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A round robin test aiming at measuring the high-temperature thermoelectric properties was car-
ried out by a group of European (mainly French) laboratories (labs). Polycrystalline skutterudite
Co0.97Ni0.03Sb3 was characterized by Seebeck coefficient (8 labs), electrical resistivity (9 labs),
thermal diffusivity (6 labs), mass volume density (6 labs), and specific heat (6 labs) measurements.
These data were statistically processed to determine the uncertainty on all these measured quantities
as a function of temperature and combined to obtain an overall uncertainty on the thermal conductivity
(product of thermal diffusivity by density and by specific heat) and on the thermoelectric figure
of merit ZT. An increase with temperature of all these uncertainties is observed, in agreement
with growing difficulties to measure these quantities when temperature increases. The uncertainties
on the electrical resistivity and thermal diffusivity are most likely dominated by the uncertainty
on the sample dimensions. The temperature-averaged (300–700 K) relative standard uncertainties
at the confidence level of 68% amount to 6%, 8%, 11%, and 19% for the Seebeck coefficient,
electrical resistivity, thermal conductivity, and figure of merit ZT, respectively. Thermal conductivity
measurements appear as the least accurate. The moderate value of the temperature-averaged relative
expanded (confidence level of 95%) uncertainty of 17% on the mean of ZT is essential in establishing
Co0.97Ni0.03Sb3 as a high temperature standard n-type thermoelectric material. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4905250]

INTRODUCTION

Many scientific works are currently dedicated to the
search of efficient thermoelectric materials. These materials
could indeed be used in thermoelectric generators, producing
electric energy from waste heat in everyday life (exhaust gas
in cars for instance) or from industrial technologies (steel
production, glassworks, etc.). The efficiency of a thermoelec-
tric generator depends, through Carnot’s efficiency, on the
temperature difference between the cold and hot sources. It
is also governed, as a first approximation, by the dimension-
less thermoelectric figure of merit of the materials defined
as ZT=α2T/ρλ where T is the absolute temperature, α is
the Seebeck coefficient (or thermopower), ρ is the electrical
resistivity, and λ is the total thermal conductivity. To be

a)Author to whom correspondence should be addressed. Electronic mail:
eric.alleno@icmpe.cnrs.fr. Tel.: +33 1 49 78 12 37. Fax: +33 1 49 78
12 03.

effective, such a research effort requires reliable and accurate
measurements of ZT.

In theory, ZT may be directly measured by Harman’s
method.1 However, this method shows several severe exper-
imental constraints that are not easy to fulfill. For instance,
experiments should be performed under strict adiabatic condi-
tions. Moreover, this method depends critically on the quality
of the electrical contacts between the probes and the sample.2

If these conditions are not fulfilled, the inaccuracy of the
results may be high, making this method inadequate for a rapid
and accurate prospection of materials ZT. For novel materials
with unknown or less established properties, ZT is commonly
obtained by measuring individually the three quantities α, ρ,
and λ. To determine the level of relative uncertainty achieved
in the measurement of ZT, it is therefore necessary to esti-
mate separately the relative uncertainty of α, ρ, and λ before
combining them. The resulting total relative uncertainty on
ZT then yields a quantitative estimation of the reliability and
accuracy of the measurement method.
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A round robin test (RRT) performed by several labo-
ratories on any method of measurement of a given quan-
tity is a statistical test that provides a standard deviation for
this quantity. According to the “Guide to the Expression of
Uncertainty in Measurement” (GUM) authored by the Joint
Committee for Guides in Metrology (JCGM) from the Bureau
International des Poids et Mesures (BIPM),3 such standard
deviation is an estimate of the “Type A” uncertainty for this
measured quantity. More didactic texts4–6 than “GUM” give
practical examples of the determination of the experimental
uncertainty. A RRT is also an individual test bench for any
participating laboratory providing a diagnostic on its measure-
ment methods.

A RRT on electrical resistivity, Seebeck coefficient, ther-
mal conductivity, and figure of merit requires a common
standard material for all these quantities. Reference materials
certified by suppliers such as NIST (National Institute for
Standard and Technology, USA) exist for electrical resistivity
and thermal conductivity (Stainless steel NIST standard refer-
ence material (SRM) 1460 for instance) on the one hand, and
Seebeck coefficient (Bi2Te3 NIST SRM 3451) on the other
hand. But a SRM for the three transport coefficient (α, ρ, λ)
and the resulting figure of merit all together, either at low
or at high temperature, remains to be established. For this
reason, measurements on thermoelectric materials are more
delicate and past RRT were conducted either on metals with
well known physical properties (constantan,7–9 palladium7),
on home-made thermoelectric materials (skutterudite7), or
materials supplied by a commercial source (bismuth telluride
based materials8–11) but rarely on a reference material (Stain-
less steel NIST SRM 1460 for thermal diffusivity in Ref. 7).
Moreover, a complete investigation, aiming to determine ZT
through the conduction of five separate measurements (See-
beck coefficient, electrical resistivity, density, specific heat,
and diffusivity), was presented only recently10,11 by several
laboratories from four countries. The measurements were
performed from 300 to 500 K using hot-pressed n- and p-type
bismuth telluride materials commercially supplied (Marlow
Industries). Part I10 of this study was focused on electrical
resistivity and Seebeck coefficient only while part II11 was
dedicated to the thermal properties and final evaluation of ZT.
From analyses of the results, it was concluded that the thermal
conductivity is the least reliable measurement of the three
transport properties involved in ZT.

In this paper, we report on a complete thermoelectric
round robin testing, i.e., electrical resistivity, Seebeck coeffi-
cient, and thermal properties measurements between 300 and
700 K—a temperature range broader than Refs. 10 and 11—
in a n-type thermoelectric material based on a CoSb3 skutteru-
dite. We selected this material for several reasons. First, CoSb3

skutterudite crystallizes in a cubic crystal lattice which enables
the measurement of samples with various geometries obtained
from the same batch and excludes any influence of anisotropy
as observed in state-of-the-art thermoelectric compounds such
as bismuth telluride.10,11 Second, CoSb3 is easy to synthesize
in a reproducible way and shows good mechanical properties
(easy to handle). In this context, we propose that this skut-
terudite may become a reference thermoelectric material in the
near future. The paper is organized in the following way. The

first part describes the experimental procedure to produce the
materials and the set-ups used by the participating laboratories.
The statistical tools used to analyze the experimental data are
introduced in the second part while the measurement survey is
presented in the third part. The survey includes ten laboratories
from three countries (one Czech, eight French, and one Swiss)
actively involved in thermoelectric research.

EXPERIMENTAL DETAILS

A polycrystalline sample of Co0.97Ni0.03Sb3 (∼65 g) was
prepared by melting the elements (Co 99.99%, Ni 99.99%,
Sb 99.999%) in stoichiometric quantity at 1100 ◦C during 12
h followed by annealing at 820 ◦C during 96 h in a quartz
crucible sealed in a quartz tube placed in a vertical furnace.
To ensure a good chemical homogeneity, the sample was
powdered, mixed, and further annealed under the same condi-
tions. This procedure was repeated three times. Sample quality
was checked by means of powder X-ray diffraction (PXRD,
Brucker D8, Cu Kα) performed at the top, middle, and bottom
of the ∼7 cm long sample (see Fig. 1). Rietveld refinements
against the PXRD patterns were carried out to determine the
lattice parameter a and the content of secondary phases. Only
1% CoSb2 (mass percentage) and 0.2% metastable cubic Sb
were detected as impurity phases.12 The lattice parameters
obtained on the top, middle, and bottom of the ingot were
9.0403 Å, 9.0405 Å, 9.0408 Å, respectively. The standard
deviation between these three values (σ(a) = ±2.5× 10−4 Å)
is comparable to the experimental repeatability (rp(a) ∼ ±3
× 10−4 Å obtained by measuring the same sample several
times with the same diffractometer, see below for a more ex-
tensive definition) which evidences the good chemical homo-
geneity of the sample.

The ingot was cut with cutting pliers (keeping only 54 g
of the inner part to leave aside its extreme parts), finely ground
using a planetary ball mill (for 5 min in a ZrO2 vial), and
passed through a 50 µm sieve. This powder was divided into 13
batches of approximately 4 g, which were subsequently densi-
fied by Spark Plasma Sintering (SPS, Syntex DR SINTER
Lab 515S system) in graphite dies and punches (Ø 10 mm) for
10 min at 620 ◦C under 50 MPa. All the cylindrical specimens
of Co0.97Ni0.03Sb3 showed a relative density of ∼98% (∼6 mm
long and 10 mm wide). One cylindrical sample—shown in
Fig. 2—was sent to each participant of the RRT and was left
free to be cut and/or polished into bars or disks to dimensions

FIG. 1. Photograph of the as-cast sample.
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FIG. 2. Photograph of one of the shaped samples. Note that the picture was
taken after few measurement cycles at 800 K by one of the participating labs.

appropriate to each measurement systems. Centralizing the
cutting in a single location as in Refs. 10 and 11 would have
certainly led to smaller u(xi) but such procedure would not
have corresponded to a usual research practice: labs synthesize
or receive from other labs samples in various shapes and cut
them themselves before measurements.

The high-temperature Seebeck coefficient and electrical
resistivity were measured by 9 and 10 laboratories, respec-
tively. Six home-made systems and four commercial systems
(three ULVAC ZEM3 and one Ozawa Science RZ2001i) were
used in this RRT. Four of the home made systems are described
in detail in Refs. 12–17. To summarize these techniques, a
differential method was systematically employed to measure
the Seebeck coefficient in either the “two-probe” or the “four-
probe” geometry in three and six cases, respectively (methods
and geometries of Seebeck coefficient measurements can be
found in Refs. 2, 18, and 19). Bar-shaped samples, slabs
in the van der Pauw geometry or in the linear four-probe
geometry, were measured in six, two, and one cases, respec-
tively. Six laboratories were able to measure the thermal
diffusivity (a) by the laser-flash method using commercial
systems (four Netzsch LFA457, one Netzsch LFA427, and one
Linseis LFA1000). The thermal conductivity was calculated
from the thermal diffusivity by using the relation λ = a × d
×Cp, where d is the density and Cp is the specific heat, which
was measured by the six laboratories using commercial calo-
rimeters (a Quantum Design PPMS, two Netzsch DSC STA
449 F3 Jupiter, three Netzsch DSC 404 C Pegasus). All these
transport and thermal measurements were carried out under
an inert atmosphere (argon or helium). All the “raw” data
reported by the participating laboratories were anonymously
compiled and interpolated by cubic splines every 20 K for the
Seebeck coefficient and electrical resistivity over the respec-
tive temperature intervals [300 K–700 K] and [300–760 K] and
every 50 K for the thermal diffusivity, density, specific heat,
thermal conductivity, and ZT over the respective temperature
intervals [300 K–800 K], [300 K–800 K], [300 K–800 K],
[300 K–800 K], and [300 K–700 K]. Interpolation of the data
was preferred over parameterization (see an example in Ref. 8)
because it does not modify the measured values which are
considered as “reference datapoints.”

DEFINITION OF THE UNCERTAINTIES

A complete set of data for the measured quantity x, rep-
resenting α, ρ, a, d, Cp, λ, or ZT, consists in m series of
interpolated values xi at temperature Ti, where m is the number
of participating laboratories. The index i labels the equally
spaced temperatures starting at T1, . . .,Ti, . . ., and ending at
Tn, n being the number of temperatures. At each temperature
Ti, an average ⟨xi⟩

m and an experimental standard deviation
σ(xi)

m of the measured quantity x was calculated over the
range (labeled by p) of all the m participating laboratories

according to the following formulae: ⟨xi⟩
m
= 1

m

m


p=1
xpi and

σ(xi)
m =



1
m−1



m


p=1
(xpi− ⟨xi⟩)2. This means that only one

measurement per laboratory was randomly taken into account
despite the fact that several laboratories repeated their mea-
surement. This strict procedure was chosen to give an equal
statistical weight to each laboratory. This strategy avoids the
possible bias consisting in including several sets of data from
one laboratory, whose measurements are close to the average,
in order to artificially reduce the standard deviation. We further
assumed that the measurements follow a normal distribution
around the average. At each temperature Ti, the measurement
xpi of each laboratory was then compared to the classical
values ⟨xi⟩

m
+2σ(xi)

m and ⟨xi⟩
m−2σ(xi)

m to stress possible
aberrant measurements with a confidence interval of 95%. For
a given laboratory p, if one datum at temperature Ti was found
outside this interval, its whole set of data was excluded. Note
that this procedure, which can be applied only once, complies
with Chauvenet’s criterion.6 Final average and standard devi-

ation were then recalculated according to ⟨xi⟩
r
= 1

r

r


p=1
xpi and

σ(xi)
r =



1
r−1



r


p=1
(xpi− ⟨xi⟩)2 where r =m−q is the number

of non-excluded laboratories and q is the number of excluded
laboratories.

At a given temperature Ti, four uncertainties can be
defined: u(xi) and u(⟨xi⟩), the standard uncertainty3,5 on the
quantity xi and on its mean ⟨xi⟩, respectively; U(xi) and
U(⟨xi⟩), the expanded uncertainty3,5 on xi and on its mean
⟨xi⟩, respectively. u(xi) is defined3,5 by u(xi) = σ(xi)

r . Still
assuming that the distribution is normal, u(xi) is the uncer-
tainty at a confidence level of 68% (one standard deviation)
for any individual measurement of the quantity xi. In other
words, this means that the “true” value for any xi measured
in Co0.97Ni0.03Sb3 made by any of the r laboratories involved
in the present work has 68% of chances to be found in the
interval [xi − u(xi); xi + u(xi)]. To reach a confidence level
of 95%, the expanded uncertainty U(xi) is correspondingly
defined as U(xi) = tr−1u(xi) with tr−1, the coverage factor.
Because of the reduced number of laboratories (<10), tr−1

is not taken equal to 2 but is taken equal to the student’s t-
value for r − 1 degrees of freedom and a confidence level
of 95% (Ref. 6). U(xi) thus depends on u(xi) only by a
factor independent on Ti. u(xi) can safely be interpreted as the
uncertainty on xi by any of the r laboratories—hence indepen-
dent on the laboratory—measuring a thermoelectric material
with properties similar to n-type Co0.97Ni0.03Sb3 in the same
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temperature range ([300–700 K]). But considering this
quantity as faithfully representing the uncertainty on any ther-
moelectric measurements carried out on any thermoelectric
materials by any laboratory in the world would be a reckless
extrapolation. Comparison with other RRTs10,11 nonetheless
suggests that u(xi) can be considered as a crude estimate.
u(xi) should not be confused with the repeatability rp(xi),
which is defined as the “closeness of the agreement between
repeated measurements of the same property under the same
conditions.”5 rp(xi) should individually be determined by each
laboratory by repeating several times the measurement of xi on
the same sample with the same experimental system (not yet
done by most of us). The repeatability rp(xi) depends on the
laboratory and is usually smaller than the standard uncertainty
u(xi). rp(xi) can for instance be used by the laboratory to
decide if two close values of x measured with the same system,
x1
i

and x2
i
, can be considered as same (

�

x1
i
− x2

i

�

≤ 2rp(xi)) or
different (

�

x1
i
− x2

i

�

> 2rp(xi)).
The standard uncertainty u(⟨xi⟩) on the mean ⟨xi⟩ is

defined3,5 by u(⟨xi⟩) =
σ(xi)

r

√
r

. Similarly to xi, an expanded
uncertainty U(⟨xi⟩) at the confidence level of 95% can also be
defined using the student’s t-value tr−1 as the coverage factor:
U(⟨xi⟩) = tr−1u(⟨xi⟩). ⟨xi⟩ is an estimator of the “true value”
of the quantity x measured at Ti in the sample Co0.97Ni0.03Sb3

used in the present work by the r laboratories all together.
Similarly, U(⟨xi⟩) represents the expanded uncertainty on the
“true value” of the quantity x measured at Ti in the sample
Co0.97Ni0.03Sb3. The true value of the quantity x measured at Ti

in Co0.97Ni0.03Sb3 has 95% chances to be found in the interval
⟨xi⟩±U(⟨xi⟩). As will be seen further in this text, the reduced
magnitude of the relative expanded uncertainties U (⟨x⟩)

⟨x⟩
will

establish Co0.97Ni0.03Sb3 as a reference standard.
Since for any measured quantity x, each u(xi) is expres-

sed at the same confidence level (68%) independently on x
and regardless of the number of non-excluded participating
laboratories, they can consistently be combined to calculate the
overall uncertainties on the dimensionless figure of merit and
the thermal conductivity. The relative uncertainty on λ origi-
nates from the relative uncertainties on a, Cv, and d. According
to Refs. 3–6, the related relative uncertainty is given by u(λi)

λi

=



(

u(ai)

⟨ai⟩

)2
+
(

u(di)

⟨di⟩

)2
+
(

u(Cvi)

⟨Cvi⟩

)2
. Noteworthy, u(λi) is not

derived here from the standard deviation on λi. Similarly, the
relative uncertainty on ZT is related to the relative uncertainties

on α, ρ, and λ by u(ZTi)

ZTi
=



4
(

u(αi)

⟨αi⟩

)2
+
(

u(ρi)

⟨ρi⟩

)2
+
(

u(λi)

⟨λi⟩

)2
.

Finally, for a given quantity x, its relative uncertainty can
be averaged over the whole temperature range by the equa-

tion


u(x)

⟨x⟩



T
= 1

n

n


i=1

u(xi)

⟨xi⟩
(with n the number of measurement

temperatures). This formula provides a single number easy
to compare, memorize, and use. The three former formulae
of course apply to U(x), u(⟨xi⟩), and U(⟨x⟩). All the values
obtained for α, ρ, λ, and ZT are listed in Table II.

RESULTS

Seebeck coefficient

Over the m = 9 laboratories that measured the Seebeck
coefficient α in Co0.97Ni0.03Sb3 as a function of temperature

FIG. 3. Panel (a): Seebeck coefficient measured by the various participating
laboratories as a function of temperature in Co0.97Ni0.03Sb3. These data are
compared to the average and to the absolute standard uncertainty. Panel (b):
Standard relative uncertainty on the Seebeck coefficient as a function of
temperature.

between 300 K–700 K, q= 1 laboratory was excluded because
of aberrant measurements. The data of the eight remaining
laboratories are presented in Fig. 3. Both the magnitude and
the temperature dependence of α are typical of heavily doped
semiconductors, in agreement with prior studies.20–23 The
average room-temperature value (−187 µV/K) compares well
with the value (−200 µV/K) published by Anno et al.20 for
the same nominal composition. The data of six laboratories
fall within the interval ⟨α⟩−u(α) and ⟨α⟩+u(α) in the entire
temperature range.

The absolute value of the relative standard uncertainty
u(α)

|⟨α⟩|
is also shown in Fig. 3 as a function of temperature. The

observed values are constant and slightly below 5% between
340 and 600 K while a steeper rise occurs above 600 K to
reach 9% at 700 K. These 5% at 340 K compare well to
the σ(α)

⟨α⟩
= ±4% determined in Ref. 8 at 300 K in the NIST

standard material SRM3451 Bi2Te3. The thermal variations in
the uncertainty u(α) (not shown) are very similar to those of
u(α)

|⟨α⟩|
. The increase in u(α)

|⟨α⟩|
is thus not related to the moderate

decrease in |⟨α⟩| above 600 K. The average value over the
300–700 K temperature range of the relative standard uncer-
tainty is



u(α)

⟨α⟩



T
=±6.0%.

Electrical resistivity

Ten (m = 10) laboratories measured the electrical resis-
tivity ρ in Co0.97Ni0.03Sb3 as a function of temperature
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between 300 K–800 K. One (q = 1) laboratory was excluded
because of aberrant measurements. The remaining data (r = 9)
are presented in Fig. 4 and compared to ⟨ρ⟩, ⟨ρ⟩−u(ρ), and
⟨ρ⟩+ u(ρ). The decrease in ρ when the temperature rises is
consistent with the semiconducting nature of this sample. The
average value ⟨ρ⟩ at 300 K (3.3×10−5 Ωm) is slightly larger
than the value (2.9×10−5 Ωm) found by Anno et al.20 for the
same nominal composition. We surmise that the initial purity
of the starting elements and the density of our sample weakly
differ from literature,20 thereby explaining the observed differ-
ence.

The electrical resistivity measurement is the product2,18

of a temperature dependent resistance R(T) and a constant
(neglecting thermal expansion) geometrical form factor g

which has the dimension of a length: ρ(T) = gR(T). R is
obtained from voltage and current measurements while g is
obtained from sample dimensions measurements. Therefore,
the normalized data ρ(T )

ρ(300 K )
=

R(T )

R(300 K )
only depend on electri-

cal measurements and do not depend on the geometrical form
factor. As shown in panel (b) of Fig. 4, the normalized data

ρ(T )

ρ(300 K )
of six laboratories (lab1, lab2, lab3, lab7, lab9, lab13)

out of nine almost merge into a single curve. The electrical
measurements R(T) of these six laboratories are, hence, almost
identical and the differences between their ρ(T)measurements

FIG. 4. Panel (a): Electrical resistivity measured by the various participating
laboratories as a function of temperature in Co0.97Ni0.03Sb3. These data are
compared to the average and to the absolute standard uncertainty. Panel
(b): Normalized resistivity as a function of temperature. Panel (c): Relative
standard uncertainty on the resistivity as a function of temperature.

(panel (a) of Fig. 4) reflect the uncertainty on the measurement
of the geometrical factor. This indicates that for these six labo-
ratories, the main source of uncertainty on ρ(T) arises from
a poorly controlled shape (beveled edges), from inaccurate
measurements of the dimensions of the samples or of distances
between the voltage probes. For the other three laboratories
(lab5, lab10, lab11), the difference of their normalized data

R(T )

R(300 K )
differs from the common normalized curve indicating

that an extra source of uncertainty on their R(T)measurements
adds to the uncertainty on g. Since the difference between their
normalized data tends to increase with temperature, this extra
source of uncertainty might be related to a contamination of the
Ohmic voltage by spurious thermal voltages:2,18 with increas-
ing temperature, temperature differences usually increase in
the system of measurement possibly giving rise to partially
uncompensated thermal voltages even upon current reversal.

The relative standard uncertainty u(ρ)

⟨ρ⟩
, shown in Figure 4

as a function of temperature, is equal to ∼7% between 300 and
400 K before increasing from 400 up to 600 K to reach ∼9%.
Above this temperature, the relative uncertainty no longer
varies with temperature. These variations reflect the thermal
variations in the absolute uncertainty u(ρ) (not shown) and
are thus not related to the decrease in ⟨ρ⟩ with temperature.
The average value over the 300–760 K temperature range
of the relative standard uncertainty is



u(ρ)

⟨ρ⟩



T
= ±8.3%. As

previously discussed, this uncertainty can be decomposed into

an uncertainty on the geometrical form factor (
u(ρ)geo

⟨ρ⟩
=

u(g )

⟨g ⟩
)

and an uncertainty gathering the electrical and thermal effects
(
u(ρ)ideal

⟨ρ⟩
=

u(R)

⟨R⟩
). Assuming that the normalized resistivities

are free from any geometrical effect, u(ρ)ideal
⟨ρ⟩

can thus be ob-

tained from u(ρ)ideal = σ(ρnorm)
r and

u(ρ)geo

⟨ρ⟩
can be derived

from
u(ρ)geo

⟨ρ⟩
=



(

u(ρ)

⟨ρ⟩

)2
−
(

u(ρ)ideal
⟨ρ⟩

)2
. Taking the temperature

average over 300 K–760 K leads to


u(ρ)ideal
⟨ρ⟩



T
= ±3.7% and



u(ρ)geo

⟨ρ⟩



T
=±7.3%. This confirms the well-known result that

uncertainties on the various measured dimensions dominate
the uncertainty on resistivity.

As a final check of the sample homogeneity after shaping,
cut parts of all the samples formerly dispatched among the
labs were gathered in one of the participating lab (Institut Jean
Lamour, Nancy) and re-measured at room temperature with
a single system (ULVAC ZEM3). Electrical resistivity is the
transport property which is the most sensitive to variations
of microstructure across a population of samples and should
reveal any sample-to-sample non-uniformity after shaping.
One measurement was performed on each of the r = 9 sam-
ples and the resulting mean ⟨ρcheck⟩ and standard deviation
σ(ρcheck) were gathered in Table I as well as repeatability data
(⟨ρrp⟩ and rp(ρ)) obtained by measuring 3 times the same
sample on the same system. The mean ⟨ρcheck⟩= 3.1×10−5Ωm
is slightly different from the average ⟨ρ (at 300 K over the
various 9 laboratories but falls within the uncertainty interval at
this temperature (3.3±0.24×10−5Ωm) while the repeatability
mean ⟨ρrp⟩= 3.1×10−5Ωm is by chance equal to ⟨ρ⟩ at 300 K.
The relative repeatability of the experiment is r p(ρ)

⟨ρrp⟩
= 1.2%

while the standard deviation on the 9 measurements is σ(ρ)

⟨ρcheck⟩
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TABLE I. Second row: Number of measurements, average electrical resis-
tivity, absolute and relative repeatability of the electrical resistivity at 300 K
in one of the samples used for the repeatability test; fourth row: Number of
samples, average electrical resistivity, absolute and relative standard devia-
tion at 300 K of the resistivity measured in nine different samples by one
laboratory to check their homogeneity; sixth row: Number of laboratories,
average electrical resistivity, absolute and relative standard deviation at 300 K
of the electrical resistivity measured by the nine different laboratories in nine
different samples.

r ⟨ρrp⟩ (Ωm) rp(ρ) (Ωm) rp(ρ)/⟨ρrp⟩(%)

3 3.3 × 10−5 ±4.0 × 10−7 ±1.2

r ⟨ρcheck⟩ (Ωm) σ(ρcheck) (Ωm) σ(ρcheck)/⟨ρcheck⟩(%)

9 3.1 × 10−5 ±9.7 × 10−7 ±3.1

r ⟨ρ⟩ (300 K) (Ωm) u(ρ) (300K) (Ωm) u(ρ)/⟨ρ⟩ (300 K) (%)
9 3.3 × 10−5 ±2.4 × 10−6 ±7.1

= 3.1%. It is slightly larger than twice the relative repeatability
r p(ρ)

⟨ρrp⟩
indicating a small non-uniformity of the electrical resis-

tivity across the 9 tested samples. This non-uniformity value
of 3.1% compares well with the 1.5% and 5.8% of sample-to-
sample non-uniformities found in p-type and n-type Bi2Te3,
respectively, by Wang et al. in a past RRT.10 More importantly,
σ(ρ)

⟨ρcheck⟩
is much smaller than the relative uncertainty on electri-

cal resistivity derived at 300 K from this RRT which amounts
to u(ρ)

⟨ρ⟩
(300 K) = 7.1%. This last value does not arise from a

spread of the transport properties across our tested population
of samples and it is indeed a good estimate of the uncertainty
on the measurements.

Thermal diffusivity, specific heat, and thermal
conductivity

The thermal diffusivity (a) data of the 6 participating
laboratories (none excluded) obtained from the laser-flash
technique are shown in Fig. 5(a). The data of four of the
six laboratories strictly fall within ⟨a⟩−u(a) and ⟨a⟩+u(a).
The diffusivities normalized at 400 K (anorm(T)=

a(T )

a(400 K)
)—

see discussion below about this choice of temperature—
displayed in Fig. 5(b) nearly merge into a single curve
indicating that the six datasets are nearly homothetic. In
the laser-flash technique, the thermal diffusivity is extracted
from a least-squares fit to the entire transient curve from
a model chosen between several possibilities (among them,
“Parker,”24 “Cowan,”25 “Cape-Lehman”26). In the simplest
approach, proposed by Parker et al. (no heat loss assumed
and one dimensional heat flow), the thermal diffusivity is
expressed as

a(T)=
1.37l2

π2t1/2(T)

with l the sample thickness and t1/2 a time characteristic of
the transient temperature variations of the sample.24 One can
see from this formula that the uncertainty on the diffusivity
strongly depends on the uncertainty on the sample thickness
(this remains true when using more sophisticated models).
If we neglect the temperature variations in the dimensions
of the sample, the thickness may be then considered as

FIG. 5. Panel (a): Thermal diffusivity measured by the various participating
laboratories as a function of temperature in Co0.97Ni0.03Sb3. These data are
compared to the average and to the absolute standard uncertainty. Panel (b):
Normalized thermal diffusivity as a function of temperature. Panels (c) and
(d), respectively, absolute and relative standard uncertainty on the thermal
diffusivity as a function of temperature.

temperature independent. The homothetic behavior of the
normalized diffusivities may thus arise from the predominance
of the uncertainty on the thickness with respect to the total
uncertainty.

The absolute and the relative uncertainties on the thermal
diffusivity are shown in Figures 5(c) and 5(d) as a function of
temperature. The absolute uncertainty significantly decreases
from 300 to 600 K while the relative uncertainty slightly
increases from ∼9% to 10% within the same temperature
range. These opposite variations arise from the decrease in
the thermal diffusivity in this temperature range. The larger
value of absolute uncertainty near 300 K could be related to
the lower sensitivity of the detector (InSb for all laser-flash
used in this RRT) around this temperature. To reduce the
uncertainty at 300 K, the power of the laser-flash setup should
be carefully optimized to reach a higher signal-to-noise ratio.
The diffusivity was therefore normalized at 400 K in Fig.
5(b) to avoid the 300 K datum. The average value over
the 300–800 K temperature range of the relative standard
uncertainty is



u(a)

⟨a⟩



T
= ±9.5%. Similar to resistivity

measurements, this uncertainty can be decomposed into
an uncertainty arising from the laser and detection chain
u(a)ideal

⟨a⟩
which can be obtained from u(a)ideal

⟨a⟩
=

σ(anorm)
r

⟨anorm⟩
and a

geometrical uncertainty which can be derived from
u(a)geo

⟨a⟩
=



(

u(a)

⟨a⟩

)2
−
(

u(a)ideal
⟨a⟩

)2
. Taking the temperature average over
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300 K–800 K leads to


u(a)ideal
⟨a⟩



T
= ±1.6% and



u(a)geo

⟨a⟩



T
=±9.4%. This suggests that reducing the uncertainty on the
thickness—a moderately complex task—could lead to strong
improvements of the accuracy of diffusivity measurements.

Three laboratories measured the density at room
temperature while the three others considered the theoretical
density (7.6 g/cm3). The temperature independent average
density is then 7.3 g/cm3 and the corresponding absolute
and relative standard uncertainties are ±0.3 g/cm3 and 4.3%,
respectively.

The six laboratories measured the specific heat (Cp) as
a function of temperature. The data plotted in Fig. 6 only
slightly depend on temperature. The uncertainty on Cp varies
from ∼2% at 350 K to 3.0% at 800 K. The average value over
the 300–800 K temperature range of the relative uncertainty

is


u(Cp)

⟨Cp⟩



T
=±2.5%.

The thermal conductivity data are plotted in Fig. 6 as a
function of temperature. Except for one laboratory, all the
data curves fall within ⟨λ⟩ − u(λ) and ⟨λ⟩ + u(λ). The rela-
tive uncertainty increases from∼10% at 300 to∼12% at 800 K.
The temperature-averaged value of the relative standard uncer-
tainty on thermal conductivity is



u(λ)

⟨λ⟩



T
= ±10.8%. This last

value is in agreement with the temperature-averaged (300
–475 K) value of ±12.5% derived from the RRT reported in
Ref. 11. It also compares fairly well with the value directly

FIG. 6. Panel (a): Specific heat values measured by the various participat-
ing laboratories as a function of temperature in Co0.97Ni0.03Sb3. Panel (b):
Thermal conductivity measured by the various participating laboratories as a
function of temperature in Co0.97Ni0.03Sb3. These data are compared to the
average and to the absolute standard uncertainty. Panel (c): Relative standard
uncertainty on the thermal conductivity as a function of temperature.

derived from the temperature-averaged relative standard devia-
tion of the measured thermal conductivities:

n
i=1
σ(λi)

λi
= 8.0%.However, this lattervalueis lowerthanthetemperature-
averaged relative uncertainty on the diffusivity (±9.5%) and
hence seems too optimistic. This effect likely arises from
compensating errors. When compared to the uncertainties on
Seebeck coefficient and resistivity, the uncertainty on thermal
conductivity is the largest (nearly a factor of 2). Thermal
conductivity measurement is thus the less accurate measure-
ment, as expected and already noticed in Ref. 11.

An idealized temperature-averaged value of the uncer-
tainty on the thermal conductivity (



u(λ)ideal
⟨λ⟩



T
), cleared from

the geometrical uncertainty, can also be derived by replacing
u(a)

⟨a⟩
by u(a)ideal

⟨a⟩
in the formula giving u(λ)

λ
(see the part

defining the uncertainties). This leads to


u(λ)ideal
⟨λ⟩



T
=±5.3%.

In the ideal case, the uncertainties on the density and
specific heat would dominate the uncertainty on the thermal
conductivity.

Figure of merit

The dimensionless figures of merit of the six laboratories
that measured the three quantities α, ρ, and λ are shown in
Figure 7 as a function of temperature. Except one datum,
all data fall within the interval [ZT−u(ZT); ZT+u(ZT)]. The
averaged value of ZT in Co0.97Ni0.03Sb3 increases from 0.05

FIG. 7. Panel (a): Figure of merit measured by the various participating
laboratories as a function of temperature in Co0.97Ni0.03Sb3. These data are
compared to the average and to the absolute standard uncertainty. Panel
(b): Relative standard uncertainty on the figure of merit as a function of
temperature.
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at 300 K to 0.36 at 700 K, as expected for an unfilled n-type
skutterudite. The absolute uncertainty on ZT (u(ZT)) (see
Figure 7) monotonically increases from 0.01 at 300 K to 0.08
at 700 K. This is in line with the gross variations of u(α)

⟨α⟩
,

u(ρ)

⟨ρ⟩
, and u(λ)

⟨λ⟩
with temperature and reflects the difficulties

to measure these quantities at high temperatures. u(ZT )

⟨ZT ⟩
starts

from ∼25% at 300 K due to the unexpectedly large value of
u(ZT) at this temperature, remains constant at ∼16% between
350 and 600 K and eventually increases above 600 K owing
to the increase in u(ZT). The temperature-averaged value of
the relative uncertainty on the figure of merit is



u(ZT )

⟨ZT ⟩



T
= ±18.6%. This latter value is in fair agreement with that
reported in Ref. 11: ±15.8% which is underestimated because
derived from the standard deviation on ZT—see below—and
temperature-averaged over 300–475 K only. As expected,


u(ZT )

⟨ZT ⟩



T
is larger than the averaged value directly derived

from the standard deviation on ZT, i.e.,
n

i=1
σ(ZTi)

ZTi
= 10.8%.

Likewise the discussion on the thermal conductivity, the latter
value is too optimistic and arises from compensation of errors
between the various measured quantities.

An uncertainty on the figure of merit cleared from
the geometrical uncertainties on resistivity and thermal
conductivity can also be defined by using u(ρ)ideal

ρ
and u(λ)ideal

λ

in its calculation.


u(ZT )ideal
⟨ZT ⟩



T
=±14.3% is thus obtained. This

value suggests that reducing the uncertainty on the thickness
of the samples used in thermal diffusivity measurements is an
easy first step on the path to reducing u(ZT). As a slightly
more complex second step, a reduction of u(ZT) could be
obtained by improving the accuracy of measurements of the
dimensions (cross-section, voltage probes distance) involved
in the measurement of resistivity. Given the dominant weight
in u(ZT )

⟨ZT ⟩
of the uncertainty on the Seebeck coefficient which

does not depend on measurements of dimensions, decreasing


u(ZT )

⟨ZT ⟩



T
below 10% will be a more demanding goal which

will require strong improvements of the accuracy of the
measurements of the Seebeck coefficient.

TABLE II. Temperature averaged relative uncertainties and statistical pa-
rameters used for the calculation of the expanded uncertainty on the See-
beck coefficient, the resistivity, the thermal conductivity, and the figure of
merit. First row: Number r of non-excluded laboratory; second row: Student
t-values corresponding to the number, r −1, of degrees of freedom at the con-
fidence level of 95%; third row: standard relative uncertainties on the quantity
x averaged over 300–700 K; fourth row: expanded relative uncertainties (at
95% confidence) on the quantity x averaged over 300–700 K; fifth row:
standard relative uncertainties on the mean of the quantity x averaged over
300–700 K; last row: expanded relative uncertainties (at 95% confidence) on
the mean of any quantity x averaged over 300–700 K.

Seebeck Resistivity Thermal conductivity ZT

r 8 9 6 6
tr−1 2.36 2.31 2.57 2.57


u(x)
⟨x⟩



T
(%) ±6.0 ±8.3 ±10.8 ±18.6



U (x)
⟨x⟩



T
(%) ±14.0 ±19.2 ±27.6 ±45.1



u(⟨x⟩)
⟨x⟩



T
(%) ±2.1 ±2.8 ±4.4 ±6.9



U (⟨x⟩)
⟨x⟩



T
(%) ±5.0 ±6.4 ±11.3 ±16.7

Expanded uncertainties on the mean
and Co0.97Ni0.03Sb3 as a standard

The temperature-averaged (300–700 K) relative expanded
uncertainties on the mean of the Seebeck coefficient, electrical
resistivity, thermal conductivity, and dimensionless figure of
merit ZT at the confidence level of 95% are reported in
Table II. They reach 5%, 6%, 11%, and 17%, respectively. As
a partial and tentative comparison, an expanded uncertainty
on the mean value of the Seebeck coefficient in the NIST
standard material SRM3451 Bi2Te3 at 300 K can be calculated
from the data reported in Ref. 8: r = 9, t = 2.31, and
σ(α)

⟨α⟩
= ±4% lead to U (α)

⟨α⟩
= ±3% which is smaller than our

5% but is not averaged over a broad temperature range.
Before establishing Co0.97Ni0.03Sb3 skutterudite as an n-type
thermoelectric standard reference material for the figure of
merit, long-term stability upon cycling should be carefully
examined. However, the above moderate values of expanded
uncertainty on the mean reflect the homogeneity of the
thermoelectric properties of the present sample and are a
very encouraging and important step towards considering
Co0.97Ni0.03Sb3 skutterudite as a SRM for ZT.

SUMMARY

The uncertainties on the high temperature Seebeck
coefficient, electrical resistivity, thermal conductivity, and
dimensionless thermoelectric figure of merit have been
derived from a statistical treatment of data measured by several
European laboratories on the Co0.97Ni0.03Sb3 skutterudite.
Grossly speaking, these uncertainties increase with tempera-
ture, reflecting growing methodological difficulties to measure
these quantities when temperature increases. The temperature-
averaged relative uncertainties (300–700 K is the temperature
window) amount to 6%, 8%, 11%, and 19% for the Seebeck
coefficient, resistivity, thermal conductivity, and ZT, respec-
tively. Likewise prior round robin tests, our results confirm
that the thermal conductivity is the critical parameter in
determining the accurate ZT value of a material. Because the
thermoelectric properties of the present sample were found
to be homogeneous, skutterudites may become, in the near
future, good thermoelectric standard materials.
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