → +∞ we get ΩT |y(t, x)| 2 dxdt = 0.

Lemma 4 .

 4 If a and ∂ x a are continuous and if the sets P l = {t ∈ [0, T ] | a(t, 0) = 0} and P r = {t ∈ [0, T ] | a(t, 1) = 0} have a finite number of connected components, and if b and f are in L ∞ (Ω T ) then ∀p < +∞ we have ||y|| L p (0,1) ∈ C 0 ([0, T ]).

1 , 1 0

 11 f, b, y ∈ L ∞ (Ω T ) and ∂ x a ∈ C 0 (Ω T ) we get 1 φ(t+ǫ,t,0) |y(t + ǫ, x)| p dx ----→ ǫ→0 + |y(t, x)| p dx.

  This implies that if y l were continuous, since we have a uniform bound on ||u n || L ∞ ((0,T );Lip([0,1]

	0,0)	t
	y l (e n (t, x)). exp -2	∂ x (u n + A)(r, φ n (r, t, x))dr
	0	en(t,x)
		t
		-y l (e(t, x)). exp -2	∂ x (u + A)(r, φ(r, t, x))dr dx.
		e(t,x)
	But thanks to Proposition A.2, if (t, x) / ∈ P (defined by φ) we have e n (t, x) -----→

n→+∞ e(t, x).

  3. If we assume that ∂ x a ∈ C 0 (Ω T ) then φ is C 1 and e is C 1 on Ω T \ P with:

	∂ t e(t, x) =	a(t, x). exp( a(e(t, x), φ(e(t, x), t, x)) s e(t,x) ∂ x a(r, φ(r, t, x))dr)	∂ x e(t, x) = -	exp( a(e(t, x), φ(e(t, x), t, x)) s e(t,x) ∂ x a(r, φ(r, t, x))dr)	.

  We define the function y in the following way:

		for (t, x) ∈ P y(t, x) = 0,	(49)
			t	
	for (t, x) ∈ I y(t, x) = y 0 (φ(0, t, x)). exp	b(r, φ(r, t, x))dr	
			0	
	t	t		
	+	f (r, φ(r, t, x)). exp	b(r ′ , φ(r ′ , t, x))dr ′ dr,	
	0	r		
			t	
	for (t, x) ∈ L y(t, x) = y l (e(t, x)). exp	b(r, φ(r, t, x))dr	
	t	t	e(t,x)	(50)
	+	f (r, φ(r, t, x)). exp	b(r ′ , φ(r ′ , t, x))dr ′ dr,	
	e(t,x)	r		
			t	
	for (t, x) ∈ R y(t, x) = y r (e(t, x)). exp	b(r, φ(r, t, x))dr	
			e(t,x)	
	t			
	+			
	e(t,x)		

  y is a strong solution of (45), if and only if it satisfies ∀φ ∈ Adm(Ω T )

ΩT y.(∂ t φ + a.∂ x φ + (b + ∂ x a)φ)dxdt = -ΩT f (t, x).φ(t, x)dtdx -1 0

φ(0, x).y(0, x)dx + T 0 (a(t, 1).φ(t, 1).y(t, 1)a(t, 0).φ(t, 0).y(t, 0))dt.

(53) 

  ∞ (Ω T ) the first integral tends to 0. Then, if x ∈ [φ(t + ǫ, t, 0), 1] we recall that thanks to (52) and after performing the change of variables x = φ(t, t + ǫ, x) one has:

		t + ǫ			
		t			
		0	φ(t + ǫ, t, 0)		1 φ(t, t + ǫ, 1)
	Now we have:				
		||y(t + ǫ, .)|| p L p (0,1) =	0	φ(t+ǫ,t,0)	|y(t + ǫ, x)| p dx +	1 φ(t+ǫ,t,0)
	1	φ(t,t+ǫ,1)	t+ǫ
	|y(t + ǫ, x)| p dx =		y(t, x). exp	b(s, φ(s, t, x))ds
	φ(t+ǫ,t,0)	0			t
	t+ǫ	t+ǫ		p	t+ǫ
	+	f (t, φ(r, t, x)). exp		b(r ′ , φ(r ′ , t, x))dr ′ dr	× exp	∂ x a(s, φ(s, t, x))ds dx. (55)
	t	r				t
	And finally since φ(t, t + ǫ, 1) → ǫ→0 +			

|y(t + ǫ, x)| p dx since φ(t + ǫ, t, 0) ---→ ǫ→0 0 and y ∈ L

  Combining the inequalities on I 1 , I 2 , I 3 and I 4 we get (56). However we supposed that a(s, 0) and a(s, 1) did not change signs between on [0, T ]. Therefore if either a(s, 0) or a(s, 1) change sign at time t 1 we only have the desired estimates separately on [t 0 , t 1 ] and on [t 1 , t 2 ] where on each interval, a(s, 0) and a(s, 1) do not change sign. More precisely if t ∈ [t 1 , t 2 ] we have: ||y(t 1 , .)|| L 1 (0,1) ≤ (||f || L 1 ((t0,t1)×(0,1)) + ||y(t 0 , .)|| L 1 (0,1) + ||y l || L 1 ((t0,t1)∩Γ l ) + ||y r || L 1 ((t0,t1)∩Γr) ) ×||a|| L ∞ (ΩT )

	t,1)
	|f (t, x)|dxdr.
	φ(r,0,0)

A Initial boundary value problem for a linear transport equation

In this section we will consider the initial boundary value problem for the following linear transport equation:

We will look at strong and weak solutions of (45) on Ω T = [0, T ]×[0, 1]. It should be noted that the backward problem is transformed in a standard one by the change of variables: t → Tt.

A.1 Properties of the flow

Let a ∈ C 0 (Ω T ) be uniformly Lipschitz in the second variable with constant L = ||a|| L ∞ ((0,T ),Lip([0,1])) . Since we want to use the method of characteristics to solve (45) we need to study the flow of a.

Definition 4. For (t, x) ∈ Ω T , let φ(., t, x) be the C 1 maximal solution to :

which is defined on a certain set [e(t, x), h(t, x)] (which is closed because [0, 1] is compact) and with possibly e(t, x) and/or h(t, x) = t.

Remark 7. Obviously e(t, x) > 0 ⇒ φ(e(t, x), t, x) ∈ {0, 1}.

Now we take into account the influence of the boundaries by introducing the sets:

Proposition A.1. The function φ is uniformly Lipschitz on its domain.

Proof. This is easily deduced from the standard case by the use of a Lipschitzian extension of a.

We can now study the regularity of e. Definition 5. For a ∈ L ∞ (0, T, Lip(0, 1)), b, f ∈ L 1 (Ω T ) , y 0 ∈ L 1 (0, 1), y l ∈ L 1 (Γ l ) and y r ∈ L 1 (Γ r ), we say that y ∈ L ∞ (Ω T ) is a weak solution of (45) if it satisfies (53).

We will also suppose that the sets

have at most a countable number of connected components. Then the function y defined by the formula (50), is a weak solution of (45) and satisfies:

Proof. If we let P t = P ∩ {(t, x) ∈ Ω T | t = t}, we can see that each points of a P t corresponds to at least one connected component of P l ∪ P r (since only one characteristic curve goes through the whole connected component) therefore, P t is at most countable and thus 1d negligible, this implies that P is 2d negligible. Now we have:

). And we can take, thanks to the hypothesis on b, f , y 0 , y l and y r :

) such that ||y 0,ny 0 || L 1 (0,1) → 0 and ||y 0,n || L ∞ (0,1) is bounded,

) such that ||y r,ny l || L 1 (Γr) → 0 and ||y r,n || L ∞ (Γr ) is bounded. We call (y n ) the sequence of strong solutions to (45). Thanks to (51) we can extract so that: ∃y ∈ L ∞ (Ω T ) such that y n converges to y for the weak-* topology of L ∞ (Ω T ). Now we take the limit in (53) and conclude that y is a weak solution to (45). We can also suppose (we just need to extract again) that we have pointwise convergence almost everywhere of:

b n → b, f n → f, y 0,n → y 0 , y l,n → y l , y r,n → y r .

Thanks to the dominated convergence theorem and to the limit uniqueness, we see that y satisfies (50) and (52) almost everywhere, and this provides (54).

A.4 Uniqueness of the weak solution

We have proved the existence of a weak solution to (45) and we have the bound (54), therefore the initial boundary value problem will be well posed once we have shown the uniqueness of the weak solution.

Proposition A.7. Under the hypothesis of the theorem 6, there is only one weak solution to (45).

Proof. By linearity we only need to prove the uniqueness for f = 0, y 0 = 0, y l = 0, y r = 0. Which is ∀y ∈ L ∞ (Ω T ):

Let y be such as above, we take:

Now we can get some additional regularity for y.

Proposition A.8. If a and ∂ x a are continuous, if the sets P l = {t ∈ [0, T ] | a(t, 0) = 0} and P r = {t ∈ [0, T ] | a(t, 1) = 0} have a finite number of connected components, if y 0 , y l y r are essentially bounded and if b and f are in L ∞ (Ω T ) then ∀p < +∞ we have y ∈ C 0 ([0, T ], L p (0, 1)).

Proof. We take t = 0 and ǫ > 0. Reducing ǫ if necessary, we can suppose that a(s, 0) and a(s, 1) have a constant sign on [t, t + ǫ]. We will prove the result in the case a(t, 0) ≥ 0 and a(t, 1) ≤ 0 (the others can be treated in the same way). This implies h(0, 1), h(0, 0) ≥ ǫ.

Let γ > 0, since y 0 ∈ L ∞ (0, 1) we have a function ỹ0 ∈ C 0 ([0, 1]) such that ||y 0 -ỹ0 || L p (0,1) ≤ γ. We now consider ỹ the weak solution of (45) with boundary value y l and y r and initial value ỹ0 . Now by linearity it is clear that yỹ is solution to (45) with boundary value 0 and initial value y 0 -ỹ0 . Therefore the previous lemma asserts that ||y(t, .)ỹ(t, .)|| L p (0,1) is continuous and we see that for t sufficiently small ||y(t, .)ỹ(t, .)|| L p (0,1) ≤ 2.γ. Now since ỹ satisfies (52), since b, f, ỹ ∈ L ∞ (Ω T ) and more importantly since ỹ0 continuous, we obtain ỹ(ǫ, x) ----→ ǫ→0 + ỹ0 (x) for any x in (0, 1), therefore we can conclude that φ(ǫ,0,1)

And finally we conclude that for ǫ sufficiently small ||ỹ(ǫ, .) -ỹ0 (.)|| L p (0,1) ≤ γ, which implies that for ǫ small enough: ||y(ǫ, .)y 0 (.)|| L p (0,1) ≤ 4γ.

We can both translate and reversen the argument in time.

To finish this part we will prove an inequality about the continuity property of the linear operator providing y in term of f , y 0 , y l and y r .

Proposition A.9. If a and ∂ x a are continuous and if the sets P l = {t ∈ [0, T ] | a(t, 0) = 0} and P r = {t ∈ [0, T ] | a(t, 1) = 0} have a finite number of connected components then we have the inequality:

Proof. Let us first suppose that a(s, 0), a(s, 1) ≥ 0 on [0, T ], this implies h(0, 0) ≥ t and e(t, 1) = 0, therefore we can write: 

Now we will treat each I k separately. In I 1 we perform the change of variables: s = e(t, x) (or equivalently x = φ(t, s, 0)) and we get: