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THE LEXICOGRAPHIC DEGREE

OF THE FIRST TWO-BRIDGE KNOTS

EXTENDED ABSTRACT

ERWAN BRUGALLÉ, PIERRE-VINCENT KOSELEFF, DANIEL PECKER

Abstract. We study the degree of polynomial representations of knots. We
give here the lexicographic degree of all knots with eight or fewer crossings.
The proof uses the braid theoretical method developed by Orevkov to study
real plane curves, isotopies on trigonal curves and explicit parametrizations
obtained by perturbing a triple point.
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1. Introduction

Vassiliev proved that every knot in S3 can be represented as the closure of the
image of a polynomial embedding R → R3 ⊂ S3, see [Sh, Va].

deg 41 = (3, 5, 7) deg 51 = (3, 7, 8)

Figure 1. xy-diagrams of the figure-eight knot 41 and the torus knot 51

The multidegree of a polynomial map γ : R → Rn, t 7→ (Pi(t)) is the n-tuple
(deg(Pi)). The lexicographic degree of a knot K is the minimal multidegree, for
the lexicographic order, of a polynomial knot whose closure in S3 is isotopic to
K. The unknot has lexicographic degree (−∞,−∞, 1), and one sees easily that
the lexicographic degree of any other knot is (a, b, c) with 3 ≤ a < b < c. Given
a knot, it is in general a difficult problem to determine its lexicographic degree.
In particular, the corresponding diagram might not have the minimal number of
crossings.

The two-bridge knots are precisely those with lexicographic degree (3, b, c), see
[Cr, KP3, BKP1]. It means that they have a xy-projection which is a trigonal
curve.

The aim of this paper is to give the lexicographic degree of the first 26 two-bridge
knots with eight or fewer crossings. The constructions use tools previously devel-
oped: Orevkov’s braid theoretical approach to study real plane curves and the use of
real pseudoholomorphic curves ([BKP2]), the slide isotopies on trigonal diagrams,
namely those that never increase the number of crossings ([BKP1]) and explicit
parametrizations of knots ([KP1, KP2, KP3, KPR]).

In addition, we introduce a new reduction R (see Def. 3.3) on trigonal plane
curves. In many cases, the use of this reduction allows to subtract three to the
number of crossings of the diagram and to the degree b, thanks to a result on real
pseudoholomorphic curves (Th. 3.4), deduced from [Or2]. On the other hand we
show that we can explicitly give a polynomial curve of bidegree (3, d + 3) from
a polynomial curve of degree (3, d) by adding a triple point and perturbing the
singularity (Prop. 3.5). We also deduce a sharp upper bound for c (Prop. 4.3).

The extended abstract is organised as follows. In Section 2 we recall some properties
of two-bridge knots and their trigonal diagrams. In Section 3, we consider plane
trigonal curves and we describe how we obtain a lower bound for the lexicographic
degree of pseudoholomorphic curves and therefore for polynomial embeddings. In
Section 4, we explain how we obtain our bounds and how we obtain the lexicographic
degrees of our 26 first two-bridge knots with eight or fewer crossings.
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2. Trigonal diagrams of two-bridge knots

A two-bridge knot admits a diagram in Conway’s open form (or trigonal form).
This diagram, denoted by D(m1,m2, . . . ,mk) where mi ∈ Z, is explained by the
following picture (see [Co], [Mu, p. 187]). The number of twists is denoted by the

m1

m2

mk−1

mk

m1

m2 mk−1

mk

Figure 2. Conway’s form for links

integer |mi|, and the sign of mi is defined as follows: if i is odd, then the right twist
is positive, if i is even, then the right twist is negative. In Figure 3 areD(0,−1,−3),
D(3, 0,−1,−2) as examples.

Figure 3. Examples of trigonal diagrams

These diagrams are also called 3-strand-braid representations, see [KL].

The two-bridge links are classified by their Schubert fractions

α

β
= m1 +

1

m2 +
1

· · ·+
1

mk

= [m1, . . . ,mk], α ≥ 0, (α, β) = 1.

Given [m1, . . . ,mk] =
α

β
and [m′

1, . . . ,m
′

l
] =

α′

β′
, the diagrams D(m1,m2, . . . ,mk)

and D(m′
1,m

′
2, . . . ,m

′

l
) correspond to isotopic links if and only if α = α′ and β′ ≡

β±1 (modα), see [Mu, Theorem 9.3.3]. The integer α is odd for a knot, and even
for a two-component link.

Every positive fraction α/β admits a continued fraction expansion [m1, . . . ,mk]
where all the mi are positive. Therefore every two-bridge knot K admits a diagram
in Conway’s normal form, that is an alternating diagram of the formD(m1,m2, . . .mk),
where themi are all positive or all negative. In this case we write L = C(m1, . . . ,mk).

Definition 2.1. We define the complexity of a trigonal diagram D(m1, . . . ,mk) as
c(D) = k +

∑

|mi| .
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The alternating diagram D(m1, . . . ,mk) has the smallest complexity among the
diagrams of C(m1, . . . ,mk). It is classical that one can transform any trigonal
diagram of a two-bridge knot into its Conway’s normal form using the Lagrange
isotopies, see [KL] or [Cr, p. 204]:

(1) D(x,m,−n,−y) → D(x,m− ε, ε, n− ε, y), ε = ±1,

where m,n are integers, and x, y are sequences of integers (possibly empty), see
Figure 4. These isotopies twist a part of the diagram, and the number of crossings

m− 1

1− n

m− 1 n− 1

Figure 4. Lagrange isotopy: D(x,m,−n,−y) → D(x,m− 1, 1, n− 1, y)

may increase in intermediate diagrams.

Definition 2.2. We shall say that an isotopy of trigonal diagrams is a slide isotopy
if the number of crossings never increases and if all the intermediate diagrams
remain trigonal.

Definition 2.3. A trigonal diagram is called a simple diagram if it cannot be
simplified into a diagram of lower complexity by using slide isotopies only.

In [BKP1] we proved the following:

Theorem 2.4. Let D be a trigonal Conway diagram of a two-bridge link. Then by
slide isotopies, it is possible to transform D into a simple diagram D(m1, . . . ,mk)
such that for i = 2, . . . , k, either |mi| 6= 1, or mi−1 mi > 0.

3. Plane trigonal curves

Once we get a simple diagram D(m1, . . . ,mk), we first examine its projection
|D|. Note that |D| does not depend on the signs of the mi’s.

Definition 3.1. An isotopy on a curve C ⊂ C2 is called a L-isotopy if it commutes
with the projection π : C2 → C, (x, y) 7→ x.

We make use of the next result ([BKP2, Cor. 3.7]) deduced from [Or1]:

Theorem 3.2. Let D1 and D2 be two trigonal knot diagrams such that D2 is
obtained from D1 by a slide isotopy. If there exists a real nodal pseudoholomorphic
curve γ1 : C → C2 of bidegree (3, b) such that γ1(R) is L-isotopic to |D1|, then
there also exists a real nodal pseudoholomorphic curve γ2 : C → C2 of bidegree
(3, b) such that γ2(R) is L-isotopic to |D2|.

In [BKP2], we study the case of trigonal diagrams C(m) and C(m,n) and show
that their lexicographic degrees are exactly (3,

[

3N−1
2

]

,
[

3N
2

]

+ 1), where N is the
crossing number of the knot.

When the trigonal plane diagram is D(m1, . . . ,mk), k ≥ 3, then we will try to use
the reduction R that decreases the number of crossings.

Definition 3.3. Let u, v be (possibly empty) sequences of nonnegative integers
and m,n be nonnegative integers. The reduction R transforms the plane diagram
D(u,m+ 1, 1, n+ 1, v) into the plane diagram D(u,m, n, v).
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The reduction R is simply obtained by projecting the Lagrange isotopy (Formula
1). A result of Orevkov ([Or2, Prop. 2.2]) implies the following useful proposition:

Theorem 3.4. Let D1 and D2 be two plane trigonal diagrams such that D2 is ob-
tained from D1 by a reduction R. Then there exists a real nodal pseudo-holomorphic
curve γ1 : C → C2 of bidegree (3, d) such that γ1(R) is L-isotopic to D1 if and
only if there exists a real nodal pseudo-holomorphic curve γ2 : C → C2 of bidegree
(3, d− 3) such that γ2(R) is L-isotopic to D2.

Furthermore we obtain polynomial curves with the following:

Proposition 3.5. Let D1 and D2 be two plane trigonal diagrams such that D2 is
obtained from D1 by a reduction R. Suppose that there exists a trigonal polynomial
curve of degree (3, d− 3) with diagram D2. Then there exists a trigonal polynomial
curve of degree (3, d) that is L-isotopic to D1.

Proof. Let us start with a polynomial curve C : x = P3(t), y = Qd(t) that is
L-isotopic to the plane diagram D(u,m, n, v), where u, v are (possibly empty) se-
quences of nonnegative integers and m,n are nonnegative integers. By translation
on x, we can suppose that [x = 0] separates the m crossings from the n cross-
ings. We can also suppose that [x = 0] meets C in three points with nonzero
y-coordinates. The curve (x, xy) will have the same double points as C and an
additional triple point at x = y = 0. We claim that for ε small enough the curve
(P3(t + ε), P3(t) · Qd(t)) will be L-isotopic to either D(u,m + 1, 1, n + 1, v) or
D(u,m, 1, 1, 1, n, v), depending on the sign of ε. 2

Figure 5. Perturbation of an added triple point

4. Results

4.1. Upper bound with Chebyshev diagrams. Let Tn be the classical Cheby-
shev polynomial Tn(cos t) = cosnt. It is known ([KP2]) that every knot admits
a Chebyshev diagram, that is to say, there exist positive coprime integers a, b and
a polynomial C of degree c such that the polynomial embedding (Ta, Tb, C) is the
knot K.

Definition 4.1. Let
α

β
= [a1, . . . , am], ai ∈ Z∗. We say that i is an islet in

[a1, . . . , am] if ai = ±1 and aiai+1 < 0, ai−1ai < 0.

Let K be a two-bridge knot with crossing number N . In [KP3, Sect. 3], we show
that K has a diagram D(ε1, . . . , εm), εi = ±1, of minimal length mC(K) ≤ 3

2
N−2.

This means that K admits the Chebyshev diagram C(3, b) where b = mC(K) + 1.
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It is also shown in [KP3] that K admits a polynomial parametrization (T3, Tb, C)
where degC+b = 3N . This gives a first upper bound degC(K) for the lexicographic
degree of K.

4.2. Lower bound. We showed in [BKP2] that the lexicographic degree of a knot
K is obtained by only considering simple diagrams of K.

It is shown in [BKP1] that two-bridge torus knots C(m) and generalized twist
knots C(m,n) admit only one simple diagram. For this diagram we have an explicit
polynomial embedding of degree (3,

[

3N−1
2

]

,
[

3N
2

]

+ 1).
For two-bridge knots C(m1, . . . ,mk), k ≥ 3, we compute all simple diagrams

with mC(K) crossings or fewer because the number of crossings of a plane curve of
bidegree (3, b) is bounded by 1

2
(3 − 1)(b− 1) = b− 1.

A simple diagram of K is obtained as a sequence (m1, . . . ,mk) ∈ Z∗m with no
islet, such that [m1, . . . ,mk] is a Schubert fraction of K. The set of such sequences
is finite (see also Prop. 4.3).

Once we get a simple diagram, we reduce it by using the R transformation. We
thus deduce lower bounds for b.

4.3. Upper bound for the height. Suppose now that we get a simple diagram
D(m1, . . . ,mk) (with no islet) of K, and that there exists a plane curve of bidegree
(3, b) that is L-isotopic to D, then we use the following properties:

Definition 4.2. Let D(K) be the diagram of a knot K having crossing points
corresponding to the parameters t1, . . . , t2m. The Gauss sequence of D is defined
by gk = 1 if tk corresponds to an overpass and gk = −1 if the tk is an underpass.

Proposition 4.3. Let D(K) be the a diagram D(m1, . . . ,mk) with no islet. Let
s = #{i;mi−1mi < 0} be the number of sign changes in the sequence (m1, . . . ,mk).
Then

(1) The crossing number of K is N =
k
∑

i=1

|mi| − s.

(2) The number c of sign changes in the Gauss sequence of D satisfies

c = 2N + s− 1 = 2
k

∑

i=1

|mi| − 3s− 1.

Proof. The proof is analogous to the proof of [KP3, Prop. 2.5 & Th. 5.2]. 2

This gives an upper bound for the height function, by considering a polynomial
with c prescribed sign changes.

Suppose now that D(m1, . . . ,mk) is an alternating diagram of K. The number of
sign changes in D is exactly 2N − 1 and we proved in [BKP2, Th. 4.3] that if
(P3, PN+1, Pc) is a polynomial curve of degree (3, N + 1, c) that is isotopic to D
then c ≥ 2N + 1.

4.4. Adding three crossings. We use Proposition 3.5 and show here how we
obtain the knots 62 = C(2, 1, 3) and 63 = C(2, 1, 1, 2) from the plane diagram
D(3).

We start with a polynomial parametrization of the trefoil D(1, 1, 1) ∼ D(3). It
is (T3(t), T4(t)). We choose to add a triple point in (−3/4, 0) by considering the
curve x = T3(t), y = Q7(t) where Q7(t) = (T3(t) + 3/4) · (T4(t) + 1). The curve in
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(T3, T4) (T3, Q7) (T3, Q7(t+ ε)) (T3, Q7(t− ε))
D(3) D(2, 1, 3) D(2, 1, 1, 2)

Figure 6. Adding three crossings to the trefoil

(P3(t), Q7(t+ε)) is L-isotopic to D(2, 1, 3) for ε > 0 small enough and is L-isotopic
to D(2, 1, 1, 2) for ε < 0.

We obtain the other constructions only using

• The degree of D(0, 1, 1, 0) is (3, 5). An explicit parametrization is given for
example by (t3 − 3t, t5 − 4t3 +4t) (see Figure 7). Suppose that there exists
a polynomial embedding of degree (3, 4). A line joining the two crossings
of the curve will cross the diagram at a fifth point, which is impossible.

• The degree of D(0, 2) or D(2, 0) is (3, 4). An explicit parametrization is
given for example by (t3 − 3t, t4 − 2t2 − 2t− 2). (see Figure 7).

• The diagram D(2, 2) ∼ D(1, 1, 1, 1) is obtained for (T3, T5).
• The diagrams D(1) is obtained for (T3, T2); more generally, the diagrams
D(2n + 1) are obtained for (T3, P3n+1), where degP3n+1 = 3n + 1, see
[KP1].

• The degree of D(0, 1, 3) is at least (3, 7).

D(0, 1, 1, 0) D(0, 2) ∼ D(0, 1, 1)

Figure 7

Table. In the table, we list all two-bridge knots with their Schubert fraction. On
the third column we give the degree degC(K) we obtain for Chebyshev diagrams, on
the fourth column we list all simple diagrams with mC(K) or fewer crossings. On
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the fifth column is the degree obtained by using the reduction R. The lexicographic
degree is on the last column. It is starred when it is better than degC .

K α/β degC Simple Diagrams Degree Bound Lex. Degree
31 3 (3, 4, 5) D(3) degD(3) + 0 b ≥ 4 (3, 4, 5)
41 5/2 (3, 5, 7) D(2, 2) degD(2, 2) + 0 b ≥ 5 (3, 5, 7)
51 5 (3, 7, 8) D(5) degD(5) + 0 b ≥ 7 (3, 7, 8)
52 7/2 (3, 7, 8) D(2, 3) degD(2, 3) + 0 b ≥ 7 (3, 7, 8)
61 9/2 (3, 8, 10) D(2, 4) degD(2, 4) + 0 b ≥ 8 (3, 8, 10)
62 11/3 (3, 8, 10) D(2, 1, 3) degD(3) + 3 b = 7 **(3, 7, 11)

D(3,−4) degD(3, 4) + 0 b ≥ 10
63 13/5 (3, 7, 11) D(2, 1, 1, 2) degD(3) + 3 b = 7 (3, 7, 11)
71 7 (3, 10, 11) D(7) degD(7) + 0 b ≥ 10 (3, 10, 11)
72 11/2 (3, 10, 11) D(2, 5) degD(2, 5) + 0 b ≥ 10 (3, 10, 11)
73 13/3 (3, 10, 11) D(3, 4) degD(3, 4) + 0 b ≥ 10 (3, 10, 11)
74 15/4 (3, 10, 11) D(3, 1, 3) degD(1) + 6 b ≥ 8 **(3, 8, 13)

D(4,−4) degD(4, 4) + 0 b ≥ 11
75 17/5 (3, 10, 11) D(2, 2, 3) degD(0, 1, 3) + 3 b ≥ 10 (3, 10, 11)

D(3,−2, 4) degD(3, 2, 4) + 0 b ≥ 10
76 19/7 (3, 10, 11) D(2, 1, 2, 2) degD(1) + 6 b = 8 **(3, 8, 13)

D(2, 3,−3) degD(0, 2, 3) + 3 b ≥ 10
D(2, 2,−2, 3) degD(0, 1, 2, 3) + 3 b ≥ 10

77 21/8 (3, 8, 13) D(2, 1, 1, 1, 2) degD(1) + 6 b ≥ 8 (3, 8, 13)
81 13/2 (3, 11, 13) D(2, 6) degD(2, 6) + 0 b ≥ 11 (3, 11, 13)
82 17/3 (3, 11, 13) D(2, 1, 5) degD(5) + 3 b = 10 **(3, 10, c)

D(3,−6) degD(3, 6) + 0 b ≥ 13
83 17/4 (3, 11, 13) D(4, 4) degD(4, 4) + 0 b ≥ 11 (3, 11, 13)
84 19/4 (3, 11, 13) D(3, 1, 4) degD(0, 2) + 6 b = 10 **(3, 10, c)

D(4,−5) degD(4, 5) + 0 b ≥ 13
86 23/7 (3, 11, 13) D(2, 3, 3) degD(0, 2, 3) + 3 b ≥ 11 (3, 11, 13)
87 23/5 (3, 10, 14) D(2, 1, 1, 4) degD(5) + 3 b = 10 (3, 10, c)

D(3,−2,−4) degD(3, 2, 4) + 0 b ≥ 10
D(2, 2,−5) degD(0, 1, 5) + 3 b ≥ 10

88 25/9 (3, 10, 14) D(2, 1, 3, 2) degD(2, 0) + 6 b ≥ 10 (3, 10, c)
D(2, 4,−3) degD(0, 3, 3) + 3 b ≥ 10

89 25/7 (3, 11, 13) D(3, 1, 1, 3) degD(5) + 3 b = 10 **(3, 10, c)
D(3, 2,−4) degD(3, 2, 4) + 0 b ≥ 10

811 27/8 (3, 11, 13) D(2, 1, 2, 3) degD(0, 2) + 6 b ≥ 10 **(3, 10, c)
D(3, 3,−3) degD(3, 3, 3) + 0 b ≥ 10
D(3,−3,−3) degD(3, 3, 3) + 0 b ≥ 10
D(2, 2,−2, 4) degD(0, 1, 2, 4) + 3 b ≥ 11

812 29/12 (3, 11, 13) D(2, 2, 2, 2) degD(0, 1, 1, 0) + 6 b ≥ 11 (3, 11, 13)
D(2, 3,−2, 3) degD(0, 2, 2, 3) + 3 b ≥ 11

813 29/8 (3, 10, 14) D(2, 1, 1, 1, 3) degD(0, 2) + 6 b ≥ 10 (3, 10, c)
D(3, 1, 2,−3) degD(3) + 6 b ≥ 10
D(2, 2,−2,−3) degD(0, 1, 2, 3) + 3 b ≥ 10
D(2, 1, 2,−4) degD(0, 3) + 6 b ≥ 10
D(3,−3, 4) degD(3, 3, 4) + 0 b ≥ 11
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814 31/12 (3, 11, 13) D(2, 1, 1, 2, 2) degD(2, 0) + 6 b ≥ 10 **(3, 10, c)
D(2, 2, 2,−3) degD(0, 1, 2, 3) + 3 b ≥ 10
D(2, 2,−3,−2) degD(0, 1, 2, 0) + 6 b ≥ 10
D(2, 1, 2,−2, 3) degD(0, 1, 3) + 6 b ≥ 10

In most cases we obtain the lexicographic degree by considering the Chebyshev
diagrams of K. We knew this fact for torus knots and generalized twist knots in
[BKP2]. In the case of 62, 74, 76, the lexicographic degree is better.

In the case of 84, 87, 811 and 814 the lexicographic order is (3, 10, c) and is better
than the degree we obtain for Chebyshev diagrams. For these knots we do not know
if c = 11 or c = 14.
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