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Let u = {u(t, x), t ∈ [0, T ], x ∈ R d } be the solution to the linear stochastic heat equation driven by a fractional noise in time with correlated spatial structure. We study various path properties of the process u with respect to the time and space variable, respectively. In particular, we derive their exact uniform and local moduli of continuity and Chung-type laws of the iterated logarithm.

Introduction

Stochastic analysis of fractional Brownian motion (fBm) naturally led to the study of stochastic partial differential equations (SPDEs) driven by this Gaussian process. The motivation comes from wide applications of fBm. We refer, among others, to [START_REF] Gubinelli | Young integrals and SPDE's[END_REF], [START_REF] Maslovski | Evolution equations driven by a fractional Brownian motion[END_REF], [START_REF] Nualart | Variational solutions for partial differential equations driven by fractional a noise[END_REF], 1 [START_REF] Quer-Sardanyons | The 1-d stochastic wave equation driven by a fractional Brownian sheet[END_REF] and [START_REF] Torres | Quadratic variations for the fractionalcolored stochastic heat equation[END_REF] for theoretical studies of SPDEs driven by fBm. To list only a few examples of applications of fractional noises in various areas, we mention [START_REF] Kou | Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule[END_REF] for biophysics, [START_REF] Bayraktar | Estimating the fractal dimension of the SP 500 index using wavelet analysis[END_REF] for financial time series, [START_REF] Denk | Modeling, simulation and optimization of integrated circuits[END_REF] for electrical engineering, and [START_REF] Del Castillo-Negrete | Front dynamics in reaction-diffusion systems with Levy flights: a fractional difussion approach[END_REF] for physics.

The purpose of our present paper is to study fine properties of the solution to the stochastic heat equation driven by a Gaussian noise which is fractional in time and colored in space. Our work continues, in part, the line of research which concerns SPDEs driven by the fBm but at the same time it follows the research line initiated by Dalang [8] which treats equations with white noise in time and non trivial correlation in space. More precisely, we consider a stochastic linear equation driven by a Gaussian noise that behaves as a fractional Brownian motion with respect to its time variable and has a correlated spatial structure. A necessary and sufficient condition for the existence of the solution has been given in [START_REF] Balan | The stochastic heat equation with fractionalcolored noise: existence of the solution[END_REF] and other results has been given in [START_REF] Tudor | Analysis of variations for self-similar processes. A stochastic calculus approach[END_REF], [START_REF] Nualart | The fractional stochastic heat equation on the circle: time regularity and potential theory[END_REF], [START_REF] Balan | Some linear SPDEs driven by a fractional noise with Hurst index greater than 1/2. Infin[END_REF], [START_REF] Balan | A note on intermittency for the fractional heat equation[END_REF] among others.

To briefly describe the context, consider the stochastic heat equation with additive noise

∂u ∂t = 1 2 ∆u + Ẇ , t ∈ [0, T ], x ∈ R d , (1) 
u(0, x) = 0, x ∈ R d ,
where T > 0 is a constant and Ẇ is usually referred to as a space-time white noise. It is well-known (see for example the now classical paper [START_REF] Dalang | Extending martingale measure stochastic integral with applications to spatially homogeneous s[END_REF]) that (1) admits a unique mild solution if and only if d = 1. This mild solution is defined as

u(t, x) = t 0 R d G(t -s, x -y)W (ds, dy), t ∈ [0, T ], x ∈ R. (2) 
In the above, W = {W (t, A); t ≥ 0, A ∈ B b (R d )} is a zero-mean Gaussian process with covariance given by E (W (t, A)W (s, B)) = (s ∧ t)λ(A ∩ B),

where λ denotes the Lebesque measure and B b (R d ) is the collection of all bounded Borel subsets of R d . The integral in (2) is a Wiener integral with respect to the Gaussian process W and G is the Green kernel of the heat equation given by

G(t, x) = (2πt) -d/2 exp -|x| 2 2t if t > 0, x ∈ R d , 0 if t ≤ 0, x ∈ R d . (4) 
Consequently the mild solution {u(t, x), t ∈ [0, T ], x ∈ R} is a centered two-parameter Gaussian process (also called a Gaussian random field). It is well-known (see e.g. [START_REF] Swanson | Variations of the solution to a stochastic heat equation[END_REF] or [START_REF] Tudor | Analysis of variations for self-similar processes. A stochastic calculus approach[END_REF]) that the solution defined by the ( 2) is well-defined if and only if d = 1 and in this case the covariance of the solution (2), when x ∈ R is fixed, satisfies

E (u(t, x)u(s, x)) = 1 √ 2π √ t + s -|t -s| , for every s, t ∈ [0, T ]. (5) 
This establishes an interesting connection between the law of the solution (2) and the so-called bifractional Brownian motion introduced by [START_REF] Houdré | An example of infinite dimensional quasi-helix[END_REF]. Recall that, given constants H ∈ (0, 1) and K ∈ (0, 1], the bifractional Brownian motion (B H,K t

) t∈[0,T ] is a centered Gaussian process with covariance

R H,K (t, s) := R(t, s) = 1 2 K t 2H + s 2H K -|t -s| 2HK , s, t ∈ [0, T ]. (6) 
Relation [START_REF] Bayraktar | Estimating the fractal dimension of the SP 500 index using wavelet analysis[END_REF] implies that, when x ∈ R is fixed, the Gaussian process {u(t, x), t ∈ [0, T ]} is a bifractional Brownian motion with parameters H = K = 1 2 multiplied by the constant 2 -K 1 √ 2π . Therefore, many sample path properties of the solution to the heat equation driven by space time white-noise follow from [START_REF] Russo | On bifractional Brownian motion[END_REF][START_REF] Lei | A decomposition of the bifractional Brownian motion and some applications[END_REF][START_REF] Russo | On bifractional Brownian motion[END_REF][START_REF] Tudor | Sample path properties of bifractional Brownian motion[END_REF].

In order to avoid the restriction to the dimension d = 1, several authors considered other types of noises, usually more regular than the time-space white noise. An approach is to consider the white-colored noise, meaning a Gaussian process W = {W (t, A); t ≥ 0, A ∈ B b (R d )} with covariance with zero mean and covariance

E (W (t, A)W (s, B)) = (t ∧ s) A B f (z -z ′ )dzdz ′ . ( 7 
)
Here the kernel f is the Fourier transform of a tempered non-negative measure µ on R d , i.e. µ is a non-negative measure which satisfies:

R d 1 1 + |ξ| 2 l µ(dξ) < ∞ for some l > 0. (8) 
Recall that the Fourier transform f of µ is defined through

R d f (x)ϕ(x)dx = R d Fϕ(ξ)µ(dξ), ∀ϕ ∈ S(R d ),
where S(R d ) denotes the Schwarz space on R d . A useful connection between the kernel f and its associated measure µ is the Parseval inequality: for any ϕ, ψ ∈ S(R d ),

R d R d ϕ(x)f (x -y)ψ(y)dxdy = (2π) -d R d Fϕ(ξ)Fψ(ξ)µ(dξ). (9) 
In this work, we will include the following two following basic examples.

Example 1 The Riesz kernel of order α:

f (x) = R α (x) := γ α,d |x| -d+α , ( 10 
)
where 0 < α < d, γ α,d = 2 d-α π d/2 Γ((d -α)/2)/Γ(α/2). In this case, µ(dξ) = |ξ| -α dξ.
Example 2 The Bessel kernel of order α:

f (x) = B α (x) := γ ′ α ∞ 0 w (α-d)/2-1 e -w e -|x| 2 /(4w) dw,
where α > 0, γ ′ α = (4π) α/2 Γ(α/2). In this case, µ(dξ) = (1 + |ξ| 2 ) -α/2 dξ.

For any function g ∈ L 1 (R d ) we denote by Fg the Fourier transform of g, i.e.,

(Fg)(ξ) = R d e -i ξ,x g(x)dx, ξ ∈ R d ,
where •, • denotes the inner product in R d . Recall that for any t ∈ R and x ∈ R d , the Fourier transform of the fundamental solution ( 4) is given by

FG(t, x -•)(ξ) = exp i x, ξ - t|ξ| 2 2 1 {t>0} (ξ), ξ ∈ R d . (11) 
Dalang [START_REF] Dalang | Extending martingale measure stochastic integral with applications to spatially homogeneous s[END_REF] proved that the stochastic heat equation with white-colored noise admits a unique solution if and only if

R d 1 1 + |ξ| 2 µ(dξ) < ∞. (12) 
Obviously, this condition allows x to be in higher dimensional space. For example in the case of the Riesz kernel, the stochastic heat equation with white-colored noise admits an unique solution if and only if d < 2 + α. Under [START_REF] Foondun | Analysis of the gradient of the solution to a stochastic heat equation via fractional Brownian motion[END_REF], the solution of (1) with white-colored noise can still be written as in [START_REF] Balan | A note on intermittency for the fractional heat equation[END_REF]. One can compute the covariance of the solution with respect to the time variable (see e.g. [START_REF] Ouahhabi | Additive functionals of the solution to fractional stochastic heat equation[END_REF]). For fixed x ∈ R d , and for every s ≤ t it follows from Parseval's identity and (11)

E u(t, x)u(s, x) = (2π) -d s 0 du R d µ(dξ)e -1 2 (t-u)|ξ| 2 e -1 2 (s-u)|ξ| 2 . ( 13 
)
In the case when f is the Riesz kernel (i.e., µ(dξ) = |ξ| -α dξ, we get

E u(t, x)u(s, x) = (2π) -d R d dξ |ξ| α e -1 2 |ξ| 2 1 1 -d-α 2 (t + s) 1-d-α 2 -(t -s) 1-d-α 2 .
In this case, the solution coincides, modulo a constant, with a bifractional Brownian motion with parameters H = 1 2 and K = 1 -d-α 2 . Thus the sample path properties of this process can be deduced from [START_REF] Lei | A decomposition of the bifractional Brownian motion and some applications[END_REF][START_REF] Russo | On bifractional Brownian motion[END_REF][START_REF] Tudor | Sample path properties of bifractional Brownian motion[END_REF].

Our purpose in this paper is to study the linear heat equation driven by a fractionalcolored Gaussian noise (see section 2 for details). When the structure of the noise with respect to the time variable changes and the white noise is replaced by a fractional noise, the solution does not coincide with a bifractional Brownian motion anymore (see [START_REF] Bourguin | On the law of the solution to a stochastic heat equation with fractional noise in time[END_REF] or [START_REF] Tudor | Analysis of variations for self-similar processes. A stochastic calculus approach[END_REF]). Some new methods are needed for analyzing the path properties of the solution with respect to the time and to the space variables. By appealing to general methods for Gaussian processes and fields (cf. e.g., [START_REF] Marcus | Markov Processes, Gaussian Processes, and Local Times[END_REF][START_REF] Xiao | Strong local nondeterminism and the sample path properties of Gaussian random fields[END_REF][START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields[END_REF]), we establish the exact uniform and local moduli of continuity and Chung type laws of the iterated logarithm for the solution of ( 1) with a fractional-colored Gaussian noise.

Throughout this paper, we will use C to denote unspecified positive finite constants which may be different in each appearance. More specific constants are numbered as c 1 , c 2 , . . . .

The solution to the stochastic heat equation with fractionalcolored noise

We consider a Gaussian field

W H (t, A), t ∈ [0, T ], A ∈ B b (R d ) with covariance E W H (t, A)W H (s, B) = R H (t, s) A B f (z -z ′ )dzdz ′ , (14) 
where

R H (t, s) := 1 2 (t 2H + s 2H -|t -s| 2H
) is the covariance of the fractional Brownian motion with index H and f is the Fourier transform of a tempered measure µ. This noise is usually called fractional-colored noise. We will assume throughout the paper that the Hurst parameter H is contained in the interval ( 12 , 1). Consider the linear stochastic heat equation

∂u ∂t = 1 2 ∆u + Ẇ H , t ∈ [0, T ] , x ∈ R d (15) 
with vanishing initial condition, where {W H (t, x), t ∈ [0, T ] , x ∈ R d } is a centered Gaussian noise with covariance [START_REF] Houdré | An example of infinite dimensional quasi-helix[END_REF]. In the following we collect some known facts:

• A necessary and sufficient condition for the existence of the mild solution to the fractional-colored heat equation ( 15) has been given in [START_REF] Balan | The stochastic heat equation with fractionalcolored noise: existence of the solution[END_REF] (see also [START_REF] Ouahhabi | Additive functionals of the solution to fractional stochastic heat equation[END_REF]). Namely, (

) has a solution {u(t, x), t ≥ 0, x ∈ R d } that satisfies sup t∈[0,T ],x∈R d E u(t, x) 2 < +∞ if and only if R d 1 1 + |ξ| 2 2H µ(dξ) < ∞. 15 
• When ( 16) holds, the solution to ( 15) can be written in the mild form as

u(t, x) = t 0 R d G(t -u, x -y)W H (du, dy), t ∈ [0, T ], x ∈ R d . ( 17 
)
It follows from [START_REF] Balan | The stochastic heat equation with fractionalcolored noise: existence of the solution[END_REF] or [START_REF] Ouahhabi | Additive functionals of the solution to fractional stochastic heat equation[END_REF] that, for x ∈ R d fixed, the covariance function of the Gaussian process {u(t, x), t ∈ [0, T ]} can be written as

E (u(t, x)u(s, x)) = α H (2π) -d t 0 s 0 dudv |u -v| 2-2H R d µ(dξ)e -(t-u)|ξ| 2 2 e -(s-v)|ξ| 2 2 (18) 
with α H = H(2H -1). In the particular case where the spatial covariance is given by the Riesz kernel, the process t → u(t, x) is self-similar with parameter H -d-α 4 . However, for H ∈ ( 1 2 , 1), {u(t, x), t ≥ 0} is no longer a bifractional Brownian motion.

For 0 < α < d, the notation

µ(dξ) ≍ |ξ| -α dξ, (19) 
means that for every non-negative function h there exist two positive and finite constants C and C ′ , which may depend on h, such that

C ′ R d h(ξ)|ξ| -α dξ ≤ R d h(ξ)µ(dξ) ≤ C R d h(ξ)|ξ| -α dξ. ( 20 
)
It has been proven in [START_REF] Tudor | Analysis of variations for self-similar processes. A stochastic calculus approach[END_REF] that, under condition [START_REF] Luan | Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields[END_REF], there exist two strictly positive constants c 1 , c 2 such that for all t, s ∈ [0, 1] and for all x ∈ R d ,

c 1 |t -s| 2H-d-α 2 ≤ E |u(t, x) -u(s, x)| 2 ≤ c 2 |t -s| 2H-d-α 2 . ( 21 
)
Remark 1 The Riesz kernel obviously satisfies [START_REF] Luan | Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields[END_REF]. The Bessel kernel satisfies [START_REF] Luan | Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields[END_REF] and the constants in [START_REF] Marcus | Markov Processes, Gaussian Processes, and Local Times[END_REF] are C = 1 and C ′ > 0 depending on h. Under Condition [START_REF] Luan | Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields[END_REF], the condition ( 16) is equivalent to

d < 4H + α. (22) 
In the sequel (e.g., Theorem 1 below), we will also use the notation f (x) ≍ g(x) which means that there exists two positive and finite constants C and C ′ such that C ′ ≤ f (x)/g(x) ≤ C for all x in the domain of f and g. In the rest of the paper, we will assume that ( 19) is satisfied.

Sharp regularity in time

For any fixed x ∈ R d , to further study the regularity properties of the sample function t → u(t, x), we decompose the solution {u(t, x), t ≥ 0} in [START_REF] Li | Gaussian processes: inequalities, small ball probabilities and applications[END_REF] into the sum of a Gaussian process U = {U (t), t ≥ 0}, which has stationary increments, and another Gaussian process whose sample functions are continuously differentiable on (0, ∞). In particular, when the spatial covariance of noise W H is given by the Riesz kernel [START_REF] Dalang | Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three[END_REF], then U = {U (t), t ≥ 0} becomes fractional Brownian motion with Hurst parameter γ = H -d-α 4 . We will apply this decomposition to obtain the regularity in time of the solution {u(t, x), t ≥ 0}.

Motivated by [START_REF] Mueller | Hitting probabilities of a random string[END_REF] (see also [START_REF] Mueller | A connection between the stochastic heat equation and fractional Brownian motion, and a simple proof of a result of Talagrand[END_REF][START_REF] Wu | Fractal properties of the random string processes[END_REF] for related results), we introduce the pinned string process in time {U (t), t ≥ 0} defined by

U (t) = 0 -∞ R d G(t -u, x -y) -G(-u, x -y) W H (du, dy) + t 0 R d G(t -u, x -u)W H (du, du).
Note that U (0) = 0 and U (t) can be expressed as

U (t) = R R d G((t -u) + , x -y) -G((-u) + , x -y) W H (du, dy). (23) 
In the above, a + = max(a, 0). The following theorem shows that {U (t), t ≥ 0} has stationary increments and identifies its spectral measure. This information is useful for appleying the methods in [START_REF] Marcus | Markov Processes, Gaussian Processes, and Local Times[END_REF][START_REF] Xiao | Strong local nondeterminism and the sample path properties of Gaussian random fields[END_REF][START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields[END_REF] to study sample path properties of {U (t), t ≥ 0}.

Theorem 1 The Gaussian process {U (t), t ≥ 0} given by ( 23) has stationary increments and its spectral density is given by

f U (τ ) = 2(2π) -d α H |τ | 2H-1 R d µ(dξ) τ 2 + |ξ| 4 4 . (24) 
Moreover, under condition [START_REF] Luan | Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields[END_REF], we have

f U (τ ) ≍ 1 |τ | 2H-d-α 2 +1 . ( 25 
)
Proof : For every 0 ≤ s < t, by Parseval's identity [START_REF] Dalang | Local properties of the solution of stochastic heat equation with spatially colored noise[END_REF] and relation [START_REF] Denk | Modeling, simulation and optimization of integrated circuits[END_REF], we can write

E (U (t) -U (s)) 2 = E R R d (G((t -u) + , x -y) -G((s -u) + , x -y)) W H (du, dy) 2 = (2π) -d α H R d µ(dξ) R R dudv |u -v| 2-2H e -1 2 (t-u)|ξ| 2 1 {t>u} -e -1 2 (s-u)|ξ| 2 1 {s>u} × e -1 2 (t-v)|ξ| 2 1 {t>v} -e -1 2 (s-v)|ξ| 2 1 {s>v} . Let ϕ(u) = e -1 2 (t-u)|ξ| 2 1 {t>u} -e -1 2 (s-u)|ξ| 2 1 {s>u} .
Then its Fourier transform is

Fϕ(τ ) = e -itτ -e -isτ 1 iτ + 1 2 |ξ| 2 . ( 26 
)
By using again Parseval's relation [START_REF] Dalang | Local properties of the solution of stochastic heat equation with spatially colored noise[END_REF] in dimension d = 1 and (26), we get

E (U (t) -U (s)) 2 = (2π) -d α H R d µ(dξ) R dτ |τ | 2H-1 Fϕ(τ ) 2 = (2π) -d α H R d µ(dξ) R dτ |τ | 2H-1 2 [1 -cos((t -s)τ )] τ 2 + |ξ| 4 4 = 2(2π) -d α H R 1 -cos((t -s)τ ) dτ |τ | 2H-1 R d µ(dξ) τ 2 + |ξ| 4 4 ,
where the last step follows from Fubini's theorem and the convergence of the last integral in µ(dξ) is guaranteed by relation [START_REF] Lei | A decomposition of the bifractional Brownian motion and some applications[END_REF]. It follows that the Gaussian process {U (t), t ≥ 0} has stationary increments and its spectral density is given by [START_REF] Mueller | Hitting probabilities of a random string[END_REF].

Under condition [START_REF] Luan | Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields[END_REF], we have

f U (τ ) ≍ 1 |τ | 2H-1 R d dξ |ξ| α τ 2 + |ξ| 4 2 ≍ 1 |τ | 2H-d-α 2 +1
.

This finishes the proof of ( 25) and thus the conclusion of Theorem 1 is obtained.

When the spatial covariance of noise W H is given by the Riesz kernel (10), we have

f U (τ ) = α H 2 2H-1 Γ(H -1 2 ) (2π) d+ 1 2 Γ(1 -H) |τ | 2H-1 R d dξ |ξ| α τ 2 + |ξ| 4 4 = α H 2 2H-1 Γ(H -1 2 ) (2π) d+ 1 2 Γ(1 -H) |τ | 2H-d-α 2 +1 R d dη |η| α 1 + |η| 4 4 .
Therefore, in the Riesz kernel case, {U (t), t ≥ 0} is, up to a constant, a fractional Brownian motion B γ with Hurst parameter γ = H -d-α 4 . Recall that the spectral density of the fBm B γ with Hurst index γ ∈ (0, 1) is given by f γ (λ) = c γ |λ| -(1+2γ) with c γ = sin(πγ)Γ(1+2γ) 2π .) Hence, we have the following corollary.

Corollary 1 Let U = {U (t), t ≥ 0} be the Gaussian process defined by [START_REF] Monrad | Small values of Gaussian processes and functional laws of the iterated logarithm[END_REF] such that the spatial covariance of W H is given by the Riesz kernel [START_REF] Dalang | Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three[END_REF].Then U coincides in distribution with C 0 B γ with γ = H -d-α 4 and . Now for every t ≥ 0 we have the following decomposition

C 2 0 = (2π) -d+ 1 2 α H 2 2H-1 Γ(H -1 2 ) sin π(d -H-α 4 ) Γ(1 + 2H -d-α 2 )Γ(1 -H) R d dη |η| α 1 + |η|
u(t, x) = U (t) -Y (t),
where

Y (t) = 0 -∞ R d (G(t -u, x -y) -G(-u, x -y)) W H (du, dy).
The following theorem shows that the sample function of {Y (t), t ≥ 0} is smooth, which is useful for studying the regularity properties of the solution process {u(t, x), t ≥ 0} in the time variable.

Theorem 2 Let x ∈ R d be fixed and let [a, b] ⊂ (0, ∞). Then for any k ≥ 1 there is a modification of {Y (t), t ≥ 0} such that its sample function is almost surely continuously differentiable on [a, b] of order k.

Proof : The method of proof is similar to those of [12, Proposition 3.1] and [41, Theorem 4.8], but is more complicated in our fractional-colored noise case.

The mean square derivative of Y at t ∈ (0, ∞) can be expressed as

Y ′ (t) = 0 -∞ R d G ′ (t -u, x -y) W H (du, dy),
where G ′ := ∂G/∂t. This can be verified by checking the covariance functions. For every s, t ∈ (0, ∞) with s ≤ t, similarly to the proof of Theorem 1, we derive

E |Y ′ (t) -Y ′ (s)| 2 = E 0 -∞ R d G ′ (t -u, x -y) -G ′ (s -u, x -y) W H (du, dy) 2 = α H 4(2π) d R d |ξ| 4-α dξ ∞ 0 ∞ 0 dudv |u -v| 2-2H × e -1 2 (t+u)|ξ| 2 -e -1 2 (s+u)|ξ| 2 e -1 2 (t+v)|ξ| 2 -e -1 2 (s+v)|ξ| 2 .
In the above, we have used the fact that the Fourier transform of the function

y → G ′ (t+u, y) is ∂ ∂t FG(t + u, •)(ξ) = - 1 2 |ξ| 2 e -1 2 (t+u)|ξ| 2 .
Denote by F 0,∞ the restricted Fourier transform of

f ∈ L 1 (0, ∞) defined by (F 0,∞ f )(τ ) = ∞ 0 e -ixτ f (x)dx, τ ∈ R.
By applying the Parseval relation [START_REF] Dalang | Local properties of the solution of stochastic heat equation with spatially colored noise[END_REF] for the restricted transform (see Lemma A1 in [START_REF] Balan | The stochastic heat equation with fractionalcolored noise: existence of the solution[END_REF]), we see that for all s, t ∈ [a, b] with s < t,

E |Y ′ (t) -Y ′ (s)| 2 = C R d |ξ| 4-α dξ R dτ |τ | 2H-1 F 0,∞ e -1 2 (t+•)|ξ| 2 -e -1 2 (s+•)|ξ| 2 (τ ) 2 = C R d |ξ| 4-α dξ R dτ |τ | 2H-1 e -1 2 t|ξ| 2 -e -1 2 s|ξ| 2 2 1 τ 2 + |ξ| 4 4 = C R d |ξ| 4-α-4H e -s|ξ| 2 1 -e -1 2 (t-s)|ξ| 2 2 dξ R dτ (|τ | 2 + 1 4 )|τ | 2H-1 ≤ C|t -s| 2 R d |ξ| 8-α-4H e -a|ξ| 2 dξ.
Hence, as in [START_REF] Foondun | Analysis of the gradient of the solution to a stochastic heat equation via fractional Brownian motion[END_REF][START_REF] Xue | Fractal and smoothness properties of space-time Gaussian models[END_REF], by using Kolmogorov's continuity theorem, we can find a modification of Y such that Y (t) is continuously differentiable on [a, b]. Iterating this argument yields the conclusion of Theorem 2.

Remark 2 In [START_REF] Mueller | A connection between the stochastic heat equation and fractional Brownian motion, and a simple proof of a result of Talagrand[END_REF], the authors obtained a similar decomposition for the solution to the linear heat equation with white noise in time and Riesz covariance in space in dimension d = 1. Our Theorem 1 shows that the time behavior of the process u is very similar to the behavior of the bifractional Brownian motion (see the main result in [START_REF] Lei | A decomposition of the bifractional Brownian motion and some applications[END_REF]).

By applying Theorems 1, 2 and the results on uniform and local moduli of continuity for Gaussian processes (see e.g. [START_REF] Marcus | Markov Processes, Gaussian Processes, and Local Times[END_REF]Chapter 7] or [START_REF] Meerschaert | Fernique-type inequalities and moduli of continuity of anisotropic Gaussian random fields[END_REF]), we derive the following regularity results on the solution process {u(t, x), t ≥ 0}, when x ∈ R d is fixed. For simplicity, we avoid the point t = 0.

Proposition 1 Let x ∈ R d be fixed. Then for any 0 < a < b < ∞, we have

lim ε→0 sup s,t∈[a,b],|s-t|≤ε |u(t, x) -u(s, x)| |s -t| γ log(1/(t -s) = c 3 a.s.,
where 0 < c 3 < ∞ is a constant that may depend on a, b, γ and x. Or

lim ε→0 sup s,t∈[a,b],|s-t|≤ε |u(t, x) -u(s, x)| ε γ log(1/ε) = c 3 a.s.
Here and in Propositions 2 and 3, γ = H -d-α 4 .

Proposition 2 Let x ∈ R d be fixed. Then for any t 0 > 0 we have

lim ε→0 sup |t-t 0 |≤ε |u(t, x) -u(t 0 , x)| ε γ log log(1/ε) = c 4 a.s.,
where 0 < c 4 < ∞ is a constant.

By applying Theorems 1, 2 and the Chung-type law of iterated logarithm in [START_REF] Monrad | Small values of Gaussian processes and functional laws of the iterated logarithm[END_REF], we derive immediately Proposition 3 Let x ∈ R d be fixed. Then for any t 0 > 0 we have

lim ε→0 sup |t-t 0 |≤ε |u(t, x) -u(t 0 , x)| (ε/ log log(1/ε)) γ = c 5 a.s.,
where 0 < c 5 < ∞ is a constant depending on the small ball probability of the Gaussian process U in Theorem 1.

Further properties on the local times and fractal behavior of the solution process {u(t, x), t ≥ 0}, when x ∈ R d is fixed, can be derived from [START_REF] Xiao | Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields[END_REF][START_REF] Xiao | Strong local nondeterminism and the sample path properties of Gaussian random fields[END_REF][START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields[END_REF].

Sharp regularity in space

In this section we fix t > 0 and analyze the space regularity of the solution {u(t, x), x ∈ R d }. We start with the following result.

Theorem 3 For each t > 0, the Gaussian random field {u(t, x), x ∈ R d } is stationary with spectral measure

∆(dξ) = α H (2π) -d t 0 t 0 dudv |u -v| 2-2H e -(u+v)|ξ| 2 2 µ(dξ).
Proof : It follows from the Fourier transform of the Green kernel in [START_REF] Denk | Modeling, simulation and optimization of integrated circuits[END_REF] and Parseval's identity (9) that the covariance function of

{u(t, x), x ∈ R d } is E u(t, x)u(t, y) = α H (2π) d t 0 t 0 dudv |u -v| 2-2H R d e i x-y,ξ e -1 2 (t-u)|ξ| 2 e -1 2 (t-v)|ξ| 2 µ(dξ) = α H (2π) d R d e i x-y,ξ t 0 t 0 dudv |u -v| 2-2H e -1 2 (u+v)|ξ| 2 µ(dξ).
The conclusion of Theorem 3 follows.

It has been shown in [START_REF] Balan | The stochastic wave equation with fractional noise: A random field approach[END_REF]Proposition 4.3] that there exist two strictly positive constants c 1,H , c 2,H such that

c 1,H (t 2H ∧ 1) 1 1 + |ξ| 2 2H ≤ t 0 t 0 dudv |u -v| 2-2H e -(u+v)|ξ| 2 2 ≤ c 2,H (t 2H + 1) 1 1 + |ξ| 2 2H . (27) 
This and Condition [START_REF] Luan | Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields[END_REF] imply that the spectral measure ∆(dξ) is comparable with an absolutely continuous measure with a density function that is comparable to |ξ| -(α+4H) for all ξ ∈ R d with |ξ| ≥ 1. As shown in [START_REF] Pitt | Local times for Gaussian vector fields[END_REF][START_REF] Luan | Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields[END_REF][START_REF] Xiao | Strong local nondeterminism and the sample path properties of Gaussian random fields[END_REF][START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields[END_REF], this information is very useful for studying regularity and other sample path properties of the Gaussian random field {u(t, x), x ∈ R d }. In the following we show some consequences. We start with the following estimate on E |u(t, x) -u(t, y)| 2 . To this end, let β = min{1, 2H -d-α 2 }, and let

ρ = 1 if β = 1, 0 otherwise.
Theorem 4 Assume that ( 19) and ( 22) hold. For any M > 0 and t > 0, there exist positive and finite constants c 6 , c 7 such that for any x, y

∈ [-M, M ] d , c 6 |x -y| 2β log 1 |x -y| ρ ≤ E |u(t, x) -u(t, y)| 2 ≤ c 7 |x -y| 2β log 1 |x -y| ρ . (28) 
Proof : Take x, y ∈ [-M, M ] d and let z := x -y ∈ R d . Using again [START_REF] Denk | Modeling, simulation and optimization of integrated circuits[END_REF] and Parseval's identity, we can write

E |u(t, x + z) -u(t, x)| 2 = α H (2π) -d t 0 t 0 dudv |u -v| 2-2H R d e -i ξ,z -1 2 e -u|ξ| 2 2 e -v|ξ| 2 2 µ(dξ) ≍ R d (1 -cos ξ, z ) dξ |ξ| α t 0 t 0 dudv |u -v| 2-2H e -(u+v)|ξ| 2 2 .
Let us first prove the lower bound in [START_REF] Ouahhabi | Additive functionals of the solution to fractional stochastic heat equation[END_REF]. Using [START_REF] Nualart | The fractional stochastic heat equation on the circle: time regularity and potential theory[END_REF], with c 1,H,t a generic strictly positive constant depending on t, H (that may change from line to line) and the lower bound in [START_REF] Meerschaert | Fernique-type inequalities and moduli of continuity of anisotropic Gaussian random fields[END_REF], we derive

E |u(t, x + z) -u(t, x)| 2 ≥ c 1,H,t |ξ|≥1 dξ |ξ| α 1 1 + |ξ| 2 2H (1 -cos ξ, z ) ≥ c 1,H,t |ξ|≥1 dξ |ξ| α+4H (1 -cos ξ, z ).
By making the change of variables using spherical coordinates, we have

E |u(t, x + z) -u(t, x)| 2 ≥ c 1,H,t |z| -d+α+4H S d-1 ∞ |z| r d-1-α-4H (1 -cos(r θ, θ z )drσ(dθ), (29) 
where θ z = z |z| and σ(dθ) is the uniform measure on the unit sphere S d-1 . Next we distinguish three cases:

(i) 2H -d-α 2 > 1, (ii) 2H -d-α 2 = 1 and (iii) 2H -d-α 2 < 1.
In case (i) and (ii), we observe that for |z| small,

∞ |z| r d-1-α-4H (1 -cos(r θ, θ z )dr ≥ 1 2 1 |z| r d-1-α-4H (r θ, θ z ) 2 dr ≥ C|z| d+2-α-4H log 1 |z| ρ θ, θ z 2 ,
where the extra factor log 1 |z| appears in case (ii). Plugging this into [START_REF] Pitt | Local times for Gaussian vector fields[END_REF] gives the desired lower bound.

In case (iii), the integrand r → r d-1-α-4H (1 -cos(r θ, θ z ) is integrable at both 0 and infinity. The fact that x, y ∈ [-M, M ] d ensures the integral has a positive lower bound. This gives the lower bound in [START_REF] Ouahhabi | Additive functionals of the solution to fractional stochastic heat equation[END_REF]. Now we verify the upper bound in [START_REF] Ouahhabi | Additive functionals of the solution to fractional stochastic heat equation[END_REF]. Similarly to the above, the right-hand side of ( 27) and ( 22) imply

E |u(t, x + z) -u(t, x)| 2 ≤ c 2,H,t |z| -d+α+4H S d-1 ∞ 0 r d-1-α 1 |z| 2 + r 2 2H (1 -cos(r θ, θ z )drσ(dθ).
Again, by distinguish three cases:

(i) 2H -d-α 2 > 1, (ii) 2H -d-α 2 = 1 and (iii) 2H -d-α
2 < 1, we can verify that the upper bound in [START_REF] Ouahhabi | Additive functionals of the solution to fractional stochastic heat equation[END_REF]. Since this is elementary, we omit the details. Theorem 4 suggests that the sample function x → u(t, x) is rough (or fractal) when 2H -d-α 2 ≤ 1, and is differentiable when 2H -d-α 2 > 1. This is indeed the case as shown by the following theorem.

Theorem 5 Assume that ( 19) and ( 22) hold and t > 0 is fixed. If 2H -d-α 2 > 1, then {u(t, x), x ∈ R d } has a modification (still denoted by the same notation) such that almost surely the sample function x → u(t, x) is continuously differentiable on R d . Moreover, for any M > 0, there exists a positive positive random variable K with all moments such that for every j = 1, . . . , d, the partial derivative ∂ ∂x j u(t, x) has the following modulus of continuity on

[-M, M ] d : sup x,y∈[-M,M ] d ,|x-y|≤ε ∂ ∂x j u(t, x) - ∂ ∂y j u(t, y) ≤ Kε 2H-d-α 2 -1 log 1 ε . (30) 
Proof : The method of proof is similar to that of Theorem 2 above or [START_REF] Xue | Fractal and smoothness properties of space-time Gaussian models[END_REF]Theorem 4.8].

By applying Theorem 3, we can show that the mean square partial derivative ∂ ∂x j u(t, x) exists and

E ∂ ∂x j u(t, x) - ∂ ∂y j u(t, y) 2 = R d ξ 2 j e i ξ,x -e i ξ,y 2 ∆(dξ) ≍ R d ξ 2 j 1 -cos ξ, x -y 1 1 + |ξ| 2 2H dξ |ξ| α ≤ C |x -y| 4H+α-d-2 .
In the above, we have used the fact that 0 < 4H +α-d-2 < 2, so the last inequality can be derived as in the case of fractional Brownian motion. Finally the desired result follows from the general results on modulus of continuity of Gaussian random fields (cf. [START_REF] Marcus | Markov Processes, Gaussian Processes, and Local Times[END_REF]Chapter 7] or [START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields[END_REF]Section 4]). Finally, we consider the non-smooth case. For simplicity, we assume 2H -d-α 2 < 1. The case 2H -d-α 2 = 1 is more subtle and will require significant extra work. By combining Theorem 3 and relation [START_REF] Nualart | The fractional stochastic heat equation on the circle: time regularity and potential theory[END_REF] with the results in [29, Section 8] (see also [START_REF] Luan | Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields[END_REF][START_REF] Xiao | Strong local nondeterminism and the sample path properties of Gaussian random fields[END_REF]), we obtain the following useful lemma.

Lemma 1 Suppose 2H -d-α 2 < 1.
Then ,for every fixed t > 0, the Gaussian field {u(t, x), x ∈ R d } is strongly locally nondeterministic. Namely, for every M > 0, there exists a constant c 8 > 0 (depending on t and M ) such that for every n ≥ 1 and for every x, y 1 , ..., y n ∈ [-M, M ] d , Var (u(t, x)|u(t, y 1 ), . Proof : It follows from Lemma 1 and Li and Shao [START_REF] Li | Gaussian processes: inequalities, small ball probabilities and applications[END_REF]. See also [START_REF] Luan | Chung's law of the iterated logarithm for anisotropic Gaussian random fields[END_REF]Theorem 3.2 ] for related results.

We conclude with the following remarks.

Remark 3 (i) Propositions 4 and 5 show that, when β = 2H -d-α 2 < 1 and t > 0 is fixed, the solution process {u(t, x), x ∈ R d } behaves locally like a fractional Brownian motion {B β (x), x ∈ R d }. This is not surprising. Indeed, similarly to Theorem 2 and [12, Proposition 3.1], one can show that {u(t, x), x ∈ R d } is a smooth perturbation of {B β (x), x ∈ R d }.

(ii) Further properties on the local times and fractal behavior of the solution process {u(t, x), x ∈ R d }, when t > 0 is fixed, can be derived from [START_REF] Xiao | Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields[END_REF][START_REF] Xiao | Strong local nondeterminism and the sample path properties of Gaussian random fields[END_REF][START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields[END_REF]. It is also possible to investigate sample path properties of the Gaussian random field {u(t, x), t ≥ 0, x ∈ R d } in both time and space variables. The methods developed in [START_REF] Dalang | Local properties of the solution of stochastic heat equation with spatially colored noise[END_REF] will be useful for this purpose. We will study these problems in a subsequent paper.
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 2121 . . , u(t, y n )) ≥ c 8 min 0≤j≤n {|x -y j | 4H+α-d }, where y 0 = 0.Because of this, the Gaussian random field {u(t, x), x ∈ R d } shares many local properties with fractional Brownian motionB β = {B β (x), x ∈ R d } with β = 2H -d-α2 . We give some examples.Proposition 4 (Uniform and local moduli of continuity) Suppose 2H -d-α Let t > 0 and M > 0 be fixed. Then (a) almost surely,lim ε→0 max x∈[-M,M ] d ,|h|≤ε |u(t, x + h) -u(t, x)| ε β log(1/ε) = c 9 . (b) For x 0 ∈ R d , lim ε→0 max |h|≤ε |u(t, x 0 + h) -u(t, x 0 )| ε β log log(1/ε) = c 10 .In the above, β = 2H -d-α 2 and 0 < c 9 , c 10 < ∞ are constants. Proof : The conclusion (a) follows from Lemma 1 and [22, Theorem 4.1], while (b) follows from [22, Theorem 5.1]. Proposition 5 (Chung's LIL) Suppose 2H -d-α Then for every t > 0 and x 0 ∈ R d , we have lim ε→0 max |h|≤ε |u(t, x 0 + h) -u(t, x 0 )| ε β /(log log(1/ε) β = c 10 , where β = 2H -d-α 2 and 0 < c 10 < ∞ is a constant.
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