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Adaptive estimation of an additive regression function from weakly dependent data

Introduction 1.Problem statement

Let d be a positive integer, (Y i , X i ) i∈Z be a R × [0, 1] d -valued strictly stationary process on a probability space (Ω, A, P) and ρ be a given real measurable function. The unknown regression function associated to (Y i , X i ) i∈Z and ρ is defined by

g(x) = E(ρ(Y )|X = x), x = (x 1 , . . . , x d ) ∈ [0, 1] d .
In the additive regression model, the function g is considered to have an additive structure, i.e. there exist d unknown real measurable functions g 1 , . . . , g d and an unknown real number µ such that

g(x) = µ + d ℓ=1 g ℓ (x ℓ ). (1.1)
For any ℓ ∈ {1, . . . , d}, our goal is to estimate g ℓ from n observations (Y 1 , X 1 ), . . . , (Y n , X n ) of (Y i , X i ) i∈Z .

Overview of previous work

When (Y i , X i ) i∈Z is a i.i.d. process, this additive regression model becomes the standard one. In such a case, Stone in a series of papers [START_REF] Stone | Additive regression and other nonparametric models[END_REF][START_REF] Stone | The dimensionality reduction principle for generalized additive models[END_REF][START_REF] Stone | The use of polynomial splines and their tensor products in multivariate function estimation (with discussion)[END_REF] proved that g can be estimated with the same rate of estimation error as in the one-dimensional case. The estimation of the component g ℓ has been investigated in several papers via various methods (kernel, splines, wavelets, etc.). See, e.g., [START_REF] Buja | Linear smoothers and additive models (with discussion)[END_REF], [START_REF] Hastie | Generalized additive models[END_REF], [START_REF] Linton | Efficient estimation of additive nonparametric regression models[END_REF], [START_REF] Opsomer | Fitting a bivariate additive model by local polynomial regression[END_REF][START_REF] Opsomer | A fully automated bandwidth selection method for fitting additive models[END_REF], [START_REF] Amato | Adaptive wavelet series estimation in separable nonparametric regression models[END_REF], [START_REF] Amato | Fourier series approximation of separable models[END_REF], [START_REF] Sperlich | Nonparametric estimation and testing of interaction in additive models[END_REF], [START_REF] Zhang | Wavelet threshold estimation for additive regression models[END_REF], [START_REF] Sardy | AMlet, RAMlet, and GAMlet: automatic nonlinear fitting of additive models, robust and generalized, with wavelets[END_REF] and [START_REF] Fan | Nonparametric inferences for additive models[END_REF].

In some applications, as dynamic economic systems and financial times series, the i.i.d. assumption on the observations is too stringent (see, e.g., [START_REF] Härdle | Applied Nonparametric Regression[END_REF] and [START_REF] White | Nonlinear Regression with Dependent Observations[END_REF]). For this reason, some authors have explored the estimation of g ℓ in the dependent case. When (Y i , X i ) i∈Z is a strongly mixing process, this problem has been addressed by [START_REF] Camlong-Viot | Nonparametric and semiparametric estimation of additive models with both discrete and continuous variables under dependence[END_REF], [START_REF] Debbarh | Asymptotic normality for the wavelets estimator of the additive regression components[END_REF], and results for continuous time processes under a strong mixing condition have been obtained by [START_REF] Debbarh | Additive regression model for continuous time processes[END_REF][START_REF] Debbarh | Asymptotic normality of the additive regression components for continuous time processes[END_REF]. In particular, they have developed non-adaptive kernel estimators for g ℓ and studied its asymptotic properties.

Contributions

To the best of our knowledge, adaptive estimation of g ℓ for dependent processes has been addressed only by [START_REF] Gao | Adaptive orthogonal series estimation in additive stochastic regression models[END_REF]. The lack of results for adaptive estimation in this context motivates this work. To reach our goal, as in [START_REF] Zhang | Wavelet threshold estimation for additive regression models[END_REF], we combine the marginal integration technique introduced by [START_REF] Newey | Kernel estimation of partial means and a general variance estimator[END_REF] with wavelet methods. We capitalize on wavelets to construct an adaptive thresholding estimator and show that it attains sharp rates of convergence under mild assumptions on the smoothness of the unknown function. By adaptive, it is meant that the parameters of the estimator do not depend on the parameter(s) of the dependent process nor on those of the smoothness class of the function. In particular, this leads to a simple estimator.

More precisely, our wavelet estimator is based on term-by-term hard thresholding. The idea of this estimator is simple: (i) we estimate the unknown wavelet coefficients of g ℓ based on the observations; (ii) then we select the greatest ones and ignore the others; (iii) and finally we reconstruct the function estimate from the chosen wavelet coefficients on the considered wavelet basis. Adopting the minimax point of view under the L 2 risk, we prove that our adaptive estimator attains a sharp rate of convergence over Besov balls which capture a variety of smoothness features in a function including spatially inhomogeneous behavior. The attained rate corresponds to the optimal one in the i.i.d. case for the univariate regression estimation problem (up to an extra logarithmic term).

Paper organization

The rest of the paper is organized as follows. Section 2 presents our assumptions on the model. In Section 3, we describe wavelet bases on [0, 1], Besov balls and tensor product wavelet bases on [0, 1] d . Our wavelet hard thresholding estimator is detailed in Section 4. Its rate of convergence under the L 2 risk over Besov balls is established in Section 5. A comprehensive simulation study is reported and discussed in Section 6. The proofs are detailed in Section 7.

Notations and assumptions

In this work, we assume the following on our model: Assumptions on the variables.

• For any i ∈ {1, . . . , n}, we set X i = (X 1,i , . . . , X d,i ). We suppose that for any i ∈ {1, . . . , n}, X 1,i , . . . , X d,i are identically distributed with the common distribution U([0, 1]), -X 1 , . . . , X n are identically distributed with the common known density f .

• We suppose that the following identifiability condition is satisfied: for any ℓ ∈ {1, . . . , d} and i ∈ {1, . . . , n}, we have

E(g ℓ (X ℓ,i )) = 0. (2.1)
Strongly mixing assumption. Throughout this work, we use the strong mixing dependence structure on (Y i , X i ) i∈Z . For any m ∈ Z, we define the m-th strongly mixing coefficient of (Y i , X i ) i∈Z by

α m = sup (A,B)∈F (Y,X) -∞,0 ×F (Y,X) m,∞ |P(A ∩ B) -P(A)P(B)| , (2.2) 
where

F (Y,X)
-∞,0 is the σ-algebra generated by . . . , (Y -1 , X -1 ), (Y 0 , X 0 ) and

F (Y,X) m,∞ is the σ- algebra generated by (Y m , X m ), (Y m+1 , X m+1 ), . . . .
We suppose that there exist two constants γ > 0 and υ > 0 such that, for any integer m ≥ 1,

α m ≤ γ exp(-υm).
(

This kind of dependence is reasonably weak. Further details on strongly mixing dependence can be found in [START_REF] Bradley | Introduction to strong mixing conditions[END_REF], [START_REF] Withers | Conditions for linear processes to be strong-mixing[END_REF], [START_REF] Doukhan | Mixing. Properties and Examples[END_REF], [START_REF] Modha | Minimum complexity regression estimation with weakly dependent observations[END_REF] and [START_REF] Carrasco | Mixing and moment properties of various GARCH and stochastic volatility models[END_REF].

Boundedness assumptions.

• We suppose that ρ ∈ L 1 (R) ∩ L ∞ (R), i.e. there exist constants C 1 > 0 and

C 2 > 0 (supposed known) such that ∞ -∞ |ρ(y)|dy ≤ C 1 , (2.4) 
and sup y∈R |ρ(y)| ≤ C 2 .

(2.5)

• We suppose that there exists a known constant

c 1 > 0 such that inf x∈[0,1] d f (x) ≥ c 1 .
(2.6)

• For any m ∈ {1, . . . , n}, let f (Y 0 ,X 0 ,Ym,Xm) be the density of (Y

0 , X 0 , Y m , X m ), f (Y 0 ,X 0 )
the density of (Y 0 , X 0 ) and, for any (y, x,

y * , x * ) ∈ R × [0, 1] d × R × [0, 1] d , h m (y, x, y * , x * ) = f (Y 0 ,X 0 ,Ym,Xm) (y, x, y * , x * ) -f (Y 0 ,X 0 ) (y, x)f (Y 0 ,X 0 ) (y * , x * ).
(2.7)

We suppose that there exists a known constant

C 3 > 0 such that sup m∈{1,...,n} sup (y,x,y * ,x * )∈R×[0,1] d ×R×[0,1] d |h m (y, x, y * , x * )| ≤ C 3 . (2.8)
Such boundedness assumptions are standard for the estimation of g ℓ from a strongly mixing process. The most common example where this assumption holds is when ρ(y) = y1 {|y|≤M } , where M denotes a positive constant. This corresponds to the nonparametric regression model Y = g(X) + ε with E(ε) = 0, provided that ε and g are bounded from above. This is exactly the setting considered in the simulations of Section 6. See, e.g., [START_REF] Debbarh | Additive regression model for continuous time processes[END_REF][START_REF] Debbarh | Asymptotic normality of the additive regression components for continuous time processes[END_REF] or, for ℓ = d = 1, [START_REF] Masry | Strong consistency and rates for deconvolution of multivariate densities of stationary processes[END_REF] and [START_REF] Patil | Asymptotics for wavelet based estimates of piecewise smooth regression for stationary time series[END_REF].

Wavelets and Besov balls

This section presents basics on wavelets and the sequential definitions of the Besov balls.

Wavelet bases on [0, 1]

Let R be a positive integer. We consider an orthonormal wavelet basis generated by dilations and translations of the scaling and wavelet functions φ and ψ from the Daubechies family db 2R . In particular, φ and ψ have compact supports and unit L 2 -norm, and ψ has R vanishing moments, i.e. for any r ∈ {0, . . . , R -1}, x r ψ(x)dx = 0. Define the scaled and translated version of φ and ψ

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
Then, with an appropriate treatment at the boundaries, there exists an integer τ satisfying 2 τ ≥ 2R such that, for any integer j * ≥ τ , the collection {φ j * ,k (.), k ∈ {0, . . . , 2 j * -1}; ψ j,k (.); j ∈ N -{0, . . . , j * -1}, k ∈ {0, . . . , 2 j -1}}, is an orthonormal basis of L 2 ([0, 1]) = {h : [0, 1] → R; 1 0 h 2 (x)dx < ∞}. See [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF][START_REF] Mallat | A wavelet tour of signal processing[END_REF]. Consequently, for any integer j * ≥ τ , any h ∈ L 2 ([0, 1]) can be expanded into a wavelet series as

h(x) = 2 j * -1 k=0 α j * ,k φ j * ,k (x) + ∞ j=j * 2 j -1 k=0 β j,k ψ j,k (x), x ∈ [0, 1],
where

α j,k = 1 0 h(x)φ j,k (x)dx, β j,k = 1 0 h(x)ψ j,k (x)dx. (3.1)

Besov balls

As is traditional in the wavelet estimation literature, we will investigate the performance of our estimator by assuming that the unknown function to be estimated belongs to a Besov ball. The Besov norm for a function can be related to a sequence space norm on its wavelet coefficients. More precisely, let M > 0, s ∈ (0, R), p ≥ 1 and q ≥ 1. A function h in L 2 ([0, 1]) belongs to the Besov ball B s p,q (M ) of radius M if, and only if, there exists a constant M * > 0 (depending on M ) such that the associated wavelet coefficients (3.1) satisfy

   ∞ j=τ   2 j(s+1/2-1/p)   2 j -1 k=0 |β j,k | p   1/p    q    1/q ≤ M * .
In this expression, s is a smoothness parameter and p and q are norm parameters. Besov spaces include many traditional smoothness spaces. For particular choices of s, p and q, Besov balls contain the standard Hölder and Sobolev balls. See [START_REF] Meyer | Wavelets and Operators[END_REF].

Wavelet tensor product bases on [0, 1] d

For the purpose of this paper, we will use compactly supported tensor product wavelet bases on [0, 1] d based on the Daubechies family. Let us briefly recall their construction. For any

x = (x 1 , . . . , x d ) ∈ [0, 1] d , we construct a scaling function Φ(x) = d v=1 φ(x v ) , and 2 d -1 wavelet functions Ψ u (x) =              ψ(x u ) d v=1 v =u φ(x v ) when u ∈ {1, . . . , d}, v∈Au ψ(x v ) v ∈Au φ(x v ) when u ∈ {d + 1, . . . , 2 d -1},
where (A u ) u∈{d+1,...,2 d -1} forms the set of all non void subsets of {1, . . . , d} of cardinality greater or equal to 2.

For any integer j and any k = (k 1 , . . . , k d ), define the translated and dilated versions of Φ and Ψ u as

Φ j,k (x) = 2 jd/2 Φ(2 j x 1 -k 1 , . . . , 2 j x d -k d ), Ψ j,k,u (x) = 2 jd/2 Ψ u (2 j x 1 -k 1 , . . . , 2 j x d -k d ), for any u ∈ {1, . . . , 2 d -1}. Let D j = {0, . . . , 2 j -1} d .
Then, with an appropriate treatment at the boundaries, there exists an integer τ such that the collection

{Φ τ,k , k ∈ D τ ; (Ψ j,k,u ) u∈{1,...,2 d -1} , j ∈ N -{0, . . . , τ -1}, k ∈ D j } forms an orthonormal basis of L 2 ([0, 1] d ) = {h : [0, 1] d → R; [0,1] d h 2 (x)dx < ∞}.
For any integer j * such that j * ≥ τ , a function h ∈ L 2 ([0, 1] d ) can be expanded into a wavelet series as

h(x) = k∈D j * α j * ,k Φ j * ,k (x) + 2 d -1 u=1 ∞ j=j * k∈D j β j,k,u Ψ j,k,u (x), x ∈ [0, 1] d ,
where

α j * ,k = [0,1] d h(x)Φ j * ,k (x)dx, β j,k,u = [0,1] d h(x)Ψ j,k,u (x)dx. (3.2)
4 The estimator

Wavelet coefficients estimator

The following proposition provides a wavelet decomposition of g ℓ based on the "marginal integration" method (introduced by [START_REF] Newey | Kernel estimation of partial means and a general variance estimator[END_REF]) and a tensor product wavelet basis on [0, 1] d .

Proposition 4.1 Suppose that (2.1) holds. Then, for any j * ≥ τ and ℓ ∈ {1, . . . , d}, we can write

g ℓ (x) = 2 j * -1 k=1 a j * ,k,ℓ φ j * ,k (x) + ∞ j=j * 2 j -1 k=1 b j,k,ℓ ψ j,k (x) -µ, x ∈ [0, 1],
where

a j * ,k,ℓ = a j * ,k ℓ ,ℓ = 2 -j * (d-1)/2 [0,1] d g(x) k -ℓ ∈D * j * Φ j * ,k (x)dx, (4.1) b j,k,ℓ = b j,k ℓ ,ℓ = 2 -j(d-1)/2 [0,1] d g(x) k -ℓ ∈D * j Ψ j,k,ℓ (x)dx, (4.2 
)

and k -ℓ = (k 1 , . . . , k ℓ-1 , k ℓ+1 , . . . , k d ) and D * j = {0, . . . , 2 j -1} d-1 .
Remark 4.1 Due to the definitions of g and properties of

Ψ j,k,ℓ , b j,k,ℓ is nothing but the wavelet coefficient of g ℓ , i.e. b j,k,ℓ = 1 0 g ℓ (x)ψ j,k (x)dx = β j,k . (4.3) 
Proposition 4.1 suggests that a first step to estimate g ℓ should consist in estimating the unknown coefficients a j,k,ℓ (4.1) and b j,k,ℓ (4.2). To this end, we propose the following estimators of the coefficients

a j,k,ℓ = a j,k ℓ ,ℓ = 2 -j(d-1)/2 1 n n i=1 ρ(Y i ) f (X i ) k -ℓ ∈D * j Φ j,k (X i ) (4.4) and b j,k,ℓ = b j,k ℓ ,ℓ = 2 -j(d-1)/2 1 n n i=1 ρ(Y i ) f (X i ) k -ℓ ∈D * j Ψ j,k,ℓ (X i ). (4.5)
These estimators enjoy powerful statistical properties. Some of them are collected in the following propositions. Proposition 4.2 (Unbiasedness) Suppose that (2.1) holds. For any j ≥ τ , ℓ ∈ {1, . . . , d} and k ∈ {0, . . . , 2 j -1}, a j,k,ℓ and b j,k,ℓ in (4.4) and (4.5) are unbiased estimators of a j,k,ℓ and b j,k,ℓ respectively.

The key ingredient for the proof of Proposition 4.2 is Proposition 4.1.

Proposition 4.3 (Moment inequality I) Suppose that the assumptions of Section 2 hold. Let j ≥ τ such that 2 j ≤ n, k ∈ {0, . . . , 2 j -1}, ℓ ∈ {1, . . . , d}. Then there exists a constant

C 4 > 0 such that E ( a j,k,ℓ -a j,k,ℓ ) 2 ≤ C 4 1 n , E ( b j,k,ℓ -b j,k,ℓ ) 2 ≤ C 4 1 n .
The proof of Proposition 4.3 is based on several covariance inequalities and the Davydov inequality for strongly mixing processes (see [START_REF] Davydov | The invariance principle for stationary processes[END_REF]).

Remark 4.2 In the proof of Proposition 4.3, for the condition on α m , we only need to have the existence of two constants C 5 > 0 and q ∈ (0, 1) such that n m=1 m q α q m ≤ C 5 < ∞. This latter inequality is obviously satisfied by (2.3). 

E ( b j,k,ℓ -b j,k,ℓ ) 4 ≤ C 6 2 j n .
Proposition 4.5 (Concentration inequality) Suppose that the assumptions of Section 2 hold. Let j ≥ τ such that ln n ≤ 2 j ≤ n/(ln n) 3 , k ∈ {0, . . . , 2 j -1}, ℓ ∈ {1, . . . , d} and λ n = (ln n/n) 1/2 . Then there exist two constants C 7 > 0 and κ > 0 such that

P | b j,k,ℓ -b j,k,ℓ | ≥ κλ n /2 ≤ C 7 1 n 4 .
The proof of Proposition 4.3 is based on a Bernstein like inequality for strongly mixing processes (see [START_REF] Liebscher | Estimation of the density and the regression function under mixing conditions[END_REF]).

Hard thresholding estimator

We now turn to the estimator of g ℓ from a j,k,ℓ and b j,k,ℓ as introduced in (4.4) and (4.5). Towards this goal, we will only keep the significant wavelet coefficients that are above a certain threshold according to the hard thresholding rule, and then reconstruct from these coefficients. In a compact form, this reads

g ℓ (x) = 2 j 0 -1 k=0 a j 0 ,k,ℓ φ j 0 ,k (x) + j 1 j=j 0 2 j -1 k=0 b j,k,ℓ 1 {| b b j,k,ℓ |≥κλn} ψ j,k (x) -µ, (4.6) 
where j 0 is the resolution level satisfying 2

j 0 = [ln n], µ = 1 n n i=1 ρ(Y i ). (4.7) j 1 is the resolution level satisfying 2 j 1 = [n/(ln n) 3 ], 1 is the indicator function, κ is a large
enough constant (the one in Proposition 4.5) and

λ n = ln n n .
The definitions of the parameters in g ℓ are based on theoretical considerations (see the proof of Theorem 5.1). Let us mention that the threshold λ n corresponds to the well-known universal one presented in [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF] for the density estimation problem in a i.i.d. setting. Note that, due to the assumptions on the model, our wavelet hard thresholding estimator (4.6) is simpler than the one of [START_REF] Zhang | Wavelet threshold estimation for additive regression models[END_REF]. Wavelet hard thresolding estimators for g (1.1) defined with only one component, i.e., ℓ = d = 1 in a α-mixing dependence setting can be found in, e.g., [START_REF] Patil | Asymptotics for wavelet based estimates of piecewise smooth regression for stationary time series[END_REF] and [START_REF] Chesneau | On the adaptive wavelet estimation of a multidimensional regression function under α-mixing dependence: Beyond the standard assumptions on the noise[END_REF][START_REF] Chesneau | A general result on the mean integrated squared error of the wavelet hard thresholding estimator under α-mixing dependence[END_REF].

Minimax upper-bound result

Theorem 5.1 below investigates the minimax rates of convergence attained by g ℓ over Besov balls under the L 2 risk.

Theorem 5.1 Let ℓ ∈ {1, . . . , d}. Suppose that the assumptions of Section 2 hold. Let g ℓ be the estimator given in (4.6). Suppose that g ℓ ∈ B s p,q (M ) with q ≥ 1, {p ≥ 2 and s ∈ (0, R)} or {p ∈ [1, 2) and s ∈ (1/p, R)}. Then there exists a constant C 8 > 0 such that

E 1 0 ( g ℓ (x) -g ℓ (x)) 2 dx ≤ C 8 ln n n 2s/(2s+1)
.

The proof of Theorem 5.1 is based on a suitable decomposition of the L 2 risk and the statistical properties of (4.4) and (4.5) summarized in Propositions 4.2, 4.3, 4.4 and 4.5 above.

The rate (ln n/n) 2s/(2s+1) is, up to an extra logarithmic term, known to be the optimal one for the standard one-dimensional regression model with uniform random design in the i.i.d. case. See, e.g., [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and [START_REF] Tsybakov | Introduction à l'estimation non paramétrique[END_REF]. In this setting, it is also the rate of convergence attained by the one-dimensional wavelet hard thresholding estimator. See, e.g., [START_REF] Delyon | On minimax wavelet estimators[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF]. Theorem 5.1 provides an "adaptive contribution" to the results of [START_REF] Camlong-Viot | Nonparametric and semiparametric estimation of additive models with both discrete and continuous variables under dependence[END_REF], [START_REF] Debbarh | Asymptotic normality for the wavelets estimator of the additive regression components[END_REF] and [START_REF] Debbarh | Additive regression model for continuous time processes[END_REF][START_REF] Debbarh | Asymptotic normality of the additive regression components for continuous time processes[END_REF]. Furthermore, if we confine ourselves to the i.i.d. case, we recover a similar result to [40, Theorem 3] but without the condition s > max(d/2, d/p). The price to pay is more restrictive assumptions on the model (ρ is bounded from above, the density of X is known, etc.). Additionally, our estimator has a more straightforward and friendly implementation than the one in [START_REF] Zhang | Wavelet threshold estimation for additive regression models[END_REF].

Simulation results

In this section, a simulation study is conducted to illustrate the numerical performances of the above estimation procedure. Six test functions ("HeaviSine", "Parabolas', "Blocks", "Bumps", "Wave" and "Doppler") representing different degrees of smoothness were considered. These functions are displayed in Figure 1.

In the following, we will take d = 2. To generate n observations of the process (Y i , X i ), we first consider the first-order autoregressive AR(1) model

Z ℓ,i = ρ ℓ Z ℓ,i-1 + e ℓ,i , e ℓ,i ∼ iid N (0, 1), ρ ℓ ∈ (0, 1), i = 2, . . . , n, ℓ ∈ {1, 2} V i = µV i-1 + ε i , ε i ∼ iid N (0, 1), µ ∈ (0, 1), i = 2, . . . , n ,
with Z ℓ,1 ∼ N (0, 1) (resp. V 1 ∼ N (0, 1)) and independent of e ℓ,i (resp. of ε i ) for i ≥ 2, and Z ℓ,i and V i are mutually independent. Then, for any i ≥ 1 and ℓ ∈ {1, 2} we take

X ℓ,i = F N Z ℓ,i ; 0, 1 1-ρ 2 ℓ W i = 2σ W F N V i ; 0, 1 1-µ 2 -τ X 1,i -(1 + τ )/2 , σ W > 0, τ ≥ 0 Y i = g 1 (X 1,i ) + g 2 (X 2,i ) + W i ,
where F N (•; 0, σ 2 ) is the zero-mean normal distribution with variance σ 2 . The functions g 1 and g 2 are chosen among the test functions of Figure 1. Observe that when τ > 0, the processes Y i and X i are not mutually independent.

First, the process (V i , Z i ) is strictly stationary and strongly mixing. It follows from continuity of the distribution function that the stationarity and the mixing assumptions are met on the process (Y i , X i ); see e.g. [START_REF] Doukhan | Mixing. Properties and Examples[END_REF]. Second, it is immediate that for any i, X 1,i ∼ U([0, 1]) and so is X 2,i as required. In turn, this entails that the boundedness assumptions (2.6)-(2.8) hold. Third, as W i is zero-mean, we obviously have g 1 (x 1,i ) + g 2 (x 2,i ), i.e. ρ(Y ) = Y . In addition, since the noise process W i , as well as the test functions considered here are all bounded from above1 , the boundedness assumptions (2.4)-(2.5) are in force.

E(Y i |X i = x i ) =
In the following simulations, we set ρ 1 = 0.5, ρ 2 = 0.9, µ = 0.8, τ = 1/10, and the scale parameter σ W = 0.28, i.e. the signal-to-noise ratio is 5. The Daubechies wavelet db 4 (i.e. R = 2) was used. The constant κ in the hard thresholding estimator was set to γσ W , where γ was chosen in [0.25, 2.5] where it was observed empirically to lead to the best performance.

The numerical performance of the estimator was measured using the Mean Squared Error (MSE), i.e.

MSE = 1 n n i=1 (g(x i ) -g(x i )) 2 ,
where g is either of g 1 or g 2 , g its estimate, and x 1 , . . . , x n ∈ [0, 1] are the corresponding observed sampling points. Figure 2 displays the results of the estimator for different pairs of tested functions with two numbers of samples n. Visual inspection shows the good performance of our estimator which is able to adaptively recover a large class of functions spanning a wide range of spatial inhomogeneities. As expected, the estimation quality increases with growing n. This visual impression is confirmed quantitatively by Figure 3 and Figure 4. In these figures, the above simulation was repeated 100 times and the obtained MSE was averaged across these replications. Figure 3 depicts the boxplots of the MSE versus the function. Each plot corresponds to a fixed number of samples increasing from top to bottom. For a given number of samples, the average MSE and its variability is comparable for all functions, though they are slightly higher for the functions HeaviSine and Wave. As observed visually in Figure 2, the average MSE decreases with n as reported in Figure 4. Moreover, the average MSE shows a linear decreasing behaviour in log-log scale, which is clearly consistent with our theoretical convergence result. HeaviSine (g 1 ) + Parabolas (g 2 ), n = 256 2 HeaviSine (g 1 ) + Parabolas (g 2 ), n = 2048 

Proofs

In this section, the quantity C denotes any constant that does not depend on j, k and n. Its value may change from one term to another and may depends on φ or ψ.

Technical results on wavelets

Proof of Proposition 4.1. Because of (2.5), we have g ∈ L 2 ([0, 1] d ). For any j * ≥ τ , we can expand g on our wavelet-tensor product basis as

g(x) = k∈D j * α j * ,k Φ j * ,k (x) + 2 d -1 u=1 ∞ j=j * k∈D j β j,k,u Ψ j,k,u (x), x ∈ [0, 1] d (7.1)
where

α j * ,k = [0,1] d g(x)Φ j * ,k (x)dx, β j,k,u = [0,1] d g(x)Ψ j,k,u (x)dx.
Moreover, using the "marginal integration" method based on (2.1), we can write

g ℓ (x ℓ ) = [0,1] d-1 g(x) d v=1 v =ℓ dx v -µ, x ℓ ∈ [0, 1]. (7.2) Since 1 0 φ j,k (x)dx = 2 -j/2 and 1 0 ψ j,k (x)dx = 0, observe that [0,1] d-1 Φ j * ,k (x) d v=1 v =ℓ dx v = 2 -j * (d-1)/2 φ j * ,k ℓ (x ℓ ) and [0,1] d-1 Ψ j,k,u (x) d v=1 v =ℓ dx v = 2 -j(d-1)/2 ψ j,k ℓ (x ℓ ) if u = ℓ, 0 otherwise.
Therefore, putting (7.1) in (7.2) and writing x = x ℓ , we obtain

g ℓ (x) = k∈D j * 2 -j * (d-1)/2 α j * ,k φ j * ,k ℓ (x) + ∞ j=j * k∈D j 2 -j(d-1)/2 β j,k,ℓ ψ j,k ℓ (x) -µ.
Or, equivalently,

g ℓ (x) = 2 j * -1 k=1 a j * ,k,ℓ φ j * ,k (x) + ∞ j=j * 2 j -1 k=1 b j,k,ℓ ψ j,k (x) -µ,
where

a j,k,ℓ = a j,k ℓ ,ℓ = 2 -j(d-1)/2 [0,1] d g(x) k -ℓ ∈D * j Φ j,k (x)dx and b j,k,ℓ = b j,k ℓ ,ℓ = 2 -j(d-1)/2 [0,1] d g(x) k -ℓ ∈D * j Ψ j,k,ℓ (x)dx.
Proposition 4.1 is proved.

Proposition 7.1 For any ℓ ∈ {1, . . . , d}, j ≥ τ and k = k ℓ ∈ {0, . . . , 2 j -1}, set

h (1) j,k (x) = k -ℓ ∈D * j Φ j,k (x), h (2) 
j,k (x) = k -ℓ ∈D * j Ψ j,k,ℓ (x), x ∈ [0, 1] d .
Then there exists a constant C > 0 such that, for any a ∈ {1, 2}, 1) .

sup x∈[0,1] d |h (a) j,k (x)| ≤ C2 jd/2 , [0,1] d |h (a) j,k (x)|dx ≤ C2 -j/2 2 j(d-1)/2 and [0,1] d (h (a) j,k (x)) 2 dx = 2 j(d-
Proof:

• Since sup x∈[0,1] |φ j,k (x)| ≤ C2 j/2 and sup x∈[0,1] 2 j -1 k=0 |φ j,k (x)| ≤ C2 j/2 , we obtain sup x∈[0,1] d |h (1) j,k (x)| = ( sup x∈[0,1] |φ j,k (x)|)   sup x∈[0,1] 2 j -1 k=0 |φ j,k (x)|   d-1 ≤ C2 jd/2 .
• Using

1 0 |φ j,k (x)|dx = C2 -j/2
, we obtain

[0,1] d |h (1) j,k (x)|dx ≤ 1 0 |φ j,k (x)|dx   2 j -1 k=0 1 0 |φ j,k (x)|dx   d-1 = C2 -j/2 2 j(d-1)/2 .
• Since, for any 1) .

(u k ) k∈D j , [0,1] d k∈D j u k Φ j,k (x) 2 dx = k∈D j u 2 k , we obtain [0,1] d (h (1) 
j,k (x)) 2 dx = [0,1] d   k -ℓ ∈D * j Φ j,k (x)   2 dx = 2 j(d-
Proceeding in a similar fashion, using sup

x∈[0,1] |ψ j,k (x)| ≤ C2 j/2 , 1 0 |ψ j,k (x)|dx = C2 -j/2 and, for any (u k ) k∈D j , [0,1] d k∈D j u k Ψ j,k,ℓ (x) 
2 dx = k∈D j u 2 k , we obtain the same results for h

(2) j,k .
This ends the proof of Proposition 7.1.

Statistical properties of the coefficients estimators

Proof of Proposition 4.2. We have

E( a j,k,ℓ ) = 2 -j(d-1)/2 E   ρ(Y 1 ) f (X 1 ) k -ℓ ∈D * j Φ j,k (X 1 )   = 2 -j(d-1)/2 E   E(ρ(Y 1 )|X 1 ) 1 f (X 1 ) k -ℓ ∈D * j Φ j,k (X 1 )   = 2 -j(d-1)/2 E   g(X 1 ) f (X 1 ) k -ℓ ∈D * j Φ j,k (X 1 )   = 2 -j(d-1)/2 [0,1] d g(x) f (x) k -ℓ ∈D * j Φ j,k (x)f (x)dx = 2 -j(d-1)/2 [0,1] d g(x) k -ℓ ∈D * j Φ j,k (x)dx = a j,k,ℓ .
Proceeding in a similar fashion, we prove that E( b j,k,ℓ ) = b j,k,ℓ .

Proof of Proposition 4.3. For the sake of simplicity, for any i ∈ {1, . . . , n}, set

Z i = ρ(Y i ) f (X i ) k -ℓ ∈D * j Φ j,k (X i ).
Thanks to Proposition 4.2, we have

E ( a j,k,ℓ -a j,k,ℓ ) 2 = V( a j,k,ℓ ) = 2 -j(d-1) 1 n 2 V n i=1 Z i . (7.3) 
An elementary covariance decomposition gives

V n i=1 Z i = nV (Z 1 ) + 2 n v=2 v-1 u=1 Cov (Z v , Z u ) ≤ nV (Z 1 ) + 2 n v=2 v-1 u=1 Cov (Z v , Z u ) . (7.4) Using (2.5), (2.6 
) and Proposition 7.1, we have

V (Z 1 ) ≤ E(Z 2 1 ) ≤ sup y∈R ρ 2 (y) inf x∈[0,1] d f (x) E   1 f (X 1 )   k -ℓ ∈D * j Φ j,k (X 1 )   2   ≤ C [0,1] d 1 f (x)   k -ℓ ∈D * j Φ j,k (x)   2 f (x)dx = C [0,1] d   k -ℓ ∈D * j Φ j,k (x)   2 dx = C2 j(d-1) . (7.5) 
It follows from the stationarity of (Y i , X i ) i∈Z and 2 j ≤ n that

n v=2 v-1 u=1 Cov (Z v , Z u ) = n m=1 (n -m)Cov (Z 0 , Z m ) ≤ R 1 + R 2 , (7.6) 
where

R 1 = n 2 j -1 m=1 |Cov (Z 0 , Z m )| , R 2 = n n m=2 j |Cov (Z 0 , Z m )| .
It remains to bound R 1 and R 2 .

(i) Bound for R 1 . Let, for any (y, x,

y * , x * ) ∈ R × [0, 1] d × R × [0, 1] d , h m (y, x, y * , x * ) be (2.7
). Using (2.8), (2.4) and Proposition 7.1, we obtain 1) .

|Cov (Z 0 , Z m )| = ∞ -∞ [0,1] d ∞ -∞ [0,1] d h m (y, x, y * , x * ) ×   ρ(y) f (x) k -ℓ ∈D * j Φ j,k (x) ρ(y * ) f (x * ) k -ℓ ∈D * j Φ j,k (x * )   dydxdy * dx * ≤ ∞ -∞ [0,1] d ∞ -∞ [0,1] d |h m (y, x, y * , x * )| × ρ(y) f (x) k -ℓ ∈D * j Φ j,k (x) ρ(y * ) f (x * ) k -ℓ ∈D * j Φ j,k (x * ) dydxdy * dx * ≤ C ∞ -∞ |ρ(y)|dy 2   [0,1] d k -ℓ ∈D * j Φ j,k (x) dx   2 ≤ C2 -j 2 j(d-
Therefore

R 1 ≤ Cn2 -j 2 j(d-1) 2 j = Cn2 j(d-1) . (7.7) 
(ii) Bound for R 2 . By the Davydov inequality for strongly mixing processes (see [START_REF] Davydov | The invariance principle for stationary processes[END_REF]), for any q ∈ (0, 1), we have

|Cov (Z 0 , Z m )| ≤ 10α q m E |Z 0 | 2/(1-q) 1-q ≤ 10α q m   sup y∈R |ρ(y)| inf x∈[0,1] d f (x) sup x∈[0,1] d k -ℓ ∈D * j Φ j,k (x)   2q E(Z 2 0 ) 1-q .
By (2.5), (2.6) and Proposition 7.1, we have

sup y∈R |ρ(y)| inf x∈[0,1] d f (x) sup x∈[0,1] d k -ℓ ∈D * j Φ j,k (x) ≤ C sup x∈[0,1] d k -ℓ ∈D * j Φ j,k (x) ≤ C2 jd/2 .
By (7.5), we have 1) .

E Z 2 0 ≤ C2 j(d-
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Therefore

|Cov (Z 0 , Z m )| ≤ C2 qj 2 j(d-1) α q m .
Observe that ∞ m=1 m q α q m = γ q ∞ m=1 m q exp(-cqm) < ∞. Hence 1) . (7.8) Putting (7.6), (7.7) and (7.8) together, we have 1) . (7.9) Combining (7.3), (7.4), (7.5) and (7.9), we obtain

R 2 ≤ Cn2 qj 2 j(d-1) n m=2 j α q m ≤ Cn2 j(d-1) n m=2 j m q α q m ≤ Cn2 j(d-
n v=2 v-1 u=1 Cov (Z v , Z u ) ≤ Cn2 j(d-
E ( a j,k,ℓ -a j,k,ℓ ) 2 ≤ C2 -j(d-1) 1 n 2 n2 j(d-1) = C 1 n .
Proceeding in a similar fashion, we prove that

E ( b j,k,ℓ -b j,k,ℓ ) 2 ≤ C 1 n .
This ends the proof of Proposition 4.3.

Proof of Proposition 4.4. It follows from (2.5), (2.6) and Proposition 7.1 that

| b j,k,ℓ | ≤ 2 -j(d-1)/2 1 n n i=1 |ρ(Y i )| |f (X i )| k -ℓ ∈D * j Ψ j,k,ℓ (X i ) ≤ 2 -j(d-1)/2 sup y∈R |ρ(y)| inf x∈[0,1] d f (x) sup x∈[0,1] d k -ℓ ∈D * j Ψ j,k,ℓ (x) ≤ C2 -j(d-1)/2 2 jd/2 = C2 j/2 .
Because of (2. 

|b j,k,ℓ | ≤ 2 -j(d-1)/2 [0,1] d |g(x)| k -ℓ ∈D * j Ψ j,k,ℓ (x) dx ≤ C2 -j(d-1)/2 [0,1] d k -ℓ ∈D * j Ψ j,k,ℓ (x) dx ≤ C2 -j(d-1)/2 2 -j 2 jd/2 = C2 -j/2 . (7.10) Hence | b j,k,ℓ -b j,k,ℓ | ≤ | b j,k,ℓ | + |b j,k,ℓ | ≤ C2 j/2 . (7.11)
It follows from (7.11) and Proposition 4.3 that

E ( b j,k,ℓ -b j,k,ℓ ) 4 ≤ C2 j E ( b j,k,ℓ -b j,k,ℓ ) 2 ≤ C 2 j n .
The proof of Proposition 4.4 is complete.

Proof of Proposition 4.5. Let us first state a Bernstein inequality for exponentially strongly mixing process.

Lemma 7.1 ( [START_REF] Liebscher | Estimation of the density and the regression function under mixing conditions[END_REF]) Let (Y i ) i∈Z be a strictly stationary process with the m-th strongly mixing coefficient α m (2.2). Let n be a positive integer, h : R → C be a measurable function and, for any i ∈ Z, U i = h(Y i ). We assume that E(U 1 ) = 0 and there exists a constant M > 0 satisfying |U 1 | ≤ M . Then, for any m ∈ {1, . . . , [n/2]} and λ > 0, we have

P 1 n n i=1 U i ≥ λ ≤ 4 exp - λ 2 n 16(D m /m + λM m/3) + 32 M λ nα m ,
where D m = max l∈{1,...,2m} V l i=1 U i .

We now apply this lemma by setting for any i ∈ {1, . . . , n},

U i = 2 -j(d-1)/2 ρ(Y i ) f (X i ) k -ℓ ∈D * j Ψ j,k,ℓ (X i ) -b j,k,ℓ .
Then we can write

b j,k,ℓ -b j,k,ℓ = 1 n n i=1 U i . So P | b j,k,ℓ -b j,k,ℓ | ≥ κλ n /2 = P 1 n n i=1 U i ≥ κλ n /2 ,
where U 1 , . . . , U n are identically distributed, depend on (Y i , X i ) i∈Z satisfying (2.3),

• by Proposition 4.2, we have E(U 1 ) = 0,

• using arguments similar to the bound of R 1 in the proof of Proposition 4.3 with l instead of n satisfying l ≤ C ln n and 2 -j ≤ 1/ ln n, we prove that

V l i=1 U i ≤ C l + l 2 2 -j ≤ C l + l 2 ln n ≤ Cl.
Hence

D m = max l∈{1,...,2m} V l i=1 U i ≤ Cm.
• proceeding in a similar fashion to (7.11), we obtain |U 1 | ≤ C2 j/2 . Lemma 7.1 applied with the random variables U 1 , . . . , U n , λ = κλ n /2, λ n = (ln n/n) 1/2 , m = [u ln n] with u > 0 (chosen later), M = C2 j/2 , 2 j ≤ n/(ln n) 3 and (2.3) gives

P | b j,k,ℓ -b j,k,ℓ | ≥ κλ n /2 ≤ C exp -C κ 2 λ 2 n n D m /m + κλ n mM + M λ n n exp(-υm) ≤ C exp -C κ 2 ln n 1 + κu2 j/2 ln n(ln n/n) 1/2 + 2 j/2 (ln n/n) 1/2 n exp(-υu ln n) ≤ C n -Cκ 2 /(1+κu) + n 2-υu .
Therefore, for large enough κ and u, we have

P | b j,k,ℓ -b j,k,ℓ | ≥ κλ n /2 ≤ C 1 n 4 .
This ends the proof of Proposition 4.5.

Proof of Theorem 5.1

Using Proposition 4.1, we have

g ℓ (x) -g ℓ (x) = 2 j 0 -1 k=0 ( α j 0 ,k,ℓ -α j 0 ,k,ℓ )φ j 0 ,k (x) + j 1 j=j 0 2 j -1 k=0 ( b j,k,ℓ 1 {| b b j,k,ℓ |≥κλn} -b j,k,ℓ )ψ j,k (x) - ∞ j=j 1 +1 2 j -1 k=0 b j,k,ℓ ψ j,k (x) -( µ -µ).
Using the elementary inequality: (x + y) 2 ≤ 2(x 2 + y 2 ), (x, y) ∈ R 2 , and the orthonormal property of the wavelet basis, we have

E 1 0 ( g ℓ (x) -g ℓ (x)) 2 dx ≤ 2(T + U + V + W ), (7.12) 
where

T = E(( µ -µ) 2 ), U = 2 j 0 -1 k=0 E ( α j 0 ,k,ℓ -α j 0 ,k,ℓ ) 2 , V = j 1 j=j 0 2 j -1 k=0 E ( b j,k,ℓ 1 {| b b j,k,ℓ |≥κλn} -b j,k,ℓ ) 2 , W = ∞ j=j 1 +1 2 j -1 k=0 b 2 j,k,ℓ .
(i) Bound for T . We proceed as in the proof of Proposition 4.3. By (2.1), we have E(ρ(Y 1 )) = µ. Thanks to the stationarity of (Y i ) i∈Z , we have

T = V( µ) ≤ 1 n V(ρ(Y 1 )) + 2 1 n n m=1 |Cov (ρ(Y 0 ), ρ(Y m ))| .
Using (2.5), the Davydov inequality (see [START_REF] Davydov | The invariance principle for stationary processes[END_REF]) and (2.3), we obtain

T ≤ C 1 n 1 + n m=1 α q m ≤ C 1 n ≤ C ln n n 2s/(2s+1) . (7.13) 
(ii) Bound for U . Using Proposition 4.3, we obtain

U ≤ C2 j 0 1 n ≤ C ln n n ≤ C ln n n 2s/(2s+1) . (7.14) 
(iii) Bound for W . For q ≥ 1 and p ≥ 2, we have g ℓ ∈ B s p,q (M ) ⊆ B s 2,∞ (M ). Hence, by (4.3),

W ≤ C ∞ j=j 1 +1 2 -2js ≤ C2 -2j 1 s ≤ C (ln n) 3 n 2s ≤ C ln n n 2s/(2s+1)
.

For q ≥ 1 and p ∈ [1, 2), we have

g ℓ ∈ B s p,q (M ) ⊆ B s+1/2-1/p 2,∞ ( 
M ). Since s > 1/p, we have s + 1/2 -1/p > s/(2s + 1). So, by (4.3), W ≤ C ∞ j=j 1 +1 2 -2j(s+1/2-1/p) ≤ C2 -2j 1 (s+1/2-1/p) ≤ C (ln n) 3 n 2(s+1/2-1/p) ≤ C ln n n 2s/(2s+1)
.

Hence, for q ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

W ≤ C ln n n 2s/(2s+1) . (7.15) 
(iv) Bound for V . We will use arguments similar to [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF]Proposition 10.3]. Observe that

V = V 1 + V 2 + V 3 + V 4 , (7.16) 
where

V 1 = j 1 j=j 0 2 j -1 k=0 E ( b j,k,ℓ -b j,k,ℓ ) 2 1 {| b b j,k,ℓ |≥κλn, |b j,k,ℓ |<κλn/2} , V 2 = j 1 j=j 0 2 j -1 k=0 E ( b j,k,ℓ -b j,k,ℓ ) 2 1 {| b b j,k,ℓ |≥κλn, |b j,k,ℓ |≥κλn/2} , V 3 = j 1 j=j 0 2 j -1 k=0 E b 2 j,k,ℓ 1 {| b b j,k,ℓ |<κλn, |b j,k,ℓ |≥2κλn}
and

V 4 = j 1 j=j 0 2 j -1 k=0 E b 2 j,k,ℓ 1 {| b b j,k,ℓ |<κλn, |b j,k,ℓ |<2κλn} .
• Bounds for V 1 and V 3 . The following inclusions hold:

| b j,k,ℓ | < κλ n , |b j,k,ℓ | ≥ 2κλ n ⊆ | b j,k,ℓ -b j,k,ℓ | > κλ n /2 , | b j,k,ℓ | ≥ κλ n , |b j,k,ℓ | < κλ n /2 ⊆ | b j,k,ℓ -b j,k,ℓ | > κλ n /2 and | b j,k,ℓ | < κλ n , |b j,k,ℓ | ≥ 2κλ n ⊆ |b j,k,ℓ | ≤ 2| b j,k,ℓ -b j,k,ℓ | . So max(V 1 , V 3 ) ≤ C j 1 j=j 0 2 j -1 k=0 E ( b j,k,ℓ -b j,k,ℓ ) 2 1 {| b b j,k,ℓ -b j,k,ℓ |>κλn/2} .
Applying the Cauchy-Schwarz inequality and using Propositions 4.4, 4. We have .

V 2 ≤ V 2,1 + V 2,
For q ≥ 1 and p ≥ 2, we have g ℓ ∈ B s p,q (M ) ⊆ B s 2,∞ (M ). So, by (4.3),

V 2,2 ≤ C ln n nλ 2 n j 1 j=j 2 +1 2 j -1 k=0 b 2 j,k,ℓ ≤ C ∞ j=j 2 +1 2 j -1 k=0 β 2 j,k ≤ C2 -2j 2 s
≤ C ln n n 2s/(2s+1)

.

For q ≥ 1, p ∈ [1, 2) and s > 1/p, using (4. • Bound for V 4 . We have

V 4 ≤ j 1 j=j 0 2 j -1 k=0 b 2 j,k,ℓ 1 {|bj,k,ℓ|<2κλn} .
Let j 2 be the integer (7.18). Then .

For q ≥ 1 and p ≥ 2, we have g ℓ ∈ B s p,q (M ) ⊆ B s 2,∞ (M ). Hence, by (4.3),

V 4,2 ≤ ∞ j=j 2 +1 2 j -1 k=0 β 2 j,k ≤ C2 -2j 2 s ≤ C ln n n 2s/(2s+1)
.

For q ≥ 1, p ∈ [1, 2) and s > 1/p, using (4. .

Thus, for q ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have .

V
The proof of Theorem 5.1 is complete.
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 44 Moment inequality II) Under the same assumptions of Proposition 4.3, there exists a constant C 6 > 0 such that
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 1 Figure 1: Original test functions.
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 2 Figure 2: Original functions g ℓ (dashed) and their estimates g ℓ (solid), with ℓ = 1 (left) and ℓ = 2 (right) for different pairs of test functions, and two samples sizes (n = 256 2 and n = 2048 2 ).
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 3 Figure 3: Boxplots of the average MSE for each tested function with the same pairs as those of Figure 2. Each plot corresponds to a number of samples n ∈ {2 12 , 2 14 , . . . , 2 22 } increasingly from top to bottom.
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 4 Figure 4: Average MSE over 100 replications as a function of the number of samples.
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		Wave (g 1 ) + Doppler (g 2 ), n = 256 2		Wave (g 1 ) + Doppler (g 2 ), n = 2048 2	
	0.4								0.8									0.4									0.8									
	0.3								0.6									0.3									0.6									
	0.2								0.4									0.2									0.4									
	0.1								0.2									0.1									0.2									
									0																		0									
	0								-0.2									0									-0.2									
	-0.1								-0.4									-0.1									-0.4									
	-0.2								-0.6									-0.2									-0.6									
									-0.8																		-0.8									
	-0.3																	-0.3																		
									-1																		-1									
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

  Combining (7.12), (7.13), (7.14),(7.15) and (7.21), we have, for q ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

	E	0	1	( g ℓ (x) -g ℓ (x)) 2 dx ≤ C	n ln n	2s/(2s+1)
				4 ≤ C	ln n n	2s/(2s+1)	.	(7.20)
	It follows from (7.16), (7.17), (7.19) and (7.20) that
				V ≤ C	ln n n	2s/(2s+1)	.	(7.21)

For τ = 0, W1, . . . , Wn are identically distributed with the common distribution U([-σW , σW ]). For τ > 0, they are identically distributed according to the triangular distribution with support in [-σW (1 + τ ), σW (1 + τ )].
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