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In audio source separation, reference guided approaches are a class of methods that use reference signals to guide the separation. In prior work, we proposed a general framework to model the deformation between the sources and the references. In this paper, we investigate a specific scenario within this framework: music separation guided by the multitrack recording of a cover interpretation of the song to be processed. We report a series of experiments highlighting the relevance of joint Non-negative Matrix Factorization (NMF), dictionary transformation, and specific transformation models for different types of sources. A signal-to-distortion ratio improvement (SDRI) of almost 11 decibels (dB) is achieved, improving by 2 dB compared to previous study on the same data set. These observations contribute to validate the relevance of the theoretical general framework and can be useful in practice for designing models for other reference guided source separation problems.

INTRODUCTION

In signal processing, audio source separation is the task of recovering the different audio sources that compose an observed audio mixture. In the case of music, this task aims to provide signals for each instrument or voice. As original songs are rarely released in multitrack formats, this step is compulsory to open new possibilities in music post-production, e.g., respatialization, upmixing and more widely in audio edition.

The complexity of the mixing process (not necessarily linear) as well as the fact that there are more sources than input channels make the demixing of professionally produced music difficult in the blind case, i.e., without any prior information. Thus, blind separation shows certain limitations for professional music applications that require high audio quality [START_REF] Vincent | From blind to guided audio source separation: How models and side information can improve the separation of sound[END_REF]. Many approaches have taken several kinds of additional information into account with the objective of overcoming these limitations [START_REF] Liutkus | An overview of informed audio source sep-aration[END_REF]. For instance, spatial and spectral information about the sources [START_REF] Ozerov | A general flexible framework for the handling of prior information in audio source separation[END_REF], information about the recording/mixing conditions [START_REF] Ngoc | Under-determined reverberant audio source separation using a full-rank spatial covariance model[END_REF], musical scores [START_REF] Umut Simsekli | Score guided audio restoration via generalised coupled tensor factorisation[END_REF][START_REF] Ewert | Score-informed source separation for musical audio recordings: An overview[END_REF], or even selection of spectrogram areas [START_REF] Ozerov | Multichannel nonnegative tensor factorization with structured constraints for user-guided audio source separation[END_REF][START_REF] Durrieu | Musical audio source separation based on user-selected F0 track[END_REF][START_REF] Fitzgerald | User assisted separation using tensor factorisations[END_REF], potentially in an interactive way [START_REF] Fuentes | Blind harmonic adaptive decomposition applied to supervised source separation[END_REF][START_REF] Bryan | Interactive refinement of supervised and semi-supervised sound source separation estimates[END_REF][START_REF] Ngoc | An interactive audio source separation framework based on non-negative matrix factorization[END_REF] have been proposed in the literature. It is also possible to consider reference signals [START_REF] Souviraà-Labastie | Multi-channel audio source separation using multiple deformed references[END_REF] that are similar to the sources to be separated, for instance uttered by a user [START_REF] Smaragdis | Separation by humming : sound extraction from monophonic mixtures[END_REF][START_REF] Le Magoarou | Text-informed audio source separation using nonnegative matrix partial co-factorization[END_REF][START_REF] Hennequin | Speech-guided source separation using a pitch-adaptive guide signal model[END_REF], or synthesized from symbolic information [START_REF] Le Magoarou | Text-informed audio source separation using nonnegative matrix partial co-factorization[END_REF][START_REF] Fritsch | Score informed audio source separation using constrained nonnegative matrix factorization and score synthesis[END_REF] or even retrieved from a large set [START_REF] Souviraà-Labastie | Audio source separation using multiple deformed references[END_REF][START_REF] Badawy | Onthe-fly audio source separation[END_REF].

In this paper, we focus on source separation guided by reference signals, and more precisely music separation guided by cover multi- * Work supported by Maia Studio and Bretagne Region scholarship track songs [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF]. A cover song is another performance of an original song. It can differ from the original song by its musical interpretation and it is potentially performed by a different singer and with different instruments. Multitrack recordings of such covers are more likely to be found on the market than the original multitrack recording and contrary to expectations, they are (for commercial reasons) musically faithful to the original [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF]. Furthermore, most separation algorithms are sensitive to initialization and using cover multitrack recordings for initialization is an efficient way to sidestep this problem [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF]. All these reasons make cover guided music separation a very promising approach for high quality music separation.

In the following, rather than using the cover multitrack recordings for initialization only, we also use them to constrain the power spectrum of each source. In addition, although the considered covers are musically faithful, deformations exist between the original sources and the covers at the signal level. These deformations are significant enough not to be ignored. Here, different configurations of deformations as formalized in [START_REF] Souviraà-Labastie | Multi-channel audio source separation using multiple deformed references[END_REF] are tested. Finally, the optimal deformation model is selected for each type of source (bass, drums, guitar, vocal ...).

The paper is organized as follows. Section 2 recalls the general model of reference guided source separation proposed in [START_REF] Souviraà-Labastie | Multi-channel audio source separation using multiple deformed references[END_REF]. Section 3 presents a specific model adapted to the task, and its estimation procedure. Section 4 describes the data and the settings of the experiments. Section 5 reports on results illustrating the proposed contributions and provides to the reader useful advice on how to design deformation models for reference guided source separation. Section 6 draws the conclusions and gives some perspectives.

GENERAL FRAMEWORK

In this section, we recall the general framework for multi-channel source separation guided by multiple deformed references [START_REF] Souviraà-Labastie | Multi-channel audio source separation using multiple deformed references[END_REF].

The observations are M multi-channel audio mixtures x m (t) indexed by m and containing I m channels. For instance, one mixture is to be separated, and the other mixtures contain the reference signals used to guide the separation process. Each mixture x m (t) is assumed to be a sum of source spatial images yj(t) indexed by j ∈ Jm. In the Short-Time Fourier Transform (STFT) domain, this can be written as

x m f n = j∈Jm y j,f n with x m f n , y j,f n ∈ C I m , (1) 
where f = 1, ..., F and n = 1, ..., N are respectively the frequency and the time indexes of the STFT. We assume that the timefrequency coefficients of the source spatial images y j,f n have a zero-mean Gaussian distribution [START_REF] Ozerov | A general flexible framework for the handling of prior information in audio source separation[END_REF] :

y j,f n ∼ N C (0, v j,f n R j,f n ) (2)
whose covariance factors into a scalar power spectrum v j,f n ∈ R+ and a spatial covariance matrix R j,f n ∈ C I m ×I m . The spatial covariance matrices model the spatial characteristics of the sources, like phase or intensity difference between channels. The power spectrogram of each source j is denoted as

Vj = [v j,f n ] f n ∈ R F ×N + .
Each Vj is split into the product of an excitation spectrogram V e j and a filter spectrogram V φ j . The excitation spectrogram (resp. the filter spectrogram) is decomposed by a Non-negative Matrix Factorization (NMF) into a matrix of spectral patterns W e j ∈ R F ×D e + (resp.

W φ j ∈ R F ×D φ +
) and a matrix of temporal activations

H e j ∈ R D e ×N + (resp. H φ j ∈ R D φ ×N +
). D e (resp. D φ ) denotes the number of spectral patterns used in the NMF decomposition of the excitation (resp. filter) part. This results in the following decomposition :

Vj = V e j V φ j = W e j H e j W φ j H φ j (3) 
where denotes point wise multiplication.

As the different audio mixtures are composed of similar sources, the matrices W and H can be shared (i.e., jointly estimated) between a given source j ∈ J m and one or more related sources j ∈ J m with m = m. A reference signal is by nature deformed : if there were no deformation, the reference would be equal to the true source. These differences can be taken into account by partly sharing the model parameters (e.g., sharing only H e ) and/or by using transformation matrices T jj (between sources j and j ). For instance, the sharing of excitation properties between two sources j and j is modeled by one of the three following configurations, depending on the sharing of W e and H e :

V e j = T f e jj W e j H e j (4) 
V e j = W e j H e j T te jj (5)

V e j = T f e jj W e j T de jj H e j T te jj [START_REF] Ewert | Score-informed source separation for musical audio recordings: An overview[END_REF] As it would be redundant, T de jj only appears if the corresponding W e j , H e j are shared.

MODEL AND ALGORITHM

In this section, we introduce the specific framework used to model the cover guided music separation problem in reference to the general framework recalled in Section 2 from which we removed the excitation-filter decomposition and the multi-channel formulation.

Here, the reference mixtures are the different cover tracks and contain a single source. This configuration with isolated references leads to a very efficient initialization (detailed in Section 3.2)

Proposed model

Here, we consider that x 1 (t) is the song to be separated, and x m (t) for m > 1 are the different tracks of the cover version used to guide the separation process. All mixtures are single channel, and the mixture x m (t) for m > 1 are assumed to contain only one source. Each Vj is decomposed by a NMF into a matrix of spectral patterns Wj ∈ R F ×D + and a matrix of temporal activations Hj ∈

R D×N + . Vj = WjHj (7) 
D denotes the number of spectral patterns used in the NMF decomposition. Hereafter, we only consider frequency and dictionary transformation matrices that are now denoted T f jj ∈ R F ×F + , and

T d jj ∈ R D×D + .
As each track of the two versions are sufficiently aligned in time, we do not consider T t matrices that induce unwanted smoothing effects. Thus, the related sources are modeled using equation ( 6):

V j = T f jj WjT d jj Hj (8) 
It can be noticed that this formulation leaves the possibility to set these transformation matrices either in the reference model (j ∈ J 1 and j ∈ J m , m = 1) or in the source model (j ∈ J 1 and j ∈ J m , m = 1). See Tables 3 and4 in Section 5 for concrete cases. For both T f and T d matrices, we consider two possible initializations:

• Diag : Identity matrix

• Full : The sum of an identity matrix and a random matrix drawn from a rectified Gaussian distribution

Parameter estimation

Here, we present a method for parameter estimation in the maximum likelihood (ML) sense. In the single-channel case, maximizing the log-likelihood is equivalent to minimizing the Itakura-Saito divergence [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF]:

θ = argmin θ M m=1 F,N f,n=1 dIS(X m f n |V m f n ) (9) 
where θ is the set of parameters to be estimated, i.e., the matrices W , H and T .

X m = [|x m f n | 2 ]
f n and V m = j∈J m Vj are respectively the observed and estimated power spectrograms, and dIS(a|b) = a/b -log(a/b) -1 is the Itakura-Saito divergence. A common way to estimate the parameters is the use of a multiplicative gradient descent approach [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF] in which each parameter is updated at each iteration without increasing criterion (9) [START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF]. The update of one parameter consists in multiplying it by the ratio of the negative and positive parts of the derivative of the criterion with respect to this parameter. Different multiplicative updates (MU) are derived for each parameter. Examples of such updates are given in [START_REF] Souviraà-Labastie | Audio source separation using multiple deformed references[END_REF].

The results of MU depend on initialization. With respect to blind source separation, reference guided separation provides better initial parameter values taking advantage of the provided references. For instance, in our case, we can use MU to minimize the following criterion :

θref = argmin θ ref M m=2 F,N f,n=1 dIS(X m f n | Ṽ m f n ) (10) 
where Ṽ m f n = WjHj with j ∈ J m (m > 1), and θref is the set of corresponding Wj and Hj parameters. This is especially efficient when there is a single source in the reference signal, as here. In the experiments, we will distinguish the following successive initialization and algorithmic stages :

• Pre-NMF : MU that try to minimize the criterion (10),

• Joint-NMF : MU that try to minimize the criterion [START_REF] Fitzgerald | User assisted separation using tensor factorisations[END_REF].

In all experiments, 50 iterations of Pre-NMF are beforehand performed and the final source estimates are obtained using an adaptive Wiener filter. 

EXPERIMENTS

Data

In order to compare our results with previous study, we use the same data set and equivalent settings as [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF]. Both original and cover multitracks are available in order to evaluate the separation. The number of cover tracks is the same as the number of sources to be separated, as each track is used as reference for the related source. They are also used in the mirror configuration, i.e., the cover is to be separated and the original multitracks are used as references. Experiments are conducted on 30 second examples typically consisting of half of a verse and half of a chorus. The considered tracks of four songs are listed in Table 1. Some examples are available online 1 .

Settings

We here make an exhaustive list of settings that vary from [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF] and refer the reader to [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF] for common details. To simplify the analysis of the results, the two channels are summed into a single one. We used 50 iterations for Pre-NMF and Joint-NMF steps instead of 500. The number of components D is kept to 50.

RESULTS

The quality of the estimated sources is evaluated in terms of signalto-distortion ratio improvement (SDRI) that is the difference between the output SDR [START_REF] Vincent | Performance measurement in blind audio source separation[END_REF] and the input SDR. The input SDR is defined as the power ratio between the source to be estimated and the mixture to be separated. It is given for each type of source in Table 4. The samples that we selected lead to an input SDR mean of -8.44 dB instead of -7.60 dB in [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF].

As we work with MU, we underline that zeros in the parameters remain unchanged over the iterations. Hence, a matrix initialized at identity will stay diagonal over the iterations. Moreover, T matrices are not present during the Pre-NMF.

Comparison with a previous study

In [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF], the cover multitrack signals are only used to initialize the source parameters W and H. Here, we decided to share these pa- rameters between the source and the reference hence the reference signals are used during the global estimation stage too. The results are shown in Table 2. First, we reproduce the experiments in [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF] with the differences of settings presented in Section 4.2. An equivalent SDRI mean is obtained compared to [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF] for the case where the parameters are not shared (8.74 dB instead of 8.98 dB). The previous configuration leads in fact to an important decrease of the SDRI mean, compared to what is obtained if the sources are reconstructed directly after the Pre-NMF (10.06 dB). This can be explained by the great level of similarity between the covers and the original tracks. Conversely, sharing the NMF parameters during the final estimation (Joint-NMF) guarantees not to move away too much from this relevant starting point while getting closer to a solution that fits better the original tracks. In our case, a marginal improvement is observed (10.27 dB).

These first results show the strong similarity between each original track and its related cover track. In that case, sharing W and H during the Joint-NMF estimation is the most relevant method even without considering any deformations.

Designing the deformation model

Here, we analyze whether the transformation matrices are useful in the reference or the source model. The comparison of different initializations of frequency and dictionary deformations matrices is done as well. Results of exhaustive experiments are displayed in Table 3.

Bold values indicate improvements compared to a fully shared Joint-NMF (10.27 dB). It can be noticed that in those two cases the number of non zero coefficients Z in T is of the same order of magnitude (Z = D 2 = 2500 for a Full T d and Z = F = 1025 for a Diag T f ), while Z vary from D = 50 to F 2 ≈ 10 6 .

We also observe that for almost all cases, SDRIs are always higher when T matrices are positioned in the reference model. This can be explained by the fact that the final signals are reconstructed based on the source model, and T matrices can induce abrupt changes. Conversely, inserting a Full T matrix in the reference model instead of in the source model would distort more the output of the Pre-NMF, as the product of Wj and Hj estimated during the Pre-NMF step try to fit the reference signal. So, it is difficult to distinguish which effect is predominant, especially since the number of non-zero coefficients has also an impact.

One can remember that when inserting transformation matrices it is important not to distort the output of Pre-NMF. For instance in 

Specific source model

In this last set of experiments, SDRI for each type of source are given in Table 4 for different configurations. The combination of T d and T f gives interesting results, especially for the drums and the bass. Moreover, we observe for each type of source clear differences between models while the SDRI means are similar. In a final experiment, referred to as "Best", the most proper configurations are chosen for each type of source (indicated in bold in Table 4). Note that values in italic and bold were chosen based on the experiment with T f (Diag) in the source model that shows promising results for these two sources. The result (10.92 dB) shows the relevance of defining specific models depending on the source type. It should also be noted that using transformation matrices for only one source of a song leads to a huge decrease of separation quality for that source. This is certainly due to the estimation algorithm that we used. So, defining specific source models is indeed interesting but the number of parameters should be balanced between the different models.

CONCLUSION

In this paper, we have addressed the problem of cover tracks guided music separation with a previously defined general framework for audio source separation using multiple deformed references. This study leads us to consider specific aspects of the general framework, in particular dictionary deformations. Several deformation models were tested for different types of source (Bass, Drums, Guitar, Vocal ...) which lead to 2 dB improvement compared to a previous study on the same data set. The results obtained in this article may be useful in other scenarios of reference guided audio source separation.

As this paper entirely focused on spectral modeling, considering spatial information would be an asset, for instance using [START_REF] Souviraà-Labastie | Multi-channel audio source separation using multiple deformed references[END_REF]. However, it will be needed to compensate the potential differences of spatialization between each source and its related cover track.

Table 1 .

 1 Cover multitrack data set

	Title		Track names
	I Will Survive	Bass, Brass, Drums, Guitar, Strings, Vocal.
	Pride and Joy		Bass, Drums, Guitar, Vocal.
	Rocket Man	Bass, Choirs, Drums, Others, Piano, Vocal.
	Walk this Way		Bass, Drums, Guitar, Vocal.
			Joint-NMF	SDRI
			Source Reference mean
	Result in [20]		W H		8.98
	Reproduction of [20]	W H		8.74
	Only Pre-NMF			10.06
	Joint-NMF		W H	W H	10.27

Table 2 .

 2 SDRI (dB) compared with a previous study[START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF].

Table 3 .

 3 1 http://speech-demos.gforge.inria.fr/source separation/icassp2015/ SDRI (dB) for different configurations.

	Init		Joint-NMF	SDRI
	T f	T d	Source	Reference mean
			W H	W H	10.27
	Full		W H	T f W H	10.08
	Full		T f W H	W H	9.23
	Diag		T f W H	W H	10.09
	Diag		W H	T f W H	10.35
	Diag W T d H	W H	9.25
	Diag	W H	W T d H	9.88
	Full	W H	W T d H	9.79
	Full W T d H	W H	10.64

Table 3 ,

 3 it is the case for values in bold.

		Number of tracks	4	4	3	4	1	1	1	1	1
		Input SDR (dB)	-7.42	-7.17	-9.98	-4.18	-12.34	-9.75	-12.48 -18.64	-10.55
	Joint-NMF Source Reference mean SDRI Bass Drums Guitar Vocal Choirs Others Piano Brass Strings
			10.06	9.33	9.02	9.71	9.60	13.70	9.79	10.80	16.25	9.80
	W H	W H	10.27	9.26	9.28	9.82	10.24	13.23	10.27	11.11	15.67	10.62
	W H	T f W H	10.35	9.39	9.29	9.69	10.22	13.85	9.98	12.08	15.68	10.71
	W T d H	W H	10.64	9.23	9.94	10.80	10.73	13.01	10.07	11.36	15.80	10.61
	W T d H	T f W H	10.66	9.88	10.48	9.41	10.44	12.74	10.01	12.24	16.66	10.11
		Best	10.92	9.66	10.58	10.35	10.85	13.73	10.74	11.91	14.91	11.71

Table 4 .

 4 SDRI (dB) for each type of source.