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A LARGE VALUE THEOREM FOR ((s)
BY
K. RAMACHANbRA

(TO PROFESSOR MATTI JUTILA ON HIS FIFTY-SECOND
BIRTHDAY)

§ 1. INTRODUCTION. The first object of this paper is to prove the
following theorem.

THEOREM 1. Let ¢ > 0 be a sufficiently small constant and let T ezceed
a large positive constant depending on &. We write a = a(e) = e~°. Let
T<t <tg<--<tr<2Ttjy1—t; 21(j =1,2,---,R—1) and
[ log ¢(1 + it;) |> logloglog T + log a, (j = 1,2,---,R). Then R <, T¢.
COROLLARY. Let -T < q1 < 2 < - <qr <T,giy1— ¢ >1(F =
1,2,--+-,R' ~ 1) and

| ¢(ig5) 1> £~%(q}) 3 loglog ¢; (5 = 1,2,---, R')

where ¢} =| ¢; | +100. Then R' <, T*.

PROOF OF THE COROLLARY. The proof follows from the functional
equation. .

We next use this corollary to deduce the following large value theorem
from Montgomery’s work (see the fundamental Lemma 8.1 in {1]).

THEOREM 2. Let S be a set of complez numbers with the following



2 K. Ramachandrs

properties. (i) Re s > g for alls € S. (ii) 1 <| Im(s — &') |< To for all pairs
(s,8') with s £ &',8 € 8,8 € S, where Ty > 100. Then for any integer N > 1
and any set {an} (n = N,N +1,---,2N) of complez numbers we have

i
Y 1D awn™* *« GN +(T§+ | S | loglog To)GT;
s€S
where G = ¥ | an | n~2°9, ¢ is a sufficiently small positive constant and T
ezceeds a constant depending only on e.

REMARKS. It suffices to prove the theorem in the case N' > 1. For, when
N =1wehave | Y a,n~* |2< 23 | an |2 n=%°. Next it suffices to prove
this theorem when o9 < Re 8 < op + %(—, for all s € S. The general case
follows by dividing the range for Re s into intervals of length ;i and then
.adding up the various RHS with | S | in each case replaced by the sum of
the various | S | .

Given an inequality of the type of Theorem 2 with loglog Ty replaced
by (log(NTp))?, M.N. Huxley made an important deduction which is well-
known. We deduce from Theorem 2 the following important theorem by his
method.

THEOREM 3. Let 5* be a set of complex numbers with the following
properties. (i) Re s > oo for all s € S*. (ii) | Im 8 |< T for all s € S*.
(iii) | Im(s — 8') |> 1 for all pairs (s,8') with s # §',s € S*,5' € 5*. Let
N(> 1) be an inieger and let {a,} (n = N,N + 1,---,2N) be any set of
complex numbers. Then for any real V > 0, the number of elements of S*
with | T aan=* |> V is

& GNV=2 L TGPNV S(loglog T)? + T*(1 + TGV %),

where G = Y | an |2 n=%° and T ezceeds a large positive constant depending
only on e,e(> 0) being any constant.

Since Huxley’s method is very simple we give the deduction here itself.
We divide the range (—7, T) for Im s(s € S*) into at most 2(1+7'7T}; ') inter-
vals of length Ty. Suppose we fix any ¢ and make the following assumptions.
(i) TS <| S | and (ii) GT¢ loglog T = V%, where > 0 is a small constant.
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Then from Theorem 2 it follows that | S |€., GNV 2. If (i) is not satisfied
then we have | § |< T¢ and so in any case | S €., GNV~? + T§, provided
only that we fix Tp by (ii). Thus (since Tp < T)

| 5% |[€ew (L + TTyY)(GNV-2 4 T¥)
Cen (GNV2 + T)(1 + TGV ~*(loglog TY).

(We have assumed in this reasoning that Tp 33, 1. But if Ty €. 1 the term
TT,'T* is a trivial upper bound for | §* |). Thus Theorem 3 is proved since
7 depends only on ¢ and we can replace ¢ by 3e.

REMARK. From Theorem 3 we can (proceeding as in the appendix, § A.3
; D loglog T
of [3]) prove that (1f $1<o<i+ _,gg-‘;e_) then

N(o,T) €p T*)1=2)(1og T)8~3(loglog T)*~3, (D > 0 is any constant),

with Az(o) = (5 — 3)(0® + 0 — 1)71, which is a minor improvement over
the result ‘
N(o,T) € T42)=2) (199 T)?

due to M.N. Huxley. A slightly cruder form of this improvement (with
8 — 3 + ¢ in place of 8 — 1 and «.,p in place of € p) was announced in the
post-script to [3]. These refinements have also application to prime number
theory similar to what has been done in [3].

NOTATION. The notation is mostly standard and whenever there is a
departure it will be explained in the respective sections.

§ 2. PROOF OF THEOREM 1. Throughout this section T > 100 -
(since we are interested in the bound <, T*, we can assume that T exceeds
a positive constant depending only on ¢), T < t < 2T, e(u) = Ezp(—u), X =
Ezp((log T)*®),r = (log X)~2,z = z -+ iy and finally with real 4, B (with
B > A>0)and Re z > 1 — r we write

f(4,B,2)= Y p““e(%).

A<p<B



4 K. Ramachandra

LEMMA 1. We have
log ((1+it) = Y p7'e(E) + O(1),
where p runs over all primes and the O-constant is absolute.

PROOF. Follows (since higher powers of p contribute O(1)) from

A £ B -1— 24100 ) "
Zp e(X) +0(1) = ol (log {(1 + it + w))X“T(w)dw

{where w = u + v i3 a complex variable) on moving the line of integration
suitably, using the zero-free region o > 1 — (log T)~'° and the estimates for
fog {(1 + it + w) in the zero-free region.

LEMMA 2. The inequality | log ((1 + it) |> logloglog T + log a implies
- at least one of the following inequalities.

) | f(T,00,1 +it) [>1
(i) | £(Y,T,1+it) |> 3log a, where loglog Y = logloglog T + § log a.
PROOF. Trivial since » .p~" = loglog Y + 70 + O((log Y)™*), where 7o

p<Y
is an absolute constant.

LEMMA 3. If f(z) is analytic in | 2 — 2 |< r, we have

1 ,
| )1 o5 [ [ 17 i dody
r
where the integration is over the disc | z — 29 [< 7.

PROOF. Follows from

2x
) 1< 5 [ 1 5+ 2 | do

valid for all A with 0 < A < r. (We have only to multiply by Ad\ and
integrate from A =0 to A =r).

LEMMA 4. The number R; of points t; with| f(T,00,1+it;) |> 1 satisfies

1
< 2
R < p— // | f(T,00,2) |° dzdy
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where the integration is over the rectangle |z — 1 [<r,T -1 <y < 2T +1.

PROOF. Follows from Lemma 3 (since the discs with the centres 1 + it;
and radii r are all disjoint).

LEMMA 5. Untformly in |z — 1 |< r, we have
2741
/ | f(T,00,2) |* dy < loglog X.
T-1

PROOF. By the well-known Montgomery Vaughan theorem we have

2T
/T | S dun (2 dt € (T +n) | du [?

where {d,}(n = 1,2,---) is any sequence of complex numbers such that
3> n|d,|? is convergent. From this the LHS of the lemma is

_ 2, _

142 1

4 E D 'e(j(—) < E ‘p < loglog X.
pLX?

Thie proves the lemma.

LEMMA 6. Divide the interval [Y,T) into < 3 log T intervals I by inter-
posing the points U which are powers of 2. The extreme two intervals are
of the type [Y,Y + Vi) and [U,T) with 0 < Vi < Y. Then for at least one
interval I we have

| Y p () 12 (log T)

pel
PROQPF. Trivial.

LEMMA 7. For any interval I define an integer k = k(1) > 1 to be the
least integer such that (mequ p)* > T. Define ax(n) by
2

k
(Zp“"e(—)%)) = Y alam.

pel T<n<2*T
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Then 1< k < (log T)(log Y)~! and
0 < ax(m) < k*.

PROOF. The lemma is obvious since whenever ax(n) # 0,n is the power
product of primes with k as the sum of the exponents.
LEMMA 8. Let R(I) denote the number of t; satisfying the final inequality
of Lemma 6. Then
1 4
2k = 2%
R < (log T 5 [ [1 5 97"e(B) P dady
p€l _
where the integration is over the rectangle |z — 1 |<r,T-1<t<2T +1.

PROOF. Follows from Lemma 3 just as Lemma 4 followed from Lemma 3.

LEMMA 9. We have
R(I) < (log TY*+® 3~ |gyn)2n
T<n< 22T
<& (Iog T)2k+500k2k+2_

PROOF. Follows from the well-known theorem of Montgomery and
Vaughan (in view of Lemma 7).

LEMMA 10. We have
R(I) < T=.

PROOF. Follows from
k < (log T)(log ¥)" < (log T)(loglog T)~'a~*
and hence
(log T)* - k* < Ezp(3k loglog T) < Ezp(36~*log T)

where the implied constants are absolute.
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LEMMA 11. The number Ry of numbers t = t; which satisfy the seccond
alternative of Lemma 2 salisfies

Ry <) R(I)<T*
I

LEMMA 12. We have
R, T¢.

PROOF. Since R < R; + R, the lemma follows by Lemmas 4,5 and 1X_

§ 3. PROOF THEOREM 2. We begin by stating the following theor~eﬁ1
of H.L. Montgomery (wli.ich is a special case of his fundamental Lemma g1
of [1]).

THEOREM 4 (HL. MONTGOMERY). In the notation of Theoreny 2
above, we have

21D e P (Y o P07 )max D | B3 +4) |,

s€S ’ s'eS
where b, = (Ezp (- 3%) — Ezp (—§)) n®° and for any complez z we define
B(z) by

B(z) = ibnn".
n=1

PROOF. This is a special case of Lemma 8.1 of [1].

We continue with the proof of Theorem 2. Note that we can assume
N > 1 and also o < Re s < 09 + 75 for all s € S. Also note that 37 | a,, |2
b;' € G. We write s = o + it,s' = ¢’ + it and we have

1 24100
BGE+4s)=— C(w+3+ 8 - 209)N¥(2¥ —- 1)[(w)dw
2xi 2—i00

where w = u + iv is a complex variable. Moving the line of integration t. «
given by u 4+ 0 + ¢’ — 20¢ = 0 we obtain

| B@ +8) |< N Eap(— |t —¢])+ / " | ¢liv— it +it) | Ezp(~ | v )udo.

—00
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For any fixed ¢, we have uniformly
3 B+ ) [<N+E/ | C(iv — it +it') | Eop(— | v |)dv.
r ¢ — o0 ’

When | £ — ¢ | is bounded above the last integral is bounded. Also for the
remaining ¢ the contribution from | v |> (log | ¢ — ¢’ |)? is negligible. Thus

Yise)ient > [ | CGito-t+) | Bap(~ | v Do+ | S |
o ¢ Je—¢/|>1000° IS (ogle—t'])?

We look at the maximum M(¢ — ') of | ((i(v — ¢ + t')) | in the range of
integration. Suppose this is attained at v = 7(t') say. For fixed ¢, the
points r(¢') —t + ¢/ = ¢; with M(t - ¢) > 5‘7(q;)%loglog g; (for varying
t form a union of < (log To)® sets of points (at mutual distances > 1) and
by corollary to Theorem 1 the total number of such points ¢’ (note that
T = 2Tp) is O((log To)*T§) = O(T#*). Hence with the exception of O(Tg¢)
points ' we have M(t — ') < e~7(] t — ¢ | +100)}loglog(| £ — ¢ | +100).
Thus the contribution to Z | B(3 + 8') | from the exceptional points ¢t/
is O(T§**), (we employ the trivial bound M(t — ) = O(Tf log To) for
exceptional points). The other points contribute O(} S | TD% loglog Tp) and
this proves Theorem 2 completely (on noting that we can replace ¢ by %e if
necessary).

FINAL REMARK. The analogue of Theorem 1 to “short intervals” is
somewhat delicate and was investigated in [2]. The upper bound therein
is in fact O(1), provided | log ((1 + it) |> & loglog T. The present work
although self contained may in some sense be considered as a continuation
of [2].
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P.S: After writing- up the paper I noticed that Theorem 1 can be deduced
easily from any zero density cstimate which ensures that

li:nliII;l{(lagT)“llog(N(a, T)+1)} =0

as T — oo and then o — 1 -0



