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Adaptive estimation of an additive regression

function from weakly dependent data

Christophe Chesneau∗, Jalal Fadili†and Bertrand Maillot∗

Abstract

A d-dimensional nonparametric additive regression model with dependent observa-

tions is considered. Using the marginal integration technique and wavelets methodology,

we develop a new adaptive estimator for a component of the additive regression func-

tion. Its asymptotic properties are investigated via the minimax approach under the

L2 risk over Besov balls. We prove that it attains a sharp rate of convergence which

turns to be the one obtained in the i.i.d. case for the standard univariate regression

estimation problem.

Keywords and phrases: Additive regression, Dependent data, Adaptivity, Wavelets, Hard

thresholding.

AMS 2000 Subject Classifications: 62G07, 62G20.

1 Introduction

1.1 Problem statement

Let d be a positive integer, (Yi,Xi)i∈Z be a R × [0, 1]d-valued strictly stationary process

on a probability space (Ω,A,P) and ρ be a given real measurable function. The unknown
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regression function associated to (Yi,Xi)i∈Z and ρ is defined by

g(x) = E(ρ(Y )|X = x), x = (x1, . . . , xd) ∈ [0, 1]d.

In the additive regression model, the function g is considered to have an additive structure,

i.e. there exist d unknown real measurable functions g1, . . . , gd and an unknown real number

µ such that

g(x) = µ+

d∑

ℓ=1

gℓ(xℓ). (1.1)

For any ℓ ∈ {1, . . . , d}, our goal is to estimate gℓ from n observations (Y1,X1), . . . , (Yn,Xn)

of (Yi,Xi)i∈Z.

1.2 Overview of previous work

When (Yi,Xi)i∈Z is a i.i.d. process, this additive regression model becomes the standard

one. In such a case, Stone in a series of papers [34, 35, 36] proved that g can be estimated

with the same rate of estimation error as in the one-dimensional case. The estimation of the

component gℓ has been investigated in several papers via various methods (kernel, splines,

wavelets, etc.). See, e.g., [4], [21], [23], [29, 30], [1], [2], [33], [40], [32] and [17].

In some applications, as dynamic economic systems and financial times series, the i.i.d.

assumption on the observations is too stringent (see, e.g., [19] and [38]). For this reason,

some authors have explored the estimation of gℓ in the dependent case. When (Yi,Xi)i∈Z

is a strongly mixing process, this problem has been addressed by [5], [11], and results for

continuous time processes under a strong mixing condition have been obtained by [12, 13].

In particular, they have developed non-adaptive kernel estimators for gℓ and studied its

asymptotic properties.

1.3 Contributions

To the best of our knowledge, adaptive estimation of gℓ for dependent processes has been

addressed only by [18]. The lack of results for adaptive estimation in this context motivates

this work. To reach our goal, as in [40], we combine the marginal integration technique

introduced by [28] with wavelet methods. We capitalize on wavelets to construct an adaptive

thresholding estimator and show that it attains sharp rates of convergence under mild
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assumptions on the smoothness of the unknown function. By adaptive, it is meant that the

parameters of the estimator do not depend on the parameter(s) of the dependent process

nor on those of the smoothness class of the function. In particular, this leads to a simple

estimator.

More precisely, our wavelet estimator is based on term-by-term hard thresholding. The

idea of this estimator is simple: (i) we estimate the unknown wavelet coefficients of gℓ based

on the observations; (ii) then we select the greatest ones and ignore the others; (iii) and

finally we reconstruct the function estimate from the chosen wavelet coefficients on the con-

sidered wavelet basis. Adopting the minimax point of view under the L2 risk, we prove that

our adaptive estimator attains a sharp rate of convergence over Besov balls which capture

a variety of smoothness features in a function including spatially inhomogeneous behav-

ior. The attained rate corresponds to the optimal one in the i.i.d. case for the univariate

regression estimation problem (up to an extra logarithmic term).

1.4 Paper organization

The rest of the paper is organized as follows. Section 2 presents our assumptions on the

model. In Section 3, we describe wavelet bases on [0, 1], Besov balls and tensor product

wavelet bases on [0, 1]d. Our wavelet hard thresholding estimator is detailed in Section 4.

Its rate of convergence under the L2 risk over Besov balls is established in Section 5. A

comprehensive simulation study is reported and discussed in Section 6. The proofs are

detailed in Section 7.

2 Notations and assumptions

In this work, we assume the following on our model:

Assumptions on the variables.

• For any i ∈ {1, . . . , n}, we set Xi = (X1,i, . . . ,Xd,i). We suppose that

– for any i ∈ {1, . . . , n}, X1,i, . . . ,Xd,i are identically distributed with the common

distribution U([0, 1]),

– X1, . . . ,Xn are identically distributed with the common known density f .
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• We suppose that the following identifiability condition is satisfied: for any ℓ ∈ {1, . . . , d}

and i ∈ {1, . . . , n}, we have

E(gℓ(Xℓ,i)) = 0. (2.1)

Strongly mixing assumption. Throughout this work, we use the strong mixing de-

pendence structure on (Yi,Xi)i∈Z. For any m ∈ Z, we define the m-th strongly mixing

coefficient of (Yi,Xi)i∈Z by

αm = sup
(A,B)∈F

(Y,X)
−∞,0×F

(Y,X)
m,∞

|P(A ∩B) − P(A)P(B)| , (2.2)

where F
(Y,X)
−∞,0 is the σ-algebra generated by . . . , (Y−1,X−1), (Y0,X0) and F

(Y,X)
m,∞ is the σ-

algebra generated by (Ym,Xm), (Ym+1,Xm+1), . . . .

We suppose that there exist two constants γ > 0 and υ > 0 such that, for any integer

m ≥ 1,

αm ≤ γ exp(−υm). (2.3)

This kind of dependence is reasonably weak. Further details on strongly mixing depen-

dence can be found in [3], [39], [16], [27] and [6].

Boundedness assumptions.

• We suppose that ρ ∈ L1(R) ∩ L∞(R), i.e. there exist constants C1 > 0 and C2 > 0

(supposed known) such that

∫∞
−∞ |ρ(y)|dy ≤ C1, (2.4)

and supy∈R |ρ(y)| ≤ C2. (2.5)

• We suppose that there exists a known constant c1 > 0 such that

inf
x∈[0,1]d

f(x) ≥ c1. (2.6)
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• For any m ∈ {1, . . . , n}, let f(Y0,X0,Ym,Xm) be the density of (Y0,X0, Ym,Xm), f(Y0,X0)

the density of (Y0,X0) and, for any (y,x, y∗,x∗) ∈ R × [0, 1]d × R × [0, 1]d,

hm(y,x, y∗,x∗) =

f(Y0,X0,Ym,Xm)(y,x, y∗,x∗) − f(Y0,X0)(y,x)f(Y0,X0)(y∗,x∗).

(2.7)

We suppose that there exists a known constant C3 > 0 such that

sup
m∈{1,...,n}

sup
(y,x,y∗,x∗)∈R×[0,1]d×R×[0,1]d

|hm(y,x, y∗,x∗)| ≤ C3. (2.8)

Such boundedness assumptions are standard for the estimation of gℓ from a strongly mixing

process. The most common example where this assumption holds is when ρ(y) = y1{|y|≤M},

where M denotes a positive constant. This corresponds to the nonparametric regression

model Y = g(X) + ε with E(ε) = 0, provided that ε and g are bounded from above. This

is exactly the setting considered in the simulations of Section 6. See, e.g., [12, 13] or, for

ℓ = d = 1, [25] and [31].

3 Wavelets and Besov balls

This section presents basics on wavelets and the sequential definitions of the Besov balls.

3.1 Wavelet bases on [0, 1]

Let R be a positive integer. We consider an orthonormal wavelet basis generated by dilations

and translations of the scaling and wavelet functions φ and ψ from the Daubechies family

db2R. In particular, φ and ψ have compact supports and unit L2-norm, and ψ has R

vanishing moments, i.e. for any r ∈ {0, . . . , R− 1},
∫
xrψ(x)dx = 0.

Define the scaled and translated version of φ and ψ

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then, with an appropriate treatment at the boundaries, there exists an integer τ satisfying

2τ ≥ 2R such that, for any integer j∗ ≥ τ , the collection

{φj∗,k(.), k ∈ {0, . . . , 2j∗ − 1}; ψj,k(.); j ∈ N − {0, . . . , j∗ − 1}, k ∈ {0, . . . , 2j − 1}},
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is an orthonormal basis of L2([0, 1]) = {h : [0, 1] → R;
∫ 1
0 h

2(x)dx <∞}. See [9, 24].

Consequently, for any integer j∗ ≥ τ , any h ∈ L2([0, 1]) can be expanded into a wavelet

series as

h(x) =
2j∗−1∑

k=0

αj∗,kφj∗,k(x) +
∞∑

j=j∗

2j−1∑

k=0

βj,kψj,k(x), x ∈ [0, 1],

where

αj,k =

∫ 1

0
h(x)φj,k(x)dx, βj,k =

∫ 1

0
h(x)ψj,k(x)dx. (3.1)

3.2 Besov balls

As is traditional in the wavelet estimation literature, we will investigate the performance

of our estimator by assuming that the unknown function to be estimated belongs to a

Besov ball. The Besov norm for a function can be related to a sequence space norm on its

wavelet coefficients. More precisely, let M > 0, s ∈ (0, R), p ≥ 1 and q ≥ 1. A function

h in L2([0, 1]) belongs to the Besov ball Bs
p,q(M) of radius M if, and only if, there exists

a constant M∗ > 0 (depending on M) such that the associated wavelet coefficients (3.1)

satisfy




∞∑

j=τ



2j(s+1/2−1/p)




2j−1∑

k=0

|βj,k|
p




1/p




q



1/q

≤M∗.

In this expression, s is a smoothness parameter and p and q are norm parameters. Besov

spaces include many traditional smoothness spaces. For particular choices of s, p and q,

Besov balls contain the standard Hölder and Sobolev balls. See [26].

3.3 Wavelet tensor product bases on [0, 1]d

For the purpose of this paper, we will use compactly supported tensor product wavelet bases

on [0, 1]d based on the Daubechies family. Let us briefly recall their construction. For any

x = (x1, . . . , xd) ∈ [0, 1]d, we construct a scaling function

Φ(x) =

d∏

v=1

φ(xv) ,
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and 2d − 1 wavelet functions

Ψu(x) =






ψ(xu)
d∏

v=1
v 6=u

φ(xv) when u ∈ {1, . . . , d},

∏

v∈Au

ψ(xv)
∏

v 6∈Au

φ(xv) when u ∈ {d+ 1, . . . , 2d − 1},

where (Au)u∈{d+1,...,2d−1} forms the set of all non void subsets of {1, . . . , d} of cardinality

greater or equal to 2.

For any integer j and any k = (k1, . . . , kd), define the translated and dilated versions of

Φ and Ψu as

Φj,k(x) = 2jd/2Φ(2jx1 − k1, . . . , 2
jxd − kd),

Ψj,k,u(x) = 2jd/2Ψu(2jx1 − k1, . . . , 2
jxd − kd), for any u ∈ {1, . . . , 2d − 1}.

Let Dj = {0, . . . , 2j − 1}d. Then, with an appropriate treatment at the boundaries,

there exists an integer τ such that the collection

{Φτ,k,k ∈ Dτ ; (Ψj,k,u)u∈{1,...,2d−1}, j ∈ N − {0, . . . , τ − 1}, k ∈ Dj}

forms an orthonormal basis of L2([0, 1]
d) = {h : [0, 1]d → R;

∫
[0,1]d h

2(x)dx <∞}.

For any integer j∗ such that j∗ ≥ τ , a function h ∈ L2([0, 1]
d) can be expanded into a

wavelet series as

h(x) =
∑

k∈Dj∗

αj∗,kΦj∗,k(x) +
2d−1∑

u=1

∞∑

j=j∗

∑

k∈Dj

βj,k,uΨj,k,u(x), x ∈ [0, 1]d,

where

αj∗,k =

∫

[0,1]d
h(x)Φj∗,k(x)dx, βj,k,u =

∫

[0,1]d
h(x)Ψj,k,u(x)dx. (3.2)

4 The estimator

4.1 Wavelet coefficients estimator

The following proposition provides a wavelet decomposition of gℓ based on the “marginal

integration” method (introduced by [28]) and a tensor product wavelet basis on [0, 1]d.
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Proposition 4.1 Suppose that (2.1) holds. Then, for any j∗ ≥ τ and ℓ ∈ {1, . . . , d}, we

can write

gℓ(x) =

2j∗−1∑

k=1

aj∗,k,ℓφj∗,k(x) +

∞∑

j=j∗

2j−1∑

k=1

bj,k,ℓψj,k(x) − µ, x ∈ [0, 1],

where

aj∗,k,ℓ = aj∗,kℓ,ℓ = 2−j∗(d−1)/2

∫

[0,1]d
g(x)

∑

k−ℓ∈D∗
j∗

Φj∗,k(x)dx, (4.1)

bj,k,ℓ = bj,kℓ,ℓ = 2−j(d−1)/2

∫

[0,1]d
g(x)

∑

k−ℓ∈D∗
j

Ψj,k,ℓ(x)dx, (4.2)

and k−ℓ = (k1, . . . , kℓ−1, kℓ+1, . . . , kd) and D∗
j = {0, . . . , 2j − 1}d−1.

Remark 4.1 Due to the definitions of g and properties of Ψj,k,ℓ, bj,k,ℓ is nothing but the

wavelet coefficient of gℓ, i.e.

bj,k,ℓ =

∫ 1

0
gℓ(x)ψj,k(x)dx = βj,k. (4.3)

Proposition 4.1 suggests that a first step to estimate gℓ should consist in estimating

the unknown coefficients aj,k,ℓ (4.1) and bj,k,ℓ (4.2). To this end, we propose the following

estimators of the coefficients

âj,k,ℓ = âj,kℓ,ℓ = 2−j(d−1)/2 1

n

n∑

i=1

ρ(Yi)

f(Xi)

∑

k−ℓ∈D∗
j

Φj,k(Xi) (4.4)

and

b̂j,k,ℓ = b̂j,kℓ,ℓ = 2−j(d−1)/2 1

n

n∑

i=1

ρ(Yi)

f(Xi)

∑

k−ℓ∈D∗
j

Ψj,k,ℓ(Xi). (4.5)

These estimators enjoy powerful statistical properties. Some of them are collected in

the following propositions.

Proposition 4.2 (Unbiasedness) Suppose that (2.1) holds. For any j ≥ τ , ℓ ∈ {1, . . . , d}

and k ∈ {0, . . . , 2j − 1}, âj,k,ℓ and b̂j,k,ℓ in (4.4) and (4.5) are unbiased estimators of aj,k,ℓ

and bj,k,ℓ respectively.
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The key ingredient for the proof of Proposition 4.2 is Proposition 4.1.

Proposition 4.3 (Moment inequality I) Suppose that the assumptions of Section 2 hold.

Let j ≥ τ such that 2j ≤ n, k ∈ {0, . . . , 2j − 1}, ℓ ∈ {1, . . . , d}. Then there exists a constant

C4 > 0 such that

E
(
(âj,k,ℓ − aj,k,ℓ)

2
)
≤ C4

1

n
, E

(
(̂bj,k,ℓ − bj,k,ℓ)

2
)
≤ C4

1

n
.

The proof of Proposition 4.3 is based on several covariance inequalities and the Davydov

inequality for strongly mixing processes (see [10]).

Remark 4.2 In the proof of Proposition 4.3, for the condition on αm, we only need to have

the existence of two constants C5 > 0 and q ∈ (0, 1) such that
∑n

m=1m
qαq

m ≤ C5 < ∞.

This latter inequality is obviously satisfied by (2.3).

Proposition 4.4 (Moment inequality II) Under the same assumptions of Proposition 4.3,

there exists a constant C6 > 0 such that

E

(
(̂bj,k,ℓ − bj,k,ℓ)

4
)
≤ C6

2j

n
.

Proposition 4.5 (Concentration inequality) Suppose that the assumptions of Section 2

hold. Let j ≥ τ such that lnn ≤ 2j ≤ n/(lnn)3, k ∈ {0, . . . , 2j − 1}, ℓ ∈ {1, . . . , d} and

λn = (ln n/n)1/2. Then there exist two constants C7 > 0 and κ > 0 such that

P

(
|̂bj,k,ℓ − bj,k,ℓ| ≥ κλn/2

)
≤ C7

1

n4
.

The proof of Proposition 4.3 is based on a Bernstein like inequality for strongly mixing

processes (see [22]).

4.2 Hard thresholding estimator

We now turn to the estimator of gℓ from âj,k,ℓ and b̂j,k,ℓ as introduced in (4.4) and (4.5).

Towards this goal, we will only keep the significant wavelet coefficients that are above a

certain threshold according to the hard thresholding rule, and then reconstruct from these

coefficients. In a compact form, this reads

ĝℓ(x) =

2j0−1∑

k=0

âj0,k,ℓφj0,k(x) +

j1∑

j=j0

2j−1∑

k=0

b̂j,k,ℓ1{|bbj,k,ℓ|≥κλn}ψj,k(x) − µ̂, (4.6)
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where j0 is the resolution level satisfying 2j0 = [lnn],

µ̂ =
1

n

n∑

i=1

ρ(Yi). (4.7)

j1 is the resolution level satisfying 2j1 = [n/(lnn)3], 1 is the indicator function, κ is a large

enough constant (the one in Proposition 4.5) and

λn =

√
lnn

n
.

The definitions of the parameters in ĝℓ are based on theoretical considerations (see the

proof of Theorem 5.1). Let us mention that the threshold λn corresponds to the well-known

universal one presented in [15] for the density estimation problem in a i.i.d. setting. Note

that, due to the assumptions on the model, our wavelet hard thresholding estimator (4.6)

is simpler than the one of [40]. Wavelet hard thresolding estimators for g (1.1) defined with

only one component, i.e., ℓ = d = 1 in a α-mixing dependence setting can be found in, e.g.,

[31] and [7, 8].

5 Minimax upper-bound result

Theorem 5.1 below investigates the minimax rates of convergence attained by ĝℓ over Besov

balls under the L2 risk.

Theorem 5.1 Let ℓ ∈ {1, . . . , d}. Suppose that the assumptions of Section 2 hold. Let ĝℓ be

the estimator given in (4.6). Suppose that gℓ ∈ Bs
p,q(M) with q ≥ 1, {p ≥ 2 and s ∈ (0, R)}

or {p ∈ [1, 2) and s ∈ (1/p,R)}. Then there exists a constant C8 > 0 such that

E

(∫ 1

0
(ĝℓ(x) − gℓ(x))

2dx

)
≤ C8

(
lnn

n

)2s/(2s+1)

.

The proof of Theorem 5.1 is based on a suitable decomposition of the L2 risk and the

statistical properties of (4.4) and (4.5) summarized in Propositions 4.2, 4.3, 4.4 and 4.5

above.

The rate (lnn/n)2s/(2s+1) is, up to an extra logarithmic term, known to be the optimal

one for the standard one-dimensional regression model with uniform random design in the

i.i.d. case. See, e.g., [20] and [37]. In this setting, it is also the rate of convergence attained

by the one-dimensional wavelet hard thresholding estimator. See, e.g., [14] and [20].
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Theorem 5.1 provides an “adaptive contribution” to the results of [5], [11] and [12,

13]. Furthermore, if we confine ourselves to the i.i.d. case, we recover a similar result to

[40, Theorem 3] but without the condition s > max(d/2, d/p). The price to pay is more

restrictive assumptions on the model (ρ is bounded from above, the density of X is known,

etc.). Additionally, our estimator has a more straightforward and friendly implementation

than the one in [40].

6 Simulation results

In this section, a simulation study is conducted to illustrate the numerical performances

of the above estimation procedure. Six test functions (”HeaviSine”, ”Parabolas’, ”Blocks”,

”Bumps”, ”Wave” and ”Doppler”) representing different degrees of smoothness were con-

sidered. These functions are displayed in Figure 1.

In the following, we will take d = 2. To generate n observations of the process (Yi,Xi),

we first consider the first-order autoregressive AR(1) model

Zℓ,i = ρℓZℓ,i−1 + eℓ,i, eℓ,i ∼iid N (0, 1), ρℓ ∈ (0, 1), i = 2, . . . , n, ℓ ∈ {1, 2}

Vi = µVi−1 + εi, εi ∼iid N (0, 1), µ ∈ (0, 1), i = 2, . . . , n ,

with Zℓ,1 ∼ N (0, 1) (resp. V1 ∼ N (0, 1)) and independent of eℓ,i (resp. of εi) for i ≥ 2, and

Zℓ,i and Vi are mutually independent. Then, for any i ≥ 1 and ℓ ∈ {1, 2} we take

Xℓ,i = FN

(
Zℓ,i; 0,

1
1−ρ2

ℓ

)

Wi = 2σW

(
FN

(
Vi; 0,

1
1−µ2

)
− τX1,i − (1 + τ)/2

)
, σW > 0, τ ≥ 0

Yi = g1(X1,i) + g2(X2,i) +Wi ,

where FN (·; 0, σ2) is the zero-mean normal distribution with variance σ2. The functions

g1 and g2 are chosen among the test functions of Figure 1. Observe that when τ > 0, the

processes Yi and Xi are not mutually independent.

First, the process (Vi,Zi) is strictly stationary and strongly mixing. It follows from

continuity of the distribution function that the stationarity and the mixing assumptions

are met on the process (Yi,Xi); see e.g. [16]. Second, it is immediate that for any i,

X1,i ∼ U([0, 1]) and so is X2,i as required. In turn, this entails that the boundedness

assumptions (2.6)-(2.8) hold. Third, as Wi is zero-mean, we obviously have E(Yi|Xi = xi) =

11
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Figure 1: Original test functions.
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g1(x1,i) + g2(x2,i), i.e. ρ(Y ) = Y . In addition, since the noise process Wi, as well as the

test functions considered here are all bounded from above1, the boundedness assumptions

(2.4)-(2.5) are in force.

In the following simulations, we set ρ1 = 0.5, ρ2 = 0.9, µ = 0.8, τ = 1/10, and the scale

parameter σW = 0.28, i.e. the signal-to-noise ratio is 5. The Daubechies wavelet db4 (i.e.

R = 2) was used. The constant κ in the hard thresholding estimator was set to γσW , where

γ was chosen in [0.25, 2.5] where it was observed empirically to lead to the best performance.

The numerical performance of the estimator was measured using the Mean Squared Error

(MSE), i.e.

MSE =
1

n

n∑

i=1

(g(xi) − ĝ(xi))
2 ,

where g is either of g1 or g2, ĝ its estimate, and x1, . . . , xn ∈ [0, 1] are the corresponding

observed sampling points.

Figure 2 displays the results of the estimator for different pairs of tested functions with

two numbers of samples n. Visual inspection shows the good performance of our estimator

which is able to adaptively recover a large class of functions spanning a wide range of

spatial inhomogeneities. As expected, the estimation quality increases with growing n. This

visual impression is confirmed quantitatively by Figure 3 and Figure 4. In these figures,

the above simulation was repeated 100 times and the obtained MSE was averaged across

these replications. Figure 3 depicts the boxplots of the MSE versus the function. Each plot

corresponds to a fixed number of samples increasing from top to bottom. For a given number

of samples, the average MSE and its variability is comparable for all functions, though they

are slightly higher for the functions HeaviSine and Wave. As observed visually in Figure 2,

the average MSE decreases with n as reported in Figure 4. Moreover, the average MSE

shows a linear decreasing behaviour in log-log scale, which is clearly consistent with our

theoretical convergence result.

1For τ = 0, W1, . . . , Wn are identically distributed with the common distribution U([−σW , σW ]). For

τ > 0, they are identically distributed according to the triangular distribution with support in [−σW (1 +

τ ), σW (1 + τ )].
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Figure 2: Original functions gℓ (dashed) and their estimates ĝℓ (solid), with ℓ = 1 (left)

and ℓ = 2 (right) for different pairs of test functions, and two samples sizes (n = 2562 and

n = 20482).
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15



7 Proofs

In this section, the quantity C denotes any constant that does not depend on j, k and n.

Its value may change from one term to another and may depends on φ or ψ.

7.1 Technical results on wavelets

Proof of Proposition 4.1. Because of (2.5), we have g ∈ L2([0, 1]
d). For any j∗ ≥ τ , we

can expand g on our wavelet-tensor product basis as

g(x) =
∑

k∈Dj∗

αj∗,kΦj∗,k(x) +

2d−1∑

u=1

∞∑

j=j∗

∑

k∈Dj

βj,k,uΨj,k,u(x), x ∈ [0, 1]d (7.1)

where

αj∗,k =

∫

[0,1]d
g(x)Φj∗,k(x)dx, βj,k,u =

∫

[0,1]d
g(x)Ψj,k,u(x)dx.

Moreover, using the “marginal integration” method based on (2.1), we can write

gℓ(xℓ) =

∫

[0,1]d−1

g(x)

d∏

v=1
v 6=ℓ

dxv − µ, xℓ ∈ [0, 1]. (7.2)

Since
∫ 1
0 φj,k(x)dx = 2−j/2 and

∫ 1
0 ψj,k(x)dx = 0, observe that

∫

[0,1]d−1

Φj∗,k(x)

d∏

v=1
v 6=ℓ

dxv = 2−j∗(d−1)/2φj∗,kℓ
(xℓ)

and

∫

[0,1]d−1

Ψj,k,u(x)

d∏

v=1
v 6=ℓ

dxv =

{
2−j(d−1)/2ψj,kℓ

(xℓ) if u = ℓ,

0 otherwise.

Therefore, putting (7.1) in (7.2) and writing x = xℓ, we obtain

gℓ(x) =
∑

k∈Dj∗

2−j∗(d−1)/2αj∗,kφj∗,kℓ
(x) +

∞∑

j=j∗

∑

k∈Dj

2−j(d−1)/2βj,k,ℓψj,kℓ
(x) − µ.
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Or, equivalently,

gℓ(x) =
2j∗−1∑

k=1

aj∗,k,ℓφj∗,k(x) +
∞∑

j=j∗

2j−1∑

k=1

bj,k,ℓψj,k(x) − µ,

where

aj,k,ℓ = aj,kℓ,ℓ = 2−j(d−1)/2

∫

[0,1]d
g(x)

∑

k−ℓ∈D∗
j

Φj,k(x)dx

and

bj,k,ℓ = bj,kℓ,ℓ = 2−j(d−1)/2

∫

[0,1]d
g(x)

∑

k−ℓ∈D∗
j

Ψj,k,ℓ(x)dx.

Proposition 4.1 is proved.

Proposition 7.1 For any ℓ ∈ {1, . . . , d}, j ≥ τ and k = kℓ ∈ {0, . . . , 2j − 1}, set

h
(1)
j,k(x) =

∑

k−ℓ∈D∗
j

Φj,k(x), h
(2)
j,k(x) =

∑

k−ℓ∈D∗
j

Ψj,k,ℓ(x), x ∈ [0, 1]d.

Then there exists a constant C > 0 such that, for any a ∈ {1, 2},

sup
x∈[0,1]d

|h
(a)
j,k (x)| ≤ C2jd/2,

∫

[0,1]d
|h

(a)
j,k (x)|dx ≤ C2−j/22j(d−1)/2

and ∫

[0,1]d
(h

(a)
j,k (x))2dx = 2j(d−1).

Proof:

• Since supx∈[0,1] |φj,k(x)| ≤ C2j/2 and supx∈[0,1]

∑2j−1
k=0 |φj,k(x)| ≤ C2j/2, we obtain

sup
x∈[0,1]d

|h
(1)
j,k(x)| = ( sup

x∈[0,1]
|φj,k(x)|)



 sup
x∈[0,1]

2j−1∑

k=0

|φj,k(x)|




d−1

≤ C2jd/2.
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• Using
∫ 1
0 |φj,k(x)|dx = C2−j/2, we obtain

∫

[0,1]d
|h

(1)
j,k(x)|dx ≤

(∫ 1

0
|φj,k(x)|dx

)


2j−1∑

k=0

∫ 1

0
|φj,k(x)|dx




d−1

= C2−j/22j(d−1)/2.

• Since, for any (uk)k∈Dj
,
∫
[0,1]d

(∑
k∈Dj

ukΦj,k(x)
)2
dx =

∑
k∈Dj

u2
k
, we obtain

∫

[0,1]d
(h

(1)
j,k(x))2dx =

∫

[0,1]d




∑

k−ℓ∈D∗
j

Φj,k(x)




2

dx = 2j(d−1).

Proceeding in a similar fashion, using supx∈[0,1] |ψj,k(x)| ≤ C2j/2,
∫ 1
0 |ψj,k(x)|dx =

C2−j/2 and, for any (uk)k∈Dj
,
∫
[0,1]d

(∑
k∈Dj

ukΨj,k,ℓ(x)
)2
dx =

∑
k∈Dj

u2
k
, we obtain

the same results for h
(2)
j,k .

This ends the proof of Proposition 7.1.

7.2 Statistical properties of the coefficients estimators

Proof of Proposition 4.2. We have

E(âj,k,ℓ) = 2−j(d−1)/2
E



 ρ(Y1)

f(X1)

∑

k−ℓ∈D∗
j

Φj,k(X1)





= 2−j(d−1)/2
E



E(ρ(Y1)|X1)
1

f(X1)

∑

k−ℓ∈D∗
j

Φj,k(X1)





= 2−j(d−1)/2
E



 g(X1)

f(X1)

∑

k−ℓ∈D∗
j

Φj,k(X1)





= 2−j(d−1)/2

∫

[0,1]d

g(x)

f(x)

∑

k−ℓ∈D∗
j

Φj,k(x)f(x)dx

= 2−j(d−1)/2

∫

[0,1]d
g(x)

∑

k−ℓ∈D∗
j

Φj,k(x)dx = aj,k,ℓ.
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Proceeding in a similar fashion, we prove that E(̂bj,k,ℓ) = bj,k,ℓ.

Proof of Proposition 4.3. For the sake of simplicity, for any i ∈ {1, . . . , n}, set

Zi =
ρ(Yi)

f(Xi)

∑

k−ℓ∈D∗
j

Φj,k(Xi).

Thanks to Proposition 4.2, we have

E
(
(âj,k,ℓ − aj,k,ℓ)

2
)

= V(âj,k,ℓ) = 2−j(d−1) 1

n2
V

(
n∑

i=1

Zi

)

. (7.3)

An elementary covariance decomposition gives

V

(
n∑

i=1

Zi

)

= nV (Z1) + 2

n∑

v=2

v−1∑

u=1

Cov (Zv, Zu)

≤ nV (Z1) + 2

∣∣∣∣∣

n∑

v=2

v−1∑

u=1

Cov (Zv, Zu)

∣∣∣∣∣ . (7.4)

Using (2.5), (2.6) and Proposition 7.1, we have

V (Z1) ≤ E(Z2
1 ) ≤

supy∈R ρ
2(y)

infx∈[0,1]d f(x)
E



 1

f(X1)




∑

k−ℓ∈D∗
j

Φj,k(X1)




2



≤ C

∫

[0,1]d

1

f(x)




∑

k−ℓ∈D∗
j

Φj,k(x)




2

f(x)dx

= C

∫

[0,1]d




∑

k−ℓ∈D∗
j

Φj,k(x)




2

dx = C2j(d−1). (7.5)

It follows from the stationarity of (Yi,Xi)i∈Z and 2j ≤ n that
∣∣∣∣∣

n∑

v=2

v−1∑

u=1

Cov (Zv, Zu)

∣∣∣∣∣ =

∣∣∣∣∣

n∑

m=1

(n−m)Cov (Z0, Zm)

∣∣∣∣∣ ≤ R1 +R2, (7.6)

where

R1 = n
2j−1∑

m=1

|Cov (Z0, Zm)| , R2 = n
n∑

m=2j

|Cov (Z0, Zm)| .

It remains to bound R1 and R2.
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(i) Bound for R1. Let, for any (y,x, y∗,x∗) ∈ R× [0, 1]d ×R× [0, 1]d, hm(y,x, y∗,x∗) be

(2.7). Using (2.8), (2.4) and Proposition 7.1, we obtain

|Cov (Z0, Zm)|

=

∣∣∣∣

∫ ∞

−∞

∫

[0,1]d

∫ ∞

−∞

∫

[0,1]d
hm(y,x, y∗,x∗) ×



 ρ(y)

f(x)

∑

k−ℓ∈D∗
j

Φj,k(x)
ρ(y∗)

f(x∗)

∑

k−ℓ∈D∗
j

Φj,k(x∗)



 dydxdy∗dx∗

∣∣∣∣

≤

∫ ∞

−∞

∫

[0,1]d

∫ ∞

−∞

∫

[0,1]d
|hm(y,x, y∗,x∗)| ×

∣∣∣∣
ρ(y)

f(x)

∣∣∣∣

∣∣∣∣∣∣

∑

k−ℓ∈D∗
j

Φj,k(x)

∣∣∣∣∣∣

∣∣∣∣
ρ(y∗)

f(x∗)

∣∣∣∣

∣∣∣∣∣∣

∑

k−ℓ∈D∗
j

Φj,k(x∗)

∣∣∣∣∣∣
dydxdy∗dx∗

≤ C

(∫ ∞

−∞
|ρ(y)|dy

)2



∫

[0,1]d

∣∣∣∣∣∣

∑

k−ℓ∈D∗
j

Φj,k(x)

∣∣∣∣∣∣
dx




2

≤ C2−j2j(d−1).

Therefore

R1 ≤ Cn2−j2j(d−1)2j = Cn2j(d−1). (7.7)

(ii) Bound for R2. By the Davydov inequality for strongly mixing processes (see [10]),

for any q ∈ (0, 1), we have

|Cov (Z0, Zm)| ≤ 10αq
m

(
E

(
|Z0|

2/(1−q)
))1−q

≤ 10αq
m



 supy∈R |ρ(y)|

infx∈[0,1]d f(x)
sup

x∈[0,1]d

∣∣∣∣∣∣

∑

k−ℓ∈D∗
j

Φj,k(x)

∣∣∣∣∣∣




2q

(
E(Z2

0 )
)1−q

.

By (2.5), (2.6) and Proposition 7.1, we have

supy∈R |ρ(y)|

infx∈[0,1]d f(x)
sup

x∈[0,1]d

∣∣∣∣∣∣

∑

k−ℓ∈D∗
j

Φj,k(x)

∣∣∣∣∣∣
≤ C sup

x∈[0,1]d

∣∣∣∣∣∣

∑

k−ℓ∈D∗
j

Φj,k(x)

∣∣∣∣∣∣

≤ C2jd/2.

By (7.5), we have

E
(
Z2

0

)
≤ C2j(d−1).
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Therefore

|Cov (Z0, Zm)| ≤ C2qj2j(d−1)αq
m.

Observe that
∑∞

m=1m
qαq

m = γq
∑∞

m=1m
q exp(−cqm) <∞. Hence

R2 ≤ Cn2qj2j(d−1)
n∑

m=2j

αq
m ≤ Cn2j(d−1)

n∑

m=2j

mqαq
m ≤ Cn2j(d−1). (7.8)

Putting (7.6), (7.7) and (7.8) together, we have

∣∣∣∣∣

n∑

v=2

v−1∑

u=1

Cov (Zv, Zu)

∣∣∣∣∣ ≤ Cn2j(d−1). (7.9)

Combining (7.3), (7.4), (7.5) and (7.9), we obtain

E
(
(âj,k,ℓ − aj,k,ℓ)

2
)
≤ C2−j(d−1) 1

n2
n2j(d−1) = C

1

n
.

Proceeding in a similar fashion, we prove that

E

(
(̂bj,k,ℓ − bj,k,ℓ)

2
)
≤ C

1

n
.

This ends the proof of Proposition 4.3.

Proof of Proposition 4.4. It follows from (2.5), (2.6) and Proposition 7.1 that

|̂bj,k,ℓ| ≤ 2−j(d−1)/2 1

n

n∑

i=1

|ρ(Yi)|

|f(Xi)|

∣∣∣∣∣∣

∑

k−ℓ∈D∗
j

Ψj,k,ℓ(Xi)

∣∣∣∣∣∣

≤ 2−j(d−1)/2 supy∈R |ρ(y)|

infx∈[0,1]d f(x)
sup

x∈[0,1]d

∣∣∣∣∣∣

∑

k−ℓ∈D∗
j

Ψj,k,ℓ(x)

∣∣∣∣∣∣

≤ C2−j(d−1)/22jd/2 = C2j/2.
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Because of (2.5), we have supx∈[0,1]d |g(x)| ≤ C. It follows from Proposition 7.1 that

|bj,k,ℓ| ≤ 2−j(d−1)/2

∫

[0,1]d
|g(x)|

∣∣∣∣∣∣

∑

k−ℓ∈D∗
j

Ψj,k,ℓ(x)

∣∣∣∣∣∣
dx

≤ C2−j(d−1)/2

∫

[0,1]d

∣∣∣∣∣∣

∑

k−ℓ∈D∗
j

Ψj,k,ℓ(x)

∣∣∣∣∣∣
dx

≤ C2−j(d−1)/22−j2jd/2 = C2−j/2. (7.10)

Hence

|̂bj,k,ℓ − bj,k,ℓ| ≤ |̂bj,k,ℓ| + |bj,k,ℓ| ≤ C2j/2. (7.11)

It follows from (7.11) and Proposition 4.3 that

E

(
(̂bj,k,ℓ − bj,k,ℓ)

4
)
≤ C2j

E

(
(̂bj,k,ℓ − bj,k,ℓ)

2
)
≤ C

2j

n
.

The proof of Proposition 4.4 is complete.

Proof of Proposition 4.5. Let us first state a Bernstein inequality for exponentially

strongly mixing process.

Lemma 7.1 ([22]) Let (Yi)i∈Z be a strictly stationary process with the m-th strongly mixing

coefficient αm (2.2). Let n be a positive integer, h : R → C be a measurable function and,

for any i ∈ Z, Ui = h(Yi). We assume that E(U1) = 0 and there exists a constant M > 0

satisfying |U1| ≤M . Then, for any m ∈ {1, . . . , [n/2]} and λ > 0, we have

P

(∣∣∣∣∣
1

n

n∑

i=1

Ui

∣∣∣∣∣ ≥ λ

)
≤ 4 exp

(
−

λ2n

16(Dm/m+ λMm/3)

)
+ 32

M

λ
nαm,

where Dm = maxl∈{1,...,2m} V

(∑l
i=1 Ui

)
.

We now apply this lemma by setting for any i ∈ {1, . . . , n},

Ui = 2−j(d−1)/2 ρ(Yi)

f(Xi)

∑

k−ℓ∈D∗
j

Ψj,k,ℓ(Xi) − bj,k,ℓ.
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Then we can write

b̂j,k,ℓ − bj,k,ℓ =
1

n

n∑

i=1

Ui.

So

P

(
|̂bj,k,ℓ − bj,k,ℓ| ≥ κλn/2

)
= P

(∣∣∣∣∣
1

n

n∑

i=1

Ui

∣∣∣∣∣ ≥ κλn/2

)

,

where U1, . . . , Un are identically distributed, depend on (Yi,Xi)i∈Z satisfying (2.3),

• by Proposition 4.2, we have E(U1) = 0,

• using arguments similar to the bound of R1 in the proof of Proposition 4.3 with l

instead of n satisfying l ≤ C lnn and 2−j ≤ 1/ ln n, we prove that

V

(
l∑

i=1

Ui

)

≤ C
(
l + l22−j

)
≤ C

(
l +

l2

lnn

)
≤ Cl.

Hence

Dm = max
l∈{1,...,2m}

V

(
l∑

i=1

Ui

)
≤ Cm.

• proceeding in a similar fashion to (7.11), we obtain |U1| ≤ C2j/2.

Lemma 7.1 applied with the random variables U1, . . . , Un, λ = κλn/2, λn = (lnn/n)1/2,

m = [u lnn] with u > 0 (chosen later), M = C2j/2, 2j ≤ n/(lnn)3 and (2.3) gives

P

(
|̂bj,k,ℓ − bj,k,ℓ| ≥ κλn/2

)

≤ C

(
exp

(
−C

κ2λ2
nn

Dm/m+ κλnmM

)
+
M

λn
n exp(−υm)

)

≤ C

(

exp

(
−C

κ2 lnn

1 + κu2j/2 lnn(lnn/n)1/2

)
+

2j/2

(ln n/n)1/2
n exp(−υu ln n)

)

≤ C
(
n−Cκ2/(1+κu) + n2−υu

)
.

Therefore, for large enough κ and u, we have

P

(
|̂bj,k,ℓ − bj,k,ℓ| ≥ κλn/2

)
≤ C

1

n4
.

This ends the proof of Proposition 4.5.
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7.3 Proof of Theorem 5.1

Using Proposition 4.1, we have

ĝℓ(x) − gℓ(x)

=

2j0−1∑

k=0

(α̂j0,k,ℓ − αj0,k,ℓ)φj0,k(x) +

j1∑

j=j0

2j−1∑

k=0

(̂bj,k,ℓ1{|bbj,k,ℓ|≥κλn} − bj,k,ℓ)ψj,k(x)

−
∞∑

j=j1+1

2j−1∑

k=0

bj,k,ℓψj,k(x) − (µ̂− µ).

Using the elementary inequality: (x + y)2 ≤ 2(x2 + y2), (x, y) ∈ R
2, and the orthonormal

property of the wavelet basis, we have

E

(∫ 1

0
(ĝℓ(x) − gℓ(x))

2dx

)
≤ 2(T + U + V +W ), (7.12)

where

T = E((µ̂− µ)2), U =

2j0−1∑

k=0

E
(
(α̂j0,k,ℓ − αj0,k,ℓ)

2
)
,

V =

j1∑

j=j0

2j−1∑

k=0

E

(
(̂bj,k,ℓ1{|bbj,k,ℓ|≥κλn} − bj,k,ℓ)

2
)
, W =

∞∑

j=j1+1

2j−1∑

k=0

b2j,k,ℓ.

(i) Bound for T . We proceed as in the proof of Proposition 4.3. By (2.1), we have

E(ρ(Y1)) = µ. Thanks to the stationarity of (Yi)i∈Z, we have

T = V(µ̂) ≤
1

n
V(ρ(Y1)) + 2

1

n

n∑

m=1

|Cov (ρ(Y0), ρ(Ym))| .

Using (2.5), the Davydov inequality (see [10]) and (2.3), we obtain

T ≤ C
1

n

(
1 +

n∑

m=1

αq
m

)
≤ C

1

n
≤ C

(
lnn

n

)2s/(2s+1)

. (7.13)

(ii) Bound for U . Using Proposition 4.3, we obtain

U ≤ C2j0 1

n
≤ C

lnn

n
≤ C

(
lnn

n

)2s/(2s+1)

. (7.14)
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(iii) Bound for W . For q ≥ 1 and p ≥ 2, we have gℓ ∈ Bs
p,q(M) ⊆ Bs

2,∞(M). Hence, by

(4.3),

W ≤ C

∞∑

j=j1+1

2−2js ≤ C2−2j1s ≤ C

(
(lnn)3

n

)2s

≤ C

(
lnn

n

)2s/(2s+1)

.

For q ≥ 1 and p ∈ [1, 2), we have gℓ ∈ Bs
p,q(M) ⊆ B

s+1/2−1/p
2,∞ (M). Since s > 1/p, we

have s+ 1/2 − 1/p > s/(2s + 1). So, by (4.3),

W ≤ C

∞∑

j=j1+1

2−2j(s+1/2−1/p) ≤ C2−2j1(s+1/2−1/p)

≤ C

(
(ln n)3

n

)2(s+1/2−1/p)

≤ C

(
lnn

n

)2s/(2s+1)

.

Hence, for q ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

W ≤ C

(
lnn

n

)2s/(2s+1)

. (7.15)

(iv) Bound for V . We will use arguments similar to [20, Proposition 10.3]. Observe that

V = V1 + V2 + V3 + V4, (7.16)

where

V1 =

j1∑

j=j0

2j−1∑

k=0

E

(
(̂bj,k,ℓ − bj,k,ℓ)

21{|bbj,k,ℓ|≥κλn, |bj,k,ℓ|<κλn/2}

)
,

V2 =

j1∑

j=j0

2j−1∑

k=0

E

(
(̂bj,k,ℓ − bj,k,ℓ)

21{|bbj,k,ℓ|≥κλn, |bj,k,ℓ|≥κλn/2}

)
,

V3 =

j1∑

j=j0

2j−1∑

k=0

E

(
b2j,k,ℓ1{|bbj,k,ℓ|<κλn, |bj,k,ℓ|≥2κλn}

)

and

V4 =

j1∑

j=j0

2j−1∑

k=0

E

(
b2j,k,ℓ1{|bbj,k,ℓ|<κλn, |bj,k,ℓ|<2κλn}

)
.
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• Bounds for V1 and V3. The following inclusions hold:{
|̂bj,k,ℓ| < κλn, |bj,k,ℓ| ≥ 2κλn

}
⊆
{
|̂bj,k,ℓ − bj,k,ℓ| > κλn/2

}
,

{
|̂bj,k,ℓ| ≥ κλn, |bj,k,ℓ| < κλn/2

}
⊆
{
|̂bj,k,ℓ − bj,k,ℓ| > κλn/2

}

and
{
|̂bj,k,ℓ| < κλn, |bj,k,ℓ| ≥ 2κλn

}
⊆
{
|bj,k,ℓ| ≤ 2|̂bj,k,ℓ − bj,k,ℓ|

}
.

So

max(V1, V3) ≤ C

j1∑

j=j0

2j−1∑

k=0

E

(
(̂bj,k,ℓ − bj,k,ℓ)

21{|bbj,k,ℓ−bj,k,ℓ|>κλn/2}

)
.

Applying the Cauchy-Schwarz inequality and using Propositions 4.4, 4.5 and

2j ≤ n, we have

E

(
(̂bj,k,ℓ − bj,k,ℓ)

21{|bbj,k,ℓ−bj,k,ℓ|>κλn/2}

)

≤
(

E

(
(̂bj,k,ℓ − bj,k,ℓ)

4
))1/2 (

P

(
|̂bj,k,ℓ − bj,k,ℓ| > κλn/2

))1/2

≤ C

(
2j

n

)1/2(
1

n4

)1/2

≤ C
1

n2
.

Therefore

max(V1, V3) ≤ C
1

n2

j1∑

j=j0

2j ≤ C
1

n2
2j1 ≤ C

1

n
≤ C

(
lnn

n

)2s/(2s+1)

. (7.17)

• Bound for V2. Using Proposition 4.3, we obtain

E

(
(̂bj,k,ℓ − bj,k,ℓ)

2
)
≤ C

1

n
≤ C

lnn

n
.

Hence

V2 ≤ C
lnn

n

j1∑

j=j0

2j−1∑

k=0

1{|bj,k,ℓ|>κλn/2}.

Let j2 be the integer defined by

2j2 =

[( n

lnn

)1/(2s+1)
]
. (7.18)

We have

V2 ≤ V2,1 + V2,2,
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where

V2,1 = C
lnn

n

j2∑

j=j0

2j−1∑

k=0

1{|bj,k,ℓ|>κλn/2}

and

V2,2 = C
lnn

n

j1∑

j=j2+1

2j−1∑

k=0

1{|bj,k,ℓ|>κλn/2}.

We have

V2,1 ≤ C
lnn

n

j2∑

j=j0

2j ≤ C
lnn

n
2j2 ≤ C

(
lnn

n

)2s/(2s+1)

.

For q ≥ 1 and p ≥ 2, we have gℓ ∈ Bs
p,q(M) ⊆ Bs

2,∞(M). So, by (4.3),

V2,2 ≤ C
lnn

nλ2
n

j1∑

j=j2+1

2j−1∑

k=0

b2j,k,ℓ ≤ C

∞∑

j=j2+1

2j−1∑

k=0

β2
j,k ≤ C2−2j2s

≤ C

(
lnn

n

)2s/(2s+1)

.

For q ≥ 1, p ∈ [1, 2) and s > 1/p, using (4.3), 1{|bj,k,ℓ|>κλn/2} ≤ C|bj,k,ℓ|
p/λp

n =

C|βj,k|
p/λp

n, gℓ ∈ Bs
p,q(M) and (2s+1)(2− p)/2+ (s+1/2− 1/p)p = 2s, we have

V2,2 ≤ C
lnn

nλp
n

j1∑

j=j2+1

2j−1∑

k=0

|βj,k|
p ≤ C

(
lnn

n

)(2−p)/2 ∞∑

j=j2+1

2−j(s+1/2−1/p)p

≤ C

(
lnn

n

)(2−p)/2

2−j2(s+1/2−1/p)p ≤ C

(
lnn

n

)2s/(2s+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

V2 ≤ C

(
lnn

n

)2s/(2s+1)

. (7.19)

• Bound for V4. We have

V4 ≤

j1∑

j=j0

2j−1∑

k=0

b2j,k,ℓ1{|bj,k,ℓ|<2κλn}.

27



Let j2 be the integer (7.18). Then

V4 ≤ V4,1 + V4,2,

where

V4,1 =

j2∑

j=j0

2j−1∑

k=0

b2j,k,ℓ1{|bj,k,ℓ|<2κλn}, V4,2 =

j1∑

j=j2+1

2j−1∑

k=0

b2j,k,ℓ1{|bj,k,ℓ|<2κλn}.

We have

V4,1 ≤ C

j2∑

j=j0

2jλ2
n = C

lnn

n

j2∑

j=j0

2j ≤ C
lnn

n
2j2 ≤ C

(
lnn

n

)2s/(2s+1)

.

For q ≥ 1 and p ≥ 2, we have gℓ ∈ Bs
p,q(M) ⊆ Bs

2,∞(M). Hence, by (4.3),

V4,2 ≤
∞∑

j=j2+1

2j−1∑

k=0

β2
j,k ≤ C2−2j2s ≤ C

(
lnn

n

)2s/(2s+1)

.

For q ≥ 1, p ∈ [1, 2) and s > 1/p, using (4.3), b2j,k,ℓ1{|bj,k,ℓ|<2κλn} ≤ Cλ2−p
n |bj,k,ℓ|

p =

Cλ2−p
n |βj,k|

p, gℓ ∈ Bs
p,q(M) and (2s + 1)(2 − p)/2 + (s + 1/2 − 1/p)p = 2s, we

have

V4,2 ≤ Cλ2−p
n

j1∑

j=j2+1

2j−1∑

k=0

|βj,k|
p = C

(
lnn

n

)(2−p)/2 j1∑

j=j2+1

2j−1∑

k=0

|βj,k|
p

≤ C

(
lnn

n

)(2−p)/2 ∞∑

j=j2+1

2−j(s+1/2−1/p)p

≤ C

(
lnn

n

)(2−p)/2

2−j2(s+1/2−1/p)p ≤ C

(
lnn

n

)2s/(2s+1)

.

Thus, for q ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

V4 ≤ C

(
lnn

n

)2s/(2s+1)

. (7.20)

It follows from (7.16), (7.17), (7.19) and (7.20) that

V ≤ C

(
lnn

n

)2s/(2s+1)

. (7.21)
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Combining (7.12), (7.13), (7.14), (7.15) and (7.21), we have, for q ≥ 1, {p ≥ 2 and

s > 0} or {p ∈ [1, 2) and s > 1/p},

E

(∫ 1

0
(ĝℓ(x) − gℓ(x))

2dx

)
≤ C

(
lnn

n

)2s/(2s+1)

.

The proof of Theorem 5.1 is complete.
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