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THE NUMBER OF PRIMES IN A SHORT INTERVAL 

SHITUO LOU AND QI YAO 

§ 1. INTRODUCTION. 

Let z be a sufficient large number. 

21 

We shall investigate the number of primes in the interval (z -y,z] for 

71 = z 8 with 1/2 < 0 ~ 7/12. Hoheisel [1] was the first to give a value of 
0 < 1 such that 

~(z)- ?r(z -y) ·,.._, -l 71 ,JI = z8. 
og z 

. (1.1) 

Ingham [2] connected the problem with zero density estimates for ((a), and 

Montgomery [3] showed how a method of Halasz could be used to estimate 

N(u,T) (the number of zeros of ((a) in the range Rea 2': u,O < Ima ~ T). 

Huxley [4] proved that for 

2_<0<1 
12 -

(1.1) holds. His work built on foundations laid by the authors mentioned 

above. 
Heath-Brown (5] has given an alternative proof of Huxley's result 

Heath-Brown has actually proved more namely 

THEOREM A [5] Let e(z) ~ 1/12 be a non-negative function ofz. Then 

?r(z)- r(z- 71) = lo; z { 1 + O(e4(z)) + 0 (co::;~ z) 
4

)} (1.2) 
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uniformly for 
z7/12-~(z) < 1l < Z . 

- - (log z)4 

Thus (1.1} holds for such 11. providing only that t(z) --+ 0 as z -+ oo. 
Moreover, he obtained 

?r(z) -?r(z- z7/12) = z7/12 {1 + o((loglog z)4)}. (1.3) 
log z log z 

In [5]. Heath-Brown has shown: 

THEORJ!}M B. Let 

~)z)'= 

and 

·-•<71 ···P&~&' 
JJi~•.i:el, ... ,, 

1 

t1t2tat4t5 log t1 log t2 log ta log t4 log ts 

is independent of 11. where z may talce any value in the range 

Then 

(1.4) 

(1.5) 

1r(z)- 1r(z - 11) = 11E(z, z)- ~ 2)z) + O(y ezp( -(log z)117
) (1.6) 

uniformly for 

(1.7) 

In this paper, we shall give a generalization of Theorem B in § 2. Let 

the interval!" = (z- 11. zJ 'with 

1 
:r:l/2 < 71 < -z -2 
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and the parameter z satisfying 

where ko is a positive integer that will be chosen later. For examplt1, with 

Jf = z8 , we shall choose ko = 11 if 8 = 11/20 +e. 
Denote p(~) the ~mallest prime factor of~- We write 

d1 ... dr == d1 · . · dj E S1 if and only if r = j and ~ = !( for 1 :$ i :$. r. 

Let 

:E 1=:E1 
4t·"4t =• •ESt 

JO(~,)~··':!;i:!;• 
•f;i• 

Let r be a positive integer, I;, 1 :$ j :$ r, be a set of integers, and 
I; ~ [2, z] and H be the "Direct Product" ofsets I;, for 1 :$ j $ r, it means 

dE H if and only if d = d1 • • • dr with d; E I;, 1 :$ j :$ r, and dE 111 ; (1.8) 

Suppose 9 be fixed in the interval (1/2,1) and Jf E [z9 ,z ezp(-log z)116 )]. 

Define the conditions (A1 ) and (A2) as following: 

(A1 ). If there exist some sets H 1, 1 :$ k < ko, which are collections of direct 
products H's and constants CH such that 

(1.9) 

then we call H~c, 1 :$ k < ko, satisfy (At). 

(A2 ). If H~c, 1 :$ k < ko, satisfy (At), There exists a subset H~ and for each 
H E H~ there exists a function E~c(H, z) independent of Jf such that 

~) == rE~c(H,z) + O(y ezp( -(log z)117
)), (LlO) 

dEH 

uniformly for 
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then we call HI,, 1 ~ A: < ko, satisfy (A2). 
We now state our Theorem here : 

THEOREM 1. Letz be a sufficient large number, 8 be fixed in (1/2, 1),z8 ~ 

71 < (1/2):~:, 111 = (z - 71, z], A:o be an integer which u dependent on 8, and z 
be fixed in (z1/loo, z115}. Let H~o, 1 ~ 1: < ko, mch that (At)· If there exi3ts a 

subset Hk of H~: :such that (A2), and writing HZ = H~; \ Hk, then we have 

r(z)- ..-(z -71) = 71E(:r:,z) + R(71) +0(71 exp(- (log z)l/7) (1.11) 

unijorml71 for 

z' ~ 71 ~ z e:r:p( - (log :r:)116
), 

where E(z,z) independent ofv, and 

R(71) = L (- 1)1c-1A:-1 L CH Ll. (1.12) 

We call Hk a 'good set' and call HZ a 'bad set', for 1 ~A: < ko . Heath
Brown [5}. prove:tbat· . 

..-(z)- ..-{z - 11) == L ( ~1)1c-l1:-1 L 1 + 0(71z- l) (1.13) 
l~A:<lco •ES• 

Comparing (1.13) and (1.6) with (1.5), Heath-Brown took A:o = 7, St, · · · S5 
as good sets and only S6 as a bad set i.e. Hi = St. ··· , H~ = S5 , H6 = 0; 
and Hq = · · · == H~ == 0,H6 = S6 • In Theorem 1, we are not limited that 
the good set or that the bad set should to be whole of S~;. In fact, R(71) is 
the contribution of all bad sets. He proved that the contribution of his bad 
sets is l:(z) in (1.5). Heath-Brown applied Theorem B to improve (1.3) . 
He obtained that if z is sufficient large, 

where 

4y 
r(z)- r(z - 11) ~ --, 

Slog z 
(1.14) 

(1.15) 

In § 2 we shall prove Theorem 1. In 5 2, we shall prove the following 
theorem also : 
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THEOREM 2. Suppose that 8 is fixed in (1/2, 1 ), 11o = z ezp( -(log z )116 ), Hk, 1 ~ 

k < ko, aa.tisfy (AI) and (A2). If there exist constanis et,e;,e2 and e~ such 

that 

(1.16) 

and 
(-e~ + e)y < L (-1)k-tk-1RA:(11) < (e2- e)y 
. log z l$k<ko log z . 

(1.17) 

where e is a small positive constant. Then 

(1 - et - e~)1/ ( ) ( . ) (1 + e! + e2)71 
~----;-.:__..---"'~ < 'll' z - 1( z - 11 < -'---~--'~ 

log z log z (1.18) 

uniformly for z 8 ~·11 ~ 1/0· 

Take an applicable form Hk with condition (AI), which makes it possible 

to extend the range of validity of 

(1- c)-
1 

11 < r(z)- r(z- y) < (1 + c')-
1 

y , 
ogz ogz 

(1.19) 

where c and c' are constants. In this paper, we prove that (1.19) holds with 

11 ::: z8 , 0 = 11/20 + e and c == c' = 0.01 in § 6. 
In [7], we gave some sufficient conditions that imply some kind of "direct 

product" be "good set". In § 3 and § 4 below, we use those conditions to 

prove that :8:~, 1 ~ k ~ 1.:0 , which will be defined in (3.3) and (3.4) below be 

"good set". 

In § 6 we will prove 

Theorem 3. Suppose z be a large number, then 

1.01-
1 

11 ~ r(z)- r(z- 11) ~ 0.99-
1 

11 
og z og z 

with 11 = z 8 , uniformly for 
11 7 
-<0<-20 - 12' 

(1.20) 

(1.21) 

A criterion for good sets is extracted. However, the technical ..-orlr 

needed to choose good sets and to make the size of the bad sets as small 
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as possible, is precisely the main difference between our metho!l a,nd that 
Heath~Brown's. The new Theorem i will enable us to improve the results 
ofHeath-Brown and Iwaniec [10). Later on we shall establish one deeper 
results: for 

z 8 ~fl .~ z ezp( -(log z)116
), 

we have (1.19) with 8 = 6/11 +£or 8 = 7/13 +E. 
Moreover, we can improve (1.19) further but only at the cost of much 

arduous computation. 

§ 2 Proof of Theorem 1 and Theorem 2~ 

The proof of Theorem 1 is much along the method that was used by 

:Heath-Brown [5J. 
Our starting point is based on a formal identity (see [5]) : 

lou c<s> II<">= E <~1>A:-t~:-1 <<<"> II<"> -1>., (2.1) 
1$A:$oo 

(2.2) 

where 

II<"> = II <1 ~ 2.. >· 
.P<.& :p" 

We pick out the coefficients of n-• for those terms in (2.1) and (2.2) with 

n E 111 . Thus in (2.2), these coefficients total 

L (r (zt) ~r (<z -y)t)) i = r(z) -r(z ~ y) + 0 (7iz-i). (2.3) 
19<oo 

On the other hand, the Dirichlet series for{(") II(")~ 1 is 

(2.4) 

where c,. is 0 or 1 according ton has a prime factor < z or not. It follows 
from (1.7) that there are no term of n-• in (2.2) with n E 111 corresponding 
to eXponents k 2: ko. Henceiorth we consider only the terms with k < ko-
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Let 

(((.9) II<") -1)/c = L a..(k)n-• (2.5) 
1$n<oo 

By (2.4), 

(2.6) 

Then 

and 

a..(k) = L Cdl .. ·Cd,· 

dl··-d,=n 

Write 

a..(k) =I {(dt. .. ·, d~c): n = dt · · · d~c,p{d;) ~ z, 1 ~ i ~ k} 1. (2.7) 

where ( dt. · · ·, d~c) = ( d~, .. · , d~) mea,ns d.; = di for i = 1, · · · , 1:. Therefore 

L.::a..(l:) = 

and in (2.1), the coefficients total 

We have that 

since (2.3) and (2.9). 

'2.:: 1, 
4t···4·::;:;;· 

J'(~i)2:.a-,I:Si:S.i 

•EI' 

......... ~ .. 
p(4t)~a,l:Si:S• 

•EI• 

.......... =. 
p(4i)~z,1St~~ 

•EI' 

(2.8) 
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By conditions (AI) and (A2 ), we have that 

1r(z)- 1r(z- y) :E (-1)"-1A:-1 L cH :L1 + 0 (vz-i) + 0 (~) 
l~k:SA:o HEHt dEH 

y L (-1)A:-1A:-1 L CHEA:(H,z) + R(y) + 0 Co:,.,). 
1 :SA::SA:o HEH~ 

Let 

E(:~:,z) == L (-t)A:-tk-1 L cHEA:(H,z). 
1:$k:$A:o HEH~ 

This completes the proof. 

The proof of Theorern 2 

By Prime Number Theorem, 

1% dt 
1r(z) == -

1 
- + O(z ezp(-log z)112). 

2 og t 

We have 

?r(z)-?r(Z-Yo) == {"' (-
1
-- -

1
-) dt+~+O(z ezp(-(log z)112 ) 

)"'_110 log t log z log z 

= 7 dt + ~ + O(z ezp(-(log z)112 ). 1"' log"' 
.,_110 log t log z log z (2.11) 

Clearly, for z - yo :-; t :-; z, 

z z Yo (Yo) log - :-; log-- :-; -- = 0 - . 
t z-yo z-yo z 

Therefore, (3.1) is 

1r(z)- ·K(z- Yo) = 
1

110 + O(yoezp( -(log z)116). (2.12) 
og z 

Using Theorem 1 with 11 = 1JO, S~ = H;., and 
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we have 

1r(x)- 1r(x- Yo)= yoE(x, z) + L ( -1)A:-1k-1 RA:(Yo) + 0 (/~ ) . 
1<A:<A:o og x 
- - (2.13) 

Comparing (2.12) with (2.13}, we have 

,:o = y0 E(z,z) + L (-1)A:- 1 k-1 R~:(Yo) + 0 (loy~z), (2.14) 
g X 1$k$ko g 

hence 

By (2.15) and (1.16), 

1 - e1 1 + ei 
-
1

- < E(z,z) < -l-. og z og z 
(2.16) 

Using Theorem 1 again, 

By (1.17), (2.15) and (2.17), we have 

(1- e1- e~)y ( ) ( ) (1 + ei + e2)Y 
r <1rz -'KX-y < r • oog z oog z (2.18) 

This completes the proof. 

§ 3. "Good Set" 

Let c0 be a constant that will be defined later on. Let lo be an interval 

[ao, bo] which contains in [1, z] and 1;(1 5 j 5 r) be a subset of interval [a;, b;] 

contains in [zco, z] also. Denote D = lo · · ·lr be a direct product of I;· Let 

i; = log a;/log z and ij = log b;/log z and let d; = z 8
i with i; ~ 0; ~ ij 

and 0 5 j 5 r. For convenience, we write d == {Do, 81 , · · · , Or} E D, and ~ ~et 

D = {{Oo, 01. · .. ,Or} : 1/2 ~ 1- 01- ···-Or = Oo ~ 01 ~ · · · ~ Or}. (3.1) 
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For short, we denote {11;} = {11o,11t, · · · ,11,.}. 

Let D n 1v be a set of integers, d E D n 111 if and only if .d E D _and 

d E 111 ·• d = t1 with d, r1 E D n 111 means d = ~ · · · d,. and tf = dO · · · d~ with 
d; = d'; for 0 :$ j < r. We shall show the sufficient conditions for D n 1v be 

a "good set", i.e. for a fixed z with z115 > z = zc, there exists a function 

En(z, z), inde~endent of fl, which satisfies that 

L 1 = f!En(z,z) + O(fl e2!p(-log117z)), (3.2) 
cfEDnl• 

whe:re En(z,z) and constant in "0" are uniformly for 

I ! I z :$ f1 :$ z ezp(-4(log z)a(loglog z)-I). 

Let 9 = 11/20 +£,to= 1-9 + £/2 and z = zc with c = 1/2- 8t0 f9. 

Define 

D(6) = {{l1o,l11o· · · ,85}: {11o,l1t, · · · ,85} E D,2to/5 ~ 1-/11- · · ·- 115 = 

11o ~ 81 ~ · · · ~ /15 ~ 1/2 .,.. 8to/9} {3.3) 

and 

D(8) = {{8o,81> · · · ,87}: {8o,8t, · · · ,87} E D,2to/7 ~ 1- 8J- · · ·- 87 = 

8o ~ 81 ~ · · · ~ 81 ~ 1/2 - 8t0 /9} (3.4) 

In this section, we shall prove that : 

Theorem 4. Suppose 8 = 11/20 +£,to = 1 - 8 + £/2, z = zc:o With c == 
1/2""' 8t0/9;D' be·.a subset ofD, and 

D' n (D(6) U D(S)} = 0, (3.5) 

then D' ~atisfies {3.2}, i.e. D' is a g~ set. 

Obviously, the &Ubset of D with r # 5 or 7 are good sets. D(6) and D(8) 

are called eXceptional sets. 
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We discuss those sequences d = {110 ,111 , · · ·,D,.} = {D;} in D. For such 

{D;}, we define a corresponding set 9 of all ofsequences {Db, 81. · · · , 8,., 9,.+1, · · ·, 8,.+,.,} 

with Db ~ Do, 81 ~ · · · ?: D,. ?: log z/log z > D,.+l ?: · · · ?: Dr+rt and 

By (3.6) and (3.1), we have that if r 1 = 0, then 

11b =Do?: 81 . 

(3.6) 

(3 .7) 

For short, write {D;}' = {9b,Ot. · ··,D,.,8;+l• · ··,Dr+r1 } . {8;} and {8;}' E 

0. Let 8b = log X/log z, D; = log x!il /log z (1 ~ i ~ r) and Dr+i = 
log Z;/log z (1 ~ i ~ ri). For each {80,8I,···,8,.,8,.+1, ·· ·,8,.+,.1 }; we 
define a product of Dirichlet series : 

where 

r "I 

w(,,{/1;}'} = w(,) = X(-')Tix!;>(,)Y(-')TIZ;(-') (3.8) 
i=l i=l 

X(-') L n-•; 
X<n<2X 

x!;>c,) = E t:.!>m-•, 1 tU> I~ 1; 

x~j)<m~2X~j) 

Z;(-') 'L cd ·-•,! c1!~ 1; 
Z;<I$2Z; 

Y(-') L p(t)v,r•, I v, I~ 1. 

withY= O(z6 ),6 be a sufficient small number with .6 <t £.Each {0;} ED 

corresponds all of W(.!,{8;}')'s for which {8;}' E 0. Define that W(D) is 

a set of all of such W(-', {D;}'). For short, we write W(&, {D;}'} = W(&) .. In 

[7], we proved that 

Theorem A. IfD satisfies one of following conditions 

(1) ao?: zl/2; 

(2} all ofW(s) E W(D) such that 

h2

T I W G +it}! dt < ziezp (-(log z}l(loglog z)-l) (3.9) 
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for 
zl-d 

T1 ~ T ~ -·-· -, 
J/ 

where l!.. is :my fi:ted positive constant, and 

T1 = ezp ((log z)l(loglog z)-!). 

Then {1.2) holds i.e. D is a good set 

Let 00 , fh, · · · ,0,. be positive numbers. In [7], we discussed the sequence 

{00 , fh, · · · ,0~:} with positive number k such that 

00 + 81 + ... + o,. = 1, (3.10) 

defined a set E(O) of some {00 ,01, .. · ,O,.}'s and acutely proved that [7,§ 5]). 

Theorem B. Let {0;} ED. For each {0;}' E 0 define 

r rt 

w'(-') = x(,)fix!1>(,)fi Z;(-')· 
j=l i=l 

If{O;}' E E(O), then 

h2T I W' G +it) I dt < zl/2-c. (3.11) 

Moreover, {9.9) hold$. 

We now describe the set E(O). 

Suppose {at. a2, u} or {a1, 42, a3, u} be a complementary: partial sum (it 

means that each 03 belongs one and only one set and their sum in a set be 

u or D.i) of {Oo,01, · · · ,0,.} with u = Oo or tT ~ to/2, then 

(3.12) 

or 

a1 + az +as + u = 1. (3.13) 

Later on, we only define two of a1,a2 and tT if (3.12) holds; or define three of 

a 1 , a 2 , as and tT if (3.13) holds. Suppose 0 = 11/20 + E and t 0 = 9/20- e/2. 
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We define E(O) be a set which contains all of sequence {80 ,0t, · · ·, O~o} with 

(3.12) which satisfies one of following three properties : 

(I) There exists at least one complementary partial sum {at, a2, tT} of { 80 , 81 , · • · , 81c} 

which satisfies one of following conditions: 

(3.14) a1 $ ,to and a2 $ to (see Lemma 4.4 of [7]); 

(3.15) tT > t0 /5,at > Bto/9 and 42 > Bto/9 (see (4.1.3) with i = 3 of [7]); 

(3.16) a1 > 6to/7,a2 > 6to/7 ~d. (J' > to/4 (see (4.1.3) with i = 2 of 1m; 

(3.17) a1 2: t0 and a2 2: to (see ( 4.1.1) of[7]); , 

(3.18) 1/2 2: at 2: t0 , and, tT < 1/2-: Bto/9 (see (4.5.6) of [7]); 

(3.19) tT > t0 /2 (see Lenuna. 4.3 of [7]}. 

(II) There exists at least one complementary partial sum { 4 1, a2, ii3, tT} of 

{ 80 , Ot, · .. , O,.} which satisfies 

(3.20) at 2: to, 42 2: to/3, 43 2': to/3 and tT > 2to/5 (see ( 4.2.2) of [7]) . 

For a fixed tT, in [7) we proved that there exists a pair of numbers (m .. ,M.,.) 
with the properties 

M,- miT> 1/2...:. 8to/9 if tT 2: 1/2- Bto/9; (3.21) 

M .. - m .. < tT if tT < 1/2- 8t0 /9; (3.22) 

MIT > to > m..; (3.23) 

and 
M,.+m .. +tT=l (3.24) 

(III) Suppose {at, a2, tT} or {at, 42, a3, tT} be a complementary slim of {Oo 1 Ot, · · ·, 81c} 

with 

m .. < ~ < M .. , (i =lor 2), ,(3.25) 

(See Lemma 4.5 of [7]). 
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Applying Theorem A and Theorem B, Theorem 4 follows from 

Theorem 5. Suppose 8 = 11/20 + £, and D' be a subset of D such that 

D' n (D(6) U D(8}) :::;;=. t/J, . 

Then for every {0;} E D', the all of corresponding {8;}' E 0 contain in 

E(8) . 

§ 4. LEMMAS. 

Let 8 = 11/20 +£and {80 ,0t. · · · ,8A.} with (3.11), i.e. 

8o + Bt + · · · + 8" == 1. 

In this section, we shall show some sufficient conditions for { 80 , 8t, · · · , 8~~:} E 
E(8). By the definition of E(O) we check that {8.7} satisfies at least one of 

conditions (3.14) - (3.20) and (3.25) . 

Lemma 4.1. Suppose there exist two elements 8' and 8" of {80 ,8~o · · · ,811:} 

with 8' ~ to/2 and 0'' < 1/2 - Sto/9. If there exists a partial sum s of 

{8o, 8t, · · · ,8~~:}\{8', 8''} such that s < to and s+O' ~ fo, then {80 , fh, · · · , 0~~:} E 
E(O). . 

Proof. We discuss following three cases : 

Case 1. to ~ s + 8' < MB" and 1 - s - 0' ~ to . 

Let u = 8'' and a1 = s + 8', we have that {8o,Ot, ·· ·,O~e} E E(O) by 
(3.23) and (3.25). 

_ Case 2. s + 8' ~ MIJ" -

By (3.24), we have 

1 - s - 8' - 8" ~ 1 - Ms" - O" = mB" 

and; by (3 .22), 

1 - s- 0' ~ 8" + mfJ" < Mfl"· 

Let at = 1- s- 8' and u = 8", if at > fflB", then {Oo,Ot, · · · ,8~~:} E E(O) 

by (3.25). H a1 ~ m,, ~ to, then {Oo,8t, ·· · ,0~~:} E E(O) by (3.14) '(since 
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a2 ~ miJ" ~to.) 

Case 3. t0 ~ IJ + (}' < MIJ" and 1 - IJ - 9' < to. 

Let a1 = 1-IJ -0' < to,a2 = IJ <to and u = 9', then {9o,01, · · · ,OA:} E E(O) 
by (3.14). 

Lemma 4.2. Suppose {a1.a2, u} be a complementary partial sum of{80 , 01, ... ,OA:} 

with a1 = 01 + · · ·+Ok, ~ = 0~ + · · -O~,a1 ~ a2, u == 1-a1-a2 > 1/2- Sto/9 

and 
maz{OIJ ... ,Or.} -min{~, .. ·,OI.J < ~- 8~0 ; (4.1) 

then {00 ,01> .. · ,8r.} E E(O). 

Proof. If a1 ~ to, then {Oo, 01, · .. ,Or.} E E(8) by (3.14}; if a2 ~ to, then 

{80 , 01> · .. ,Or.} E E(O) by (2.8); if m.,. < a1 < M.,., {Oo, 81. · .. ,Or.} E E(8) by 

(3.25). 

If 

Now we suppose a1 ~ MtT. 

By (3.15) and (3.1), we have 

01 + .. · + 8r.-1 + 8~ = 01 + .. · + 8k + (0~- Ok) 

> M.,. - (i - ~) ~ m.,.. 

o1 + ... + o,._1 + o~ < M.,.. 

let a1 = 81 + · · · + 8k-1 + 0~, then {8o, 01, ···,Or.} E E(8) by (3.17); if 

and 

81 + ... + 8r.-2 + OL1 + 8~ < M.,.. 

repeating above process, let a1 = 01 + .. +8~_ 1 +0~ we also have {8o, 81, .. · ,8r.} E 

E(O). And repeat it again, we have that, in all cases, {8o,01,· ··,Or.} E E(8) 

since 

Oi + .. · + 8~ < to ~ M.,.. 
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§ 5. Proof of Theorem 3 

It is sufficient to prove Theorem 4, i.e., let {Cj} ED a.nd {Oil' E 0 that 

satisfies following conditions : 

(5.1) to > 1- 81 - · · ·- 8,. = 8o ~ 8~ ~ 81 ~ · · • ~ 8,. > 1/2- 8to/9 ~ 
8r+1 ~ · · • ·~ 9r+rt i ·· 

(5.3) 8~ + 81 + · · · +8r+r1 = 1, 

we shall prove that {9;}1 E E(8). 
We record (2.2) here : if r1 = 0, 

Let k0 be the number such that 

and 

L 9; ~to 
l~j~A:g-1 

L 8i >to. 
l~i9•o 

By (5.1); 91 < t0 , then we have ko ~ 2. 

(5.4) 

(5.5) 

H r + r1 > ko > r, then 81re < 1/2- Bto/9. In Lemma 4.1, take 8' = 
8~q-,, 8" = 8,.+,.11 then {8;}' E E(8). H ko = r + rt, let 

and 

II} = L 8; ~ to, 
l~j~lq-,-1 

a2 = 8,. ~ 1/2 .:..: Sto/9 < to 

then {Oil' E E{9) by {3.;4). Finally, we consider 2 ~ ko ~ r. 

Lemma 5.1. Suppose rt = 0. If r ~ 2(ko- 1}, orr ~ ko + 4, then 

{9;}' E E(9). 
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Proof. H r $ 2(ko- 1), let 

and 

at = }: 9; _$ to, · 
l~j~~-1 

a2 = L 8; $ a1 $ t0 . 

Joe~;~ .. 

Thus {9;}' E E(9) by (3.14). 

H r ~ ko + 4, let 

at = L 9; > 4 (i- ~) > ~. 
loe+l~i~~H 

a2 = L 8; >to 
l~j~Joe 
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and u = 1- a1-a2. Thus {9;}' E E(B) by (3.15) since cr = 1-81 - ···-Dr~ 

81 > to/5. The Lemma is proved. 

To prove Theorem 4, we now discuss following cases : 

Caae 1. ko ~ 3. 

By (5.1} and (5.4), we have 

1 i 
9a $ 82 $ ~(9t + 82) $ 2to. 

H r 1 > 0, take fJ' = Ia and fJ'' = B .. +rt in Lemma 4.1, we have that {9;}' E 

E(9). 
Now may suppose that 

f't = 0. 

By Lemma 5.1, we also suppose 

2ko-1$r$ko+3. (5.6) 

i.e. 3 $ ko $ 4. 
When ko c:= 4, by (5.6) we haver= 7. Since {9;} f. 0(8), we have 

6 
Ot + 82 + Oa > ;;to. 
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Let at = lh + 8: + 8a > 6to/1, a2 = 84 + 85 + 8a + 81 > 8to/9 > 6to/1, and 
u = 80 > 1/8 > to/4, thus {f!;}' E E(B) by (3.16). When ko = 3, by (5.6), 

r::::: 5 or 6. Ifr == 5, by {11;} r/. D(6), we have 

2 
Bt > 5to. 

Let at == Bs + 84 + Bs, when 8s + 8t + 8s ~ to, let a2 = 82 > to/3 and 

a2 = 81 > 2to/5, then {9;}' E E(8) by (3.20). When 8s + 8t + 8s < to, let 

a2 = 81 + 82, by (5.1) we have 

2 . 2 
81 + 82 ~ 3(8o + 81 + 82) ~ 3(1- 8s- 84- 8s) <to. 

Thus {8;}' E E(8) by {3.14). 

When 1:0 = 3, r == 6 and r 1 = 0, we discuss following cases : 

Case 1.1. Ot + 8s + Os ~to or 82 + 84 + 0~.~ to. 

Let at = Ot + 8s +Or. and a2 = 82 +84 + 86, then {8;}' E E(8) by (3.14) or 
(3.17) . 

Case 1.2. Bt + 8s + 85 >to> 82 + fJ,. +Be. 

If 81 - 86 < 1/2- 8to/9, take u = 1- at-···- aa ~ a1 > 1/2 -8t0 /9 in 
Lemma 4.2, then {8;}' E E(8). We consider that 

lit ...:. Oa ~ 1/2 - 8tof9. 

By (4.1), 8a ~ 1/2- 8t0 /9, therefore 

Bt ~ 1 - 16to/9 

and Do + 8t ~ 2 - 32fo/9 > 8to/9. Let a1 = Do + 81 > 8t0 /9, a 2 = 82 + 83 + 
8" + 85 > Sto/9 and u = 86 , thus {8;}' E E(8) by (3.15). 

Case 2. ko = 2. 

By (5.-t), we have 81 > tof2. 1I rt = o, then 8~ = Bo > to/2 and {8;} E 
E(O) by (3.19}. Now may suppose that r 1 > 0 and 110 ~ t0 f2 . 

We discuss the following two cases : 
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Case 2.1. 8a > to/2. 

Let at =::: 82 + 03 ~ t0 . By (5.1) and (5.3), we have that · 

then 

(5.7) 

Let u =::: Or+rp then {8;}' E E(8) by (3.18) (since Tt > 0 implies Br+r1 < 
1/2 - 8t0 /9). 

Case 2.2. Oa ~ t2f2. 

We have 

81 + Bo + Ba + · · · + Br+r1 = 1 - 82 > 1 - to 

and 81 + Bo + Oa + · · · + 8r+r1 -1 >to (since Br+r1 < 1/2- Bto/9 < 1- 2to). 
We can find a number j = 0 or 3 or j ~ r + r 1 - 1 with 

81 + 8o + Oa + · · · + 81c-1 < to 

and 

81 +Do +Ba + · · ·. + 81c ~to. 

In Lemma 3.1, take 8' =::: 8o and 8'' = 8r+rt> then we have that {8;} E E(8). 
The proof of Theorem 1 is complete. 

§ 6. Proof of Theorem 3. 

In this section we discuss that 8 = 11/20 +e. 
Let 

S~ = {d = dod1· '·d1c-1: dE S~c,do ~ · ·· ~ d~c- 1}· (6.1) 

Take H1c =Sf. and CH == k!, then (At) holds. 

Let 
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and 

D(8) = { d: dES~, d ==do·· · d7,z~ ?: do?:· · ·?: d7 ?: zl-!jP.} (6.3) 

In [8], we. proved the following lemma: 

Lemma 6.1. Let~= D(6),H~ = D(8) and HZ= 0 fork f:: 6 and 8, 
then condition (A2) holds, i.e. {1.10} holds for H~ = HA< \ uz. 
Proof of Theorem 3. By (1.12), we have that 

R(tr) = (5!) E 1 + (7!) E 1. (6.4) 
dED(II) dED(B) 

We now estimate R(lf). By (4.2), dE D(6) implies d =do·· · d, with 

1 !!a. 1 
p(d;) ?: zt---.-- > (d;)', 0 ~ J ~ 5. (6 .5) 

Then all of d;'s be primes. Let 

and 

where 

u. = t . . . t : - > t > ... > t > -A 1 {< o 4) 2to o 4 to} · 
.. ' ' s-- --3 (6.6) 

and 

A 2 {< o 4) 2to . 0 · :s . · to .· 4 1 ( 8to)} 
u5= t ,···,t :S?:t ?:···?:t ?:3?:t ?:2 1-S . (6.7) 

Then we have that 
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(2+e)v/ { dto ... rJ.t4 
~ log Z ... )

116 
tO·· ·t4(1- tO-··.- t4')" (6,8) 

By (6.6) arid (6.7) we have that 

and 

1 ( 1 o.18)
4 (z o.15) o.oo2933 

~ ( 4!)(1 - 0. 72- 0.15) og 0.15 og 0.14 < 5! 

Thus 
E 1 < o.oo~s95 (-71-) . 

dED(6) 5. log z 
(6.9) 

Let 

and 

where 
1 { o 6 2to o 6 to } 6.7 = (t . . . t ) : - > t > ... t > -, , 7- - -4 (6.10) 

and 

2 { 0 6 2to 0 5 to 6 1 ( 12to) } 6.7 = (t . . . t ) : - > t > ... > t > - > t > - 1 - - . , , 7- - - -3- -2 7 
(6.11) 
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':fhen we have that 

"" 1 < "" . 2y . 
L., - L., · Po··· Po log ..:Jl_ 

PTE~2 ) (PO, .. ·.Jlii)EDt(8) PO ·-~ 

(2 + E )11 I I dt0 
... dt6 

:::; log z .. ·} lir tO ... t6(1 - to - .. . - t6)' 

By (6.6) and (6.7) we have that 

and 

< ----,-------,- lo .I.. lo -:r < ------:':-..:.. 1 ( 0.9 ) 6 ( 0.45) 4.027(10-5) 
- (6!) ( 1 _ 12(~.45) _ o.:s) g o~s . g 0.1 7! · 

Thus 
"" . 9.58(10)-

5 (-y-) 
L.t 1 < 71 . I . . 

dED(8) , og z 
(6.12) 

By (6.4), (6.9) and (6.12) we have that 

R( ) 
0.01 y 

y < I . og :z: 

In Theorem 2 take e1 = e2 = 0 and e; = e; = 0.01, Theorem 3 follows. 
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