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Abstract

After the nice result introduced by Belotto in [1] concerning the local monomialization of a singular
foliation given by n first integrals, this work is a continuation in the same spirit. In this paper, we
introduce a important conjecture about local monomialization of a singular foliation of Darboux type
(see section 1). This conjecture can be used to study pseudo-abelian integrals [2,4].

1 Introduction

Let M be an analytic manifold of dimension n+ 2. Given a families of first integrals of Darboux type Hǫ

Hǫ(x, y) = H(x, y, ǫ1, . . . , ǫn) =

k∏

i=1

P ai(x, y, ǫ1, . . . , ǫn), ai > 0. (1)

Let F be the foliation of codimension one in M with coordinates (x, y, ǫ1, . . . , ǫn) which is given by the
analytic one form ω

ω =
Hx

φ
dx+

Hy

φ
dy +

n∑

i=1

Hǫi

φ
dǫi = 0, (2)

where Hx = ∂H
∂x

, Hy = ∂H
∂y

, Hǫi =
∂H
∂ǫi

and φ =
∏k

i=1
P ai−1

i (x, y, ǫ1, . . . , ǫn) (integrating factor).

Let Fi, i = 1, . . . , n are foliations of codimension one in M with coordinates (x, y, ǫ1, . . . , ǫn) which are
given by the one forms ωi

ωi = dǫi = 0, i = 1, . . . , n. (3)

Let F = (F, F1, . . . , Fn) be the result foliation of dimension one in M where its leaves are given by the
transversal intersection of leaves of F, F1, . . . , Fn. Otherwise speaking, the singular foliation F is given by

Ω = ω ∧ ω1 ∧ . . . ∧ ωn (4)

= Q1(x, y, ǫ1, . . . , ǫn)dx ∧ dǫ1 ∧ . . . ∧ dǫn +Q2(x, y, ǫ1, . . . , ǫn)dy ∧ dǫ1 ∧ . . . ∧ dǫn = 0, (5)

where Q1 = Hx

φ
, Q2 =

Hy

φ
are polynomials.

We shall say that Ω is a foliation of Darboux type with first integrals (H, ǫ1, . . . , ǫn).

Example. Let Hǫ(x, y) = H(x, y, ǫ) = (x − ǫ)a1(x − y)a2(x + y)a3 be a the first integral of Darboux
type. The foliation F of codimension one in three dimensional space M with coordinates (x, y, ǫ) is given by
the one form

ω = (a1(x− y)(x+ y) + a2(x− ǫ)(x+ y) + a3(x− ǫ)(x− y))dx

− (a2(x − ǫ)(x+ y)− a3(x − ǫ)(x− y))dy − a1(x− y)(x+ y)dǫ = 0

and the foliation F1 of codimension one in M is given by the one form

ω1 = dǫ = 0.
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The result foliation F = (F, F1) is given by the two-form

Ω = ω∧ω1 = (a1(x−y)(x+y)+a2(x−ǫ)(x+y)+a3(x−ǫ)(x−y))dx∧dǫ−(a2(x−ǫ)(x+y)−a3(x−ǫ)(x−y))dy∧dǫ = 0

Observe that the foliation F = (F, F1) has a complicated singularity at the origin (0, 0, 0) ⊂ D0 = {ǫ = 0}.

Conjecture. There exist sequences of local blowings-up such that the total transform of

the foliation F : ω ∧ ω1 ∧ . . .∧ ωn = 0 has locally n+ 1 monomial first integrals (zγ0, zγ1 ..., zγn)
where zγi = z

γi,1

1
· · · z

γi,n+2

n+2
and the exponents matrix

m(a1, . . . , ak) =




γ1
0 . . . γn+2

0

γ1
1 . . . γn+2

1

...
...

...

γ1
n . . . γn+2

n




has a maximal rank.

2 Blowing-up of the foliation F

In this section, we introduce the fundamental idea to prove the conjecture which is based in first step on
Hironaka’s reduction of singularities [3]. Let D0 = {ǫ1 = ǫ2 = . . . = ǫn = 0} be a initial exceptional divisor.

Theorem 1. There exist a morphism Φ such that the pull-back foliation Φ̃∗F = F̃ is given locally in
neighborhood U1 of the divisor Φ̃∗(D0) with coordinates z = (z1, . . . , zn+2) by the following system






H̃ = zγ0 .∆0,
ǫ̃1 = zγ1 .∆1,
...
ǫ̃n = zγn .∆n,

(6)

where ∆i, i = 0, . . . , n are a units.

Proof. (1) In first step, we monomialize the principal ideal I1 =< P1 >, Hironaka theorem’s guarantee the

existence oft a sequence of blow-ups Φ̃1 = Φ̃1
n1

◦ Φ̃1
n1−1 ◦ . . .◦ Φ̃

1
1 with initial center C0 ⊂ D0 (which is possibly

a submanifold of M) such that

(Φ̃∗

1P1)
a1 = δ1

n+2∏

i=1

z
a1β̃

1
i

i , δ1(0) 6= 0.

(2) In the second step, we consider the principal ideal I2 =< Φ̃∗

1P2 > and by Hironaka theorem’s there exist

a sequence of blow-ups Φ̃2 = Φ2
n2

◦ Φ2
n2−1 ◦ . . . ◦ Φ

2
1 such that

(Φ̃∗

2 ◦ Φ̃
∗

1P2)
a2 = δ2

n+2∏

i=1

z
a2β̃

2
i

i , δ2(0) 6= 0.

In the k-th step there exist a sequence of blow-ups Φ̃k = Φk
nk

◦Φk
nk−1 ◦ . . . ◦Φ

k
1 such that the principal ideal

Ik =< Φ̃∗

k−1
◦ Φ̃∗

k−2
◦ . . . ◦ Φ̃∗

1Pk > has a normal crossings i.e.

(Φ̃∗

k−1 ◦ Φ̃
∗

k−2 ◦ . . . ◦ Φ̃
∗

1Pk)
ak = δk

n+2∏

i=1

z
akβ̃

k
i

i , δk(0) 6= 0.

Finally, after desingularisation of each polynomial Pi of the first integral H =
∏k

i=1
P ai

i , the equations
z1 = 0, . . . , zn+2 = 0 are corresponding the irreducibles components of the exceptional divisor. For this
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raison after desingularisation of Φ̃∗

i−1 ◦ Φ̃
∗

i−2 ◦ . . . ◦ Φ̃
∗

1Pi, the polynomial Φ̃∗

i ◦ Φ̃
∗

i−1 ◦ Φ̃
∗

i−2 ◦ . . . ◦ Φ̃
∗

1Pi−1 has
a normal crossings. So locally we have






H̃ = zγ0 .∆0,
ǫ̃1 = zγ1 .∆1,
...
ǫ̃n = zγn .∆n,

where z = (z1, . . . , zn+2), γ0 =
∑k

i=1
aiβi, βi = (β1

i , . . . , β
n+2

i ), γi = (γ1
i , . . . , γ

n+2

i ).

To complete the proof its necessairy to eliminate the units ∆0,∆1, . . . ,∆n in the system (6). Now we
define the resonant locus of the foliation (zγ0 .∆0, z

γ1.∆1, . . . , z
γn .∆n)

R := {a = (a1, . . . , ak) : γ0 ∧

n∑

j=1

γj = 0}.

To prove the conjecture, we distinguish two cases

• generic case a /∈ R.

• nongeneric case a ∈ R.

3 Some examples in dimension three

To more understand the problem, we see some examples in dimension three.

Example 1: Let F be the local foliation which is obtained by after k blow-ups. The foliation F is given by
the following system

{
Ha = xa1ya2(1 + z)
f = xy

(7)

In this example we have γ0 : a1β1 + a2β2 where β1 = (1, 0, 0), β2 = (0, 1, 0), γ1 = (1, 1, 0) and R = {a =
(a1, a2) : γ0 ∧ γ1 = 0}. Our goal is to kill the unit 1+ z in the first integral Ha without modifying the second
monomial f in the sense to preserve its monomiality structure. For this raison, we distinguish two different
cases:

(a) The generic case a1 6= −a2 ⇔ a /∈ R: We take the change of variables x̃ = x(1+z)
1

a1+a2 , ỹ = y(1+z)
1

a2+a1

and z̃ = z. Then, we obtain the following system
{

Ha = x̃a1 ỹa2

f = x̃ỹ
(8)

Question: How to calculate the generator vector field of the monomial foliation (7)?

Let us assume that the foliation F is generated locally by the vector field X(x̃, ỹ, z) = α1x̃
∂
∂x̃

+α2ỹ
∂
∂ỹ

+α3z
∂
∂z

which satisfies
X(H) = X(x̃a1 ỹa2) = 0, X(f) = X(x̃ỹ) = 0

To determine the vector α = (α1, α2, α3) we use the two following relations

< α, γ0 >= 0 (i.e. X(H) = X(x̃a1 ỹa2) = 0), < α, γ1 >= 0 (i.e. X(f) = X(x̃ỹ) = 0).

where <,> is scalar product in C3. Finally, the vector (α1, α2, α3) ∈ {e3} and then

F = {z
∂

∂z
}
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Now, we express the vector field X in the original coordinates (x, y, z). If we write X(x, y, z) = Ax ∂
∂x

+

By ∂
∂y

+ z ∂
∂z

, to determine A,B we use the fact that

X(xy) = 0 ⇐⇒ A = −B

and so X(x, y, z) = A(x ∂
∂x

− y ∂
∂y

) + z ∂
∂z

on the other hand we have

Ax = X(x) = X(x̃(1 + z)
1

a1+a2 ) = z
∂

∂z
(x̃(1 + z)

1
a1+a2 ) = x̃(1 + z)

1
a1+a2

−1 z

a1 + a2

Finally, we obtain

X(x, y, z) =
1

a1 + a2

z

1 + z
(x

∂

∂x
− y

∂

∂y
) + z

∂

∂z
⇒ Y (x, y, z) = x

∂

∂x
− y

∂

∂y
+ (a1 + a2)(1 + z)

∂

∂z

Remark 1. In dimension three, if we consider the foliation F which is given locally by

{
f1 = xaybzc

f2 = xãyb̃zc̃

where rank

(
a b c

ã b̃ c̃

)
=2. The generator vector field X of the form

X(x, y, z) = âx
∂

∂x
+ b̂y

∂

∂y
+ ĉz

∂

∂z
,

where
< (â, b̂, ĉ), (a, b, c) >= 0, and < (â, b̂, ĉ), (ã, b̃, c̃) >= 0.

In our example we observe that in the neighborhood of the leaf {z = 0} the vector field

Y ≃ x
∂

∂x
− y

∂

∂y
+ (a1 + a2)z

∂

∂z

is linearizable and consequently Y is transversal to the leaf {z = 0}.
(b) The problem suppose where a1 = −a2 i.e a ∈ R = {a = (a1, a2) : γ0 ∧ γ1 = 0}. In this case near the leaf
{z = 0}, we have

Y ≃ x
∂

∂x
− y

∂

∂y
.

It is clear that the condition of transversality of Y and the leaf {z = 0} is not satisfieted.

Example 2: let F be the local foliation which is given (after a sequence of blow-ups) by

{
H = xa1ya2za3(1 + g(x, y, z))
f = xyz.

The foliation F is given also {
H
fa1

= ya2−a1za3−a1(1 + g(x, y, z))

f = xyz.

If a = (a1, a2, a3) /∈ R = {a : (a1β1 + a2β2 + a3β3)∧ (1, 1, 1) = 0} (resonant locus), we can take the following

variables change x = x̃, y = ỹ(1 + g(x, y, z))
1

a2−a3 and z = z̃(1 + g(x, y, z))
1

a3−a2 and in this case the local
foliation F is generated by the vector field

X(x̃, ỹ, z̃) = (a2 − a3)x̃
∂

∂x̃
+ (a3 − a1)ỹ

∂

∂ỹ
+ (a1 − a2)z̃

∂

∂z̃
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let us express the vector field X in the original coordinates (x, y, z), so we have

X(x) = X(x̃) = (a2 − a3)x
∂

∂x

X(ỹ(1 + g(x, y, z)
1

a2−a3 )) = (a3 − a1)y +
1

a2 − a3
y
X(g(x, y, z))

1 + g(x, y, z)

and

X(z̃(1 + g(x, y, z)
1

a3−a2 )) = (a1 − a2)z +
1

a3 − a2
z
X(g(x, y, z))

1 + g(x, y, z)
.

Finally the vector field X of the form

X(x, y, z) = (a2 − a3)x
∂

∂x
+ (a3 − a1)y

∂

∂y
+ (a1 − a2)z

∂

∂z
+

1

a2 − a3

X(g(x, y, z))

1 + g(x, y, z)
(y

∂

∂x
− z

∂

∂z
).

Proposition 1. For a /∈ R, there exist a local diffeomorphism φ : z = (z1, · · · , zn+2) 7→ z̃ = (z̃1, · · · , z̃n+2)
such that the foliation F is given locally by (z̃γ0 , · · · , z̃γn+2)

Proof. We just make a convenable change of variables.

Open question. To complete the proof of Conjecture we must solve the nongeneric case a = (a1, . . . , ak) ∈
R because in this case the rank of exponent matrix

m(a1, . . . , ak) =




γ1
0 . . . γn+2

0

γ1
1 . . . γn+2

1

...
...

...
γ1
n . . . γn+2

n




is not maximal.
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