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Geometric PDEs on weighted graphs for semi-supervised classification

Matthieu Toutain, Abderrahim Elmoataz, Olivier Lézoray

Normandie Univ. UNICAEN, ENSICAEN

GREYC UMR CNRS 6072, Caen, France.

Abstract—In this paper, we consider the adaptation of two
Partial Differential Equations (PDEs) on weighted graphs, p-
Laplacian and eikonal equations, for semi-supervised classifi-
cation tasks. These equations are a discrete analogue of well
known geometric PDEs, which are widely used in image pro-
cessing. While the p-Laplacian on graphs was intensively used
in data classification, few works relate to the eikonal equation
for data classification. The methods are illustrated through
semi-supervised classification tasks on databases, where we
compare the two algorithms. The results show that these
methods perform well regarding the state-of-the-art and are
applicable to the task of semi-supervised classification.

I. INTRODUCTION

Nowadays, more and more applications involve manip-

ulating images or digital data defined on complex or high

dimension manifolds, such as data collected as graphs, net-

works, or discrete data. Partial Differential Equations (PDEs)

provide a major mathematical tool in image processing, and

are involved in the resolution of many problems such as

image segmentation, object detection, image restoration or

denoising, and so on. There is actually much interest for

adapting ideas and methods from the image processing lit-

erature on graphs to define new clustering and classification

algorithms [1], [2], [3], [4], [5]. In this paper, we focus on the

use of our recently proposed framework of discrete operators

and geometric PDEs for front propagation and particularly

the eikonal equation, and we show that it can be applied to

perform semi-supervised classification tasks [6], [7]. In the

sequel, we will call Partial difference Equations (PdEs) the

adaptation on weighted graphs of PDEs. We compare it to

our previously introduced graph based regularization frame-

work, which has already been used for data classification [8],

and to one of the state-of-the-art method [1]. This paper

is organized as follows. Section 2 provides notations and

basics on graphs, and our previously introduced framework

of discrete operators on graphs. Section 3 presents the ex-

tension of the PDE based front propagation concept to graph

of arbitrary topologies [9]. Section 4 recalls our previously

introduced regularization framework in order to provide an

algorithm of label diffusion [8]. In section 5, we show

that these two previously described algorithms, originaly

designed for image processing tasks, can be applied to

semi-supervised classification [10], experimenting them on

standard databases and a database for diagnosis in pathology.

II. PRELIMINARIES ON GRAPH AND NOTATIONS

As the core structure of our approach, in this section we

provide notations and basics on weighted graphs , recall

our formulations of difference, morphological differences,

and gradients on weighted graphs [11], [3]. This section

is a required preliminary to fully understand the different

operators defined on weighted graphs that will be introduced

in the next sections.

Notations: A weighted graph G = (V,E, w) consists in

a finite set V = {v1, . . . , vN} of N vertices and a finite

set E = {e1, . . . , eN ′} ⊂ V × V of N ′ weighted edges.

We assume G to be undirected, with no self-loops and no

multiple edges. Let eij = (vi, vj) be the edge of E that

connects vertices vi and vj of V. Its weight, denoted by

wij = w(vi, vj), represents the similarity between its ver-

tices. Similarities are usually computed by using a positive

symmetric function w : V × V → R
+ satisfying wij = 0

if (vi, vj) /∈ E. The notation vi ∼ vj is also used to denote

two adjacent vertices. We say that G is connected whenever,

for any pair of vertices (vk, vl) there is a finite sequence

vk = v0, v1, . . . , vn = vl such that vi−1 is a neighbor

of vi for every i ∈ {1, . . . , n}. Let H(V) be the Hilbert

space of real-valued functions defined on the vertices of

a graph. A function f : V → R of H(V) assigns a

real value xi = f(vi) to each vertex vi ∈ V. Clearly, a

function f ∈ H(V) can be represented by a column vector

in R
|V|: [x1, . . . , xN ]T = [f(v1), . . . , f(vN )]T .

Operators on weighted graphs: Let G = (V,E, w) be a

weighted graph, and let f : V → R be a function of H(V).
The difference operator, or directional derivative [11] of f ,

noted dw : H(V) → H(E), is defined on an edge eij ∈ E

by:

(dwf)(eij) = (dwf)(vi, vj) = w
1/2
ij (f(vj)− f(vi)) . (1)

The weighted gradient operator of a function f ∈ H(V), at

a vertex vi ∈ V, is the vector operator defined by

(∇wf)(vi) = [(dwf)(vi, vj) : vj ∼ vi]
T . (2)

The Lp norm of this vector represents the local variation

of the function f at a vertex of the graph. It is defined by

[11]:

‖(∇wf)(vi)‖p =
[

∑

vj∼vi

w
p/2
ij

∣

∣f(vj)−f(vi)
∣

∣

p
]1/p

. (3)



Based on the difference operator definition, two weighted

directional difference operators are defined. The weighted

directional external and internal difference operators have

been introduced in [3] as (d±w) : H(V) → H(E), by

(d±wf)(vi, vj) = w
1/2
ij (f(vj)− f(vi))

± (4)

with the following notations: (x)+ = max(x, 0) and (x)− =
−min(x, 0). Similarly, the weighted morphological internal

and external gradients at a vertex vi are expressed as

(∇±
wf)(vi) = [(d±wf)(vi, vj) : vj ∼ vi]

T . (5)

with the following Lp(p ∈ {1, 2}) norms

‖(∇±
wf)(vi)‖p =

[

∑

vj∼vi

w
p/2
ij

∣

∣(f(vj)−f(vi))±
∣

∣

p
]1/p

. (6)

III. PDE-BASED GEOMETRIC DIFFUSION

In this section we provide details and recalls on PdEs

based morphology to introduce our methods, which is based

on the previous definitions provided on graphs [3]. We then

establish a link with the static version of the eikonal equation

(for further details, see [9]). This method permits to perform

segmentation and data classification over graphs within the

same framework.

PdEs-based Morphology: Discrete dilation and erosion

on weighted graphs are defined by

∂tf(vi) = +||(∇+
wf)(vi)||p and ∂tf(vi) = −||(∇−

wf)(vi)||p,
(7)

respectively, with the notation ∂tf = ∂f
∂t . These equations

(7) constitute a PdEs based framework that extends alge-

braic and continuous morphological operators to graphs. for

further details, see [3].

PdE-based level-set and eikonal equation: The level-

set formulation has been introduced by Osher and Sethian

[12] in order to describe the evolution of a parametrized

curve evolving on a domain. Once formulated as a level-

set problem, the curve evolution amounts to solving the

following equation:
{

∂tφ(x, t) = F(x, t)|∇φ|,
φ(x, 0) = φ0(x),

(8)

where φ0(x) is an implicit function that represents the initial

front, and φ(x, t) is an implicit function representing the

front at time t. F is a controling force representing the

motion of the front. In [9], a transcription of (8) has been

proposed to weighted graphs, that can be expressed as a

morphological process with the following sum of dilation

and erosion:

∂tφ(vi) = F+(vi)||(∇+
wφ)(vi)||+ F−(vi)||(∇−

wφ)(vi)||, (9)

where F ∈ H(V) controls the front propagation. Such a

formulation enables recovery of geometric diffusion models

such as mean curvature motion, active contours, or a graph

based transcription of the eikonal equation. The eikonal

equation is also a very popular equation in computer graph-

ics and computer vision and is involved in many applica-

tions. Numerous methods have been proposed to solve it on

Cartesian grids and some particular non-Cartesian domains

(see [9] and references therein). Recently, two adaptations

of the eikonal equation have been proposed, first as a time

dependent version [3], then as a static version [9] which is

expressed as
{

||(∇−
wf)(vi)||p = P (vi), ∀vi ∈ V,

f(vi) = 0, ∀vi ∈ V0,
(10)

where V0 ⊂ V corresponds to the initial set of seeds vertices,

and P is a potential. Such adaptations are expressed using

the PdEs based morphological erosion, and can be linked

with the general geometric PdE equation (9).
Label propagation: In [9], the following label propaga-

tion algorithm has been proposed based on the resolution
of (10), that enables the propagation of many labels on a
graph:

1: List of variables :
2: S0 : the set of seed vertices.
3: A : the set of active vertices.
4: NB : the set of vertices in the narrow band.
5: FA : the set of vertices said as far away.
6: lab : the label indicator function.
7: Initialization :
8: lab(vi) = Initial label of vi.
9: f(vi) = 0 ∀ vi ∈ S0; f(vi) = +∞ ∀ vi ∈ V \S0

10: s(vi) = +∞ ∀ vi ∈ V \S0

11: A = S0;NB = {vi | ∃ vj ∈ A and vj ∈ N(vi)}
12: FA = V \A ∪NB
13: Process :
14: while
15: FA 6= ∅ do
16: vi ← first element ofNB
17: remove vi from NB and add vi to A
18: for all vj ∈ N(vi) ∩ Ā do
19: compute local solution t← f(vj)
20: if t < f(vj) then
21: f(vj) = t
22: if v ∈ FA then
23: remove vj from FA and add vj in NB.
24: else
25: update position of vj in NB.
26: end if
27: if f(vi)/wij < s(vj) then
28: s(vj) = f(vi)/wij

29: lab(vj) = lab(vi)
30: end if
31: end if
32: end for
33: end while

The propagation is performed from a set of seeded vertices
and until all vertices of the graph are marked with a label. The
front propagation is therefore linear in the number of vertices. This
algorithm enables many applications on graphs, such as geodesic
distance computation on graphs, image segmentation and, in our
case, semi-supervised data classification. The local solution t (line
19 of the previous algorithm) is computed using equations (6) and
(10). For p ∈ {1, 2}, we get:

(

∑

vj∼vi
w

p/2
ij max(0, (f(vi)− f(vj)))

p
)

= P (u). (11)



For the sake of clarity, we present here the solution for the L1

norm formulation (see [9] for other cases): x =
∑n

i=1 hiai+C
∑

n
i=1 hi

.

where x = f(vi), n = |vj ∼ vi|, ai = {f(vj)|vj ∼ vi with
j = 1, ..., n}, hj = 1/

√
wij , and C = P (vi). Further details

on this graph based front propagation algorithm can be found
in [9]. Even if it has already been used in image processing,
this formulation has not been used yet for data classification.
Classically, the potential functions used in the domain of image
processing are: constant potential (P = 1) and local norm of the
gradient (P (vi) = ||(∇f)(vi)||2). For the case of classification,
we have adapted the potential function in order to obtain compact
clusters, containing elements that are close to each others (small
distances within clusters), and separating elements that are not
close (large distances between clusters). To achieve both this
requirements, we have used a potential that is the distance to the
mean of an evolving cluster: P (vi) = ||f(vi) − Cm||, with Cm
the mean inside the front Γm, corresponding to the m-th cluster.
The mean of each cluster is updated each time a node is added
to. In the experiments section, we have used these three potential
functions to perform our tests, and we show a comparison.

IV. SEMI-SUPERVISED CLASSIFICATION USING

p-LAPLACE OPERATOR ON GRAPH

In this section we provide details on our previously introduced
graph-based regularization framework [11], in order to provide an
algorithm for label diffusion over a graph using regularization [8].

Regularization: From the previous definitions, we introduce
here the weighted p-Laplace operator of a function f ∈ H(V),
noted ∆w,p : H(V)→ H(V), at a vertex vi ∈ V, is defined by:

(∆w,pf)(vi) =
1
2

∑

vj∼vi

(γi
w,pf)(vi, vj)(f(vi)− f(vj)), (12)

with

(γw,pf)(vi, vj) = wij(‖(∇wf)(vj)‖p−2
2 + ‖(∇wf)(vi)‖p−2

2 ).
(13)

In the case where p = 1 or 2, we have the definitions of the
standard graph curvature ∆w,1f(u) = κf and graph Laplacian
∆w,2f(u) = ∆f operators. More details on these definitions can
be found in [11].

To regularize a function f0 : V → R using the weighted p-
Laplace operator (12), we consider the following general varia-
tional problem on graphs:

min
f :V→R

{Ew,p(f) = Rw,p(f)} . (14)

The intuition behind regularization is to provide a smoother
version of an initial function f0. Rw,p(f), is the regularizer
and is defined as the discrete Dirichlet form of the function
f ∈ H(V) : Rw,p(f) = 1

2

∑

vi∈V
||∇wf(vi)||p2 . This term is a

strictly convex function of f (see [13]). To approximate the solution
of the minization (14), we build a system of equations that we
linearize and use the Gauss-Jacobi method to obtain the following
iterative algorithm (for more details, see [11]):







f (0)(vi) = f0(vi),

f (t+1)(vi) =

∑
vj∼vi

γ(t)(vi,vj)f
(t)(vj)

∑
vj∼vi

γ(t)(vi,vj)
.

(15)

where γ(t)(vi, vj) is the γ function (in equation (13)) at the
iteration step t. At each iteration of the algorithm, the value of f
at step (t+1), for a vertex vi, only depends on two quantities: the

original value f0 and the sum of the weighted existing values f (t)

in the neighborhood of vi. More efficient minimization techniques

can be employed (see e.g., [14]) but we consider this formulation
for the sake of simplicity. By using different formulations of w
and different values of p, a family of linear and nonlinear filters is
obtained.

Label regularization: The previous discrete regularization can
also be adapted to perform semi-supervised clustering by discrete
label regularization. To accomodate it to label regularization, we
must reformulate the problem. We rewrite the problem as follows
[3]. Let V = {v1, . . . , vN} be a finite set of data, where each data
vi is a vector of R

m, and let G = (V,E, w) be a weighted graph
such that data points are vertices and are connected by an edge
of E. The semi-supervised clustering of V consists in partitioning
the set V into k classes (known beforehand) given inital labels for
some vertices of V. The aim is then to estimate the unlabeled data
from the labeled ones. Let Cl be a set of labeled vertices, these
latter belonging to the lth class. Let V0 =

⋃{Cl}l=1,...,k be the
set of initial labeled vertices and let V\V0 be the initial unlabeled
vertices. Each vertex of vi ∈ V is then described by a vector of
labels f0(vi) = (f0

l (vi))
T
l=1,...,k with

f0
l (vi) =







+1 if vi ∈ Cl

−1 if vi ∈ Cm|m 6= l
0 ∀vi ∈ V\V0

(16)

Then, the vertex labeling is performed by k independent regular-
ization processes estimating membership functions fl : V → R

for each class l. Using the previously proposed discrete regular-
ization framework, this is formulated as minfl:V→R {Rw,p(fl)}.
We use the discrete regularization process (15) to compute each
minimization. At the end of the label propagation processes,
class membership probabilities have been estimated and the final
classification can be obtained for a given vertex vi ∈ V by

argmaxl∈1,...,k

{

f
(t)
l

(vi)
∑

l f
(t)
l

(vi)

}

.

V. EXPERIMENTS

A. Literature databases

We have considered label diffusion using the p-Laplacian formu-
lation and label propagation using the eikonal equation for the case
of semi-supervised classification on three standard state-of-the-art
databases: MNIST [15], OPTDIGITS [16], and PENDIGITS [17].
For these databases, we have merged both the training and the test
set (as performed in [1]), resulting in datasets of 70000, 5620,
and 10992 instances, for MNIST, OPTDIGITS, and PENDIGITS,
respectively. For the OPTDIGITS and PENDIGITS databases, we
have used a preprocessed version of the data, giving constant size
vectors, and giving invariance to small distortions (see [16] and
[17] for more details on the preprocessing routines). For MNIST,
we did not preprocessed the data. As the authors of [1], we have
constructed a K-nearest neighbor graph on the merged datasets,
with K = 10. For the MNIST dataset, we constructed the graph
using the two-sided tangent distance [18], and for the two others we
used the Euclidean distance between each data points. To compute
weights between each vertex, we have used the well known

Gaussian Kernel similarity: wij = exp
−d(vi,vj)

2

σ2 , with d(vi, vj)
a distance function between two vertices. Since the parameter
σ is a strong bottleneck of graph-based methods, we consider
strategies for computing automatically its value. We tried two
strategies: using a global scaling parameter σ, and using a σi local
to each vertex, as in [19], to have a local scaling weight function.
In this particular case, the similarity function becomes: wij =

exp
−d(vi,vj)

2

σiσj
, with σi the local scaling parameter at vertex vi. We

computed each σi as the distance to the M th closest vertex to vi.
To estimate a global σ parameter, we used the method described in



[20]. These authors proposed a robust method to estimate a global
and a local σ parameter. In this work, we have used the global
estimation, which is: σ̂ = 1.4826median(||ES | −median|ES ||),
where ES is the set of local residuals in the graph, computed

as: Ei = (
∑

vj∼vi
f(vi)− f(vj))/

√

|vj ∼ vi|2 + |vj ∼ vi|, for

a vertex vi. For further details and justifications, see [20]. As a
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Figure 1. Mean classification accuracy rates (y-axis) of the MNIST
database, using different percentage of seeds (x-axis), and using global and
local estimation of the σ parameter in the weighting function of the graph.
The p parameter denotes the Lp norm formulation of the label propagation
algorithm using the static eikonal equation.
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Figure 2. Standard deviation of classification accuracy rates (y-axis) of the
MNIST database, using different percentage of seeds (x-axis), and using
global and local estimation of the σ parameter in the weighting function of
the graph. The p parameter denotes the Lp norm formulation of the label
propagation algorithm using the static eikonal equation.

test protocol, we make ten runs for each algorithm, and we use
a percentage of already labelized vertices, settled randomly each
time. A typical labeling result is shown in Fig. 3. To get an intuition
on how to choose the right weighting method, we evaluated the
algorithms using both the global and local σ estimation. Fig. 1 and
2 show mean classification accuracy results and standard deviation
of classification accuracy over the ten runs, respectively, with global
and locally tuned σ, on the MNIST database, using the label
propagation algorithm described in section III. As one can see, in
this case results are better when choosing a locally tuned σ. Fig. 2
shows that standard deviation is much better when using a locally
tuned σ, we can state here that it permits to be less sensistive to
seeds initialization. This is not always the case, depending on the
data. For example, best results for OPTDIGITS and PENDIGITS
were achieved using a globally estimated σ. However, in our tests,
even if it did not always give the best classification results, local

(a) (b)

Figure 3. Illustration of a graph built on a small dataset of digits from
MNIST. Subfigure (a) shows one seed per class, and subfigure (b) shows
the corresponding label propagation.

Table I
OPTDIGITS CLASSIFICATION RESULTS. FOR THE LABEL PROPAGATION

ALGORITHM USING THE EIKONAL EQUATION AND THE p-LAPLACIAN

FORMULATION, THE BEST AVERAGE CLASSIFICATION RATES WERE

OBTAINED USING A POTENTIAL THAT IS THE DISTANCE TO THE MEAN

OF THE DATA INSIDE OF THE GROWING FRONT AND USING A GLOBALLY

ESTIMATED σ.

seeds Eikonal pLpl MTV

p = 2 p = 1 p = 2 p = 1

1% 96.96% 97.24% 97.31% 98.06% -

mean 95.22% 95.11% 93.74% 95% 98.29%

2% 98.19% 98.19% 97.79% 98.54% -

mean 97.41% 97.19% 96.31% 97.53% 98.35%

5% 98.54% 98.51% 98.24% 98.63% -

mean 98.09% 98.06% 97.51% 98.12% 98.38%

10% 98.67% 98.65% 98.36% 98.47% -

mean 98.41% 98.38% 97.82% 98.05% 98.45%

σ estimation was almost always the most stable, achieving the
best performance in standard deviation among the ten runs. Fig. 4
presents a comparison of the 3 potential functions we used in the
eikonal equation on the OPTDIGITS database. As one can see, the
potential we proposed works better in general, mostly when there is
a small amount of seeded vertices. Classification results are shown
in Tables I, II, and III. Due to the lack of space, we only present
here results that have provided the best average classification
rates. In the Tables, the first column tells the amount of initial
labelized data (seeds). Second and third columns give rates for
the label propagation algorithm using the eikonal equation. Fourth

Table II
PENDIGITS CLASSIFICATION RESULTS. FOR THE LABEL PROPAGATION

ALGORITHM USING EIKONAL EQUATION, AND THE p-LAPLACIAN

FORMULATION, BEST AVERAGE RESULTS WERE ACHIEVED THE SAME

WAY AS OPTDIGITS CLASSIFICATION RESULTS.

seeds Eikonal pLpl MTV

p = 2 p = 1 p = 2 p = 1

1% 97.25% 97.3% 97.25% 96.33% -

mean 95.87% 95.75% 94.45% 94.97% 93.73%

2% 98.47% 98.44% 97.54% 98.04% -

mean 97.31% 97.38% 96.45% 96.81% 95.83%

5% 98.91% 98.86% 98.51% 98.64% -

mean 98.23% 98.25% 97.86% 97.95% 97.98%

10% 99.16% 99.18% 98.74% 98.75% -

mean 98.94% 98.91% 98.61% 98.61% 98.22%
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Figure 4. Comparison of the 3 potential functions we used to test the
eikonal equation for the task of semi-supervised classification.

Table III
MNIST CLASSIFICATION RESULTS. FOR THE LABEL PROPAGATION

ALGORITHM USING EIKONAL EQUATION, BEST AVERAGE RESULTS

WERE ACHIEVED USING A CONSTANT POTENTIAL FOR p = 1, AND WITH

THE GRADIENT NORM POTENTIAL FOR p = 2. BOTH WERE ACHIEVED

USING A SELF TUNED σ PARAMETER FOR THE SIMILARITY FUNCTION

(WITH THE METHOD OF ZELNIK-MANOR AND PERONA [19]). FOR THE

p-LAPLACIAN FORMULATION, BEST AVERAGE RESULTS WERE

ACHIEVED USING A GLOBALLY ESTIMATED σ PARAMETER.

seeds Eikonal pLpl MTV

p = 2 p = 1 p = 2 p = 1

1% 97.21% 97.52% 97.55% 97.96% -

mean 97.08% 97.45% 97.15% 97.84% 97.59%

2% 97.48% 97.73% 97.53% 98.04% -

mean 97.37% 97.64% 97.29% 97.88% 97.72%

5% 97.83% 98.01% 97.54% 98.07% -

mean 97.79% 97.95% 97.42% 97.99% 97.79%

10% 98.19% 98.25% 97.64% 98.06% -

mean 98.13% 98.19% 97.53% 98.02% 98.05%

and fifth columns give results for the label diffusion algorithm
using the p-Laplacian formulation. For each method with given
parameters and fixed percentages of seeds, we provide the rate
of the best result as well as the mean of the ten trials. Best
rates are bolded for each percentage of seeds. To compare our
method, we compare ourselves with the most recent and efficient
method called Multiclass Total Variation clustering [1]. As it can be
seen from the results, for MNIST and PENDIGITS datasets there
is always one of our methods that outperforms the state-of-the-
art while for OPTDIGITS our configurations compare well with.
Depending on the dataset, either the p-Laplacian regularization or
the eikonal diffusion provides the best results. We can mention here
that the algorithm that uses the eikonal equation is much faster
than the discrete regularization of the p-laplacian, due to the fact
that no iteration is necessary for the algorithm, leading to a linear
computational complexity. We plan to sequentially combine these
two methods to further enhance results, i.e., initializing a partition
with the eikonal diffusion, and refining it with the p-Laplacian
formulation.

B. Digital pathology

Traditionally, the diagnostic decision taken by cytopathologists
are based on the study of morphological and texture features of
cellular components, seen through a microscope. This is a long
process, as a slide can contain thousands or millions of cells in
which abnormal cells are very rare or fortunately absent. During

the last decade, the advent of fast and efficient high-resolution
slide scanners along with the development of computer vision has
opened the way to using digital pathology as a diagnosis tool. Fig.
5 gives examples of cytological images. Automatic segmentation
can be performed using eikonal equation, as we have done in [21].

(a) (b)

Figure 5. Examples of cytological images. (a) Feulgen stained image, nu-
clei are represented in pink. (b) Papanicolaou stained image (gynecology),
nuclei are depicted in dark blue/purple, while cytoplasm is stained in light
blue.

Once nuclei are extracted, to take a diagnosis, the goal is to
classify them in order to know if abnormal cells are present in
the slide. To do this, we may use machine learning approaches,
that rely on a learning dataset. To create a learning database, we
have to handle an images’ database of extracted cells: this kind
of databases can contain millions of nuclei to classify. Building
a learning database of such a quantity of objects is obviously
manually untractable by pathologists. In this context, semi su-
pervised classification techniques can be a great tool to help the
labeling of databases of cells. We propose here to build a learning
database with both our methods of semi supervised classification on
graphs, and evaluating it on a fully labeled reference database. This
approach has three main advantages. First, there are few objects
to labelize. Second, there is no classifier training, modifying the
reference dataset does not imply to retrain a classifier, but to add
the new data as a vertex in the graph. Third, graphs intrinsically
provide a representation of the organization of the different classes
and the position of each nucleus in each class. Such an information
can be of crucial importance for cytopathologists on ambiguous
cells. We evaluated our methods on the database of cells used in
[22]. It is composed of 3956 objects, divided in 18 classes, that
can be aggregated into 4 classes: Polynuclear (1117 instances),
lymphocytes (1111 instances), macrophages / mesothelials (1231
instances), and abnormal cells (497 instances). We can consider
the 3 firsts classes as normal cells. Each nucleus is represented
by features (surface, shape, color, texture, ...), leading to 45
characteristics. The tests protocol used for evaluation is the same
as in the last subsection. We also used the same graph-weighting
methods and potential functions for the eikonal equation. Table IV
show the mean results of classification when using the 4 classes
described above. We achieve comparable results to the state-of-
the-art [22], while we used a semi-supervised classifier and not
a supervised one. It is also important to mention here that when
crossing pathologists labeling on this database, the recovering rate
is only about 60%, which shows the difficulty of the labeling
problem. The way of labeling cells we propose can also be a
manner of consensus between pathologists. This rate is mostly due
to non accordance when labeling normal cells. As one can see in
table V, classifying into normal and abnormal cells gives much
better results. This information is of great importance when taking



Table IV
FOUR CLASSES CLASSIFICATION RESULTS

seeds Eikonal pLpl

p = 2 p = 1 p = 2 p = 1

1% 65.66% 66.18% 60.82% 57.56%

2% 69.83% 70.49% 62.73% 65.79%

5% 72.71% 74.38% 65.24% 67.84%

10% 75.71% 77.27% 68.77% 70.1%

Table V
NORMAL VS ABNORMAL CELLS

seeds Eikonal pLpl

p = 2 p = 1 p = 2 p = 1

1% 96.72% 97.24% 92.70% 93.23%

2% 97.21% 97.64% 94.86% 97.73%

5% 97.89% 98.1% 98.14% 98.2%

10% 98.27% 98.47% 98.3% 98.28%

a diagnostic decision. Table VI shows the execution time of the
eikonal equation solving with different potential, and p-Laplacian,
using the L1 and L2 norm. First thing to note: solving the eikonal
equation is, from far, faster than the p-Laplacian diffusion. This is
mainly due to the employed algorithms. For the eikonal equation,
we used a fast marching like algorithm, which is linear in terms
of nodes and neighborhood in the graph, and does not require to
iterate. For the p-Laplacian, we used the Gauss-Jacobi algorithm
to solve it iteratively till convergence.

Table VI
AVERAGE EXECUTION TIME COMPARISON, IN MILLISECONDS.

Alg time

Eikonal, P = 1 31.4

Eikonal, P = gradient 215.7

Eikonal, P = distance to mean 45.5

p-Laplacian, p = 2 1877.4

p-Laplacian, p = 1 781.3

VI. CONCLUSION

We have presented our recently proposed graph-based functional
regularization framework and geometric diffusion with the static
version of the eikonal equation. We have shown that these two
frameworks, initially designed for image processing tasks, can be
successfully applied to semi-supervised classification tasks, through
three experiments on well known databases of the literature, com-
paring ourselves with one of the most recent and efficient method.
We also experimented both our algorithms on a digital pathology
database, showing that they can be used to help pathologists to
create a reference dataset, as well as helping them to take a
diagnostic decision, with very short execution time.
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