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Abstract

We present here a general method based on the investigation of the relative energy of the system,
that provides an unconditional error estimate for the approximate solution of the barotropic Navier
Stokes equations obtained by time and space discretization. We use this methodology to derive an
error estimate for a specific DG/finite element scheme for which the convergence was proved in [26].
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1 - Introduction

The aim of this paper is to derive an error estimate for approximate solutions of the compressible
barotropic Navier-Stokes equations obtained by a discretisation scheme. These equations are posed on
the time-space domain Q7 = (0,7) x 2, where € is a bounded polyhedral domain of R, d = 2,3 and
T > 0, and read:

Oro + div(pu) = 0, (1.1a)
O(ou) + div(ou ® u) — pAu — (p+ A\)Vdivu + Vp(e) = 0, (1.1b)

supplemented with the initial conditions
0(0,z) = oo(z), ou(0,z) = gouo, (1.2)
where gy and ug are given functions from Q to R, and R? respectively, and boundary conditions
Yj(0,1)x00 =0 (1.3)

In the above equations, the unknown functions are the scalar density field o(¢, ) > 0 and vector velocity
field w = (u1,...,uq)(t,x), where t € (0,7) denotes the time and = € 2 is the space variable. The
viscosity coefficients p and A are such that

2
The pressure p is a given by an equation of state, that is a function of density which satisfies
p € C([0,00)) N C*(0,00), p(0) =0, p'(0) > 0. (1.5)

In addition to (1.5), in the error analysis, we shall need to prescribe the asymptotic behavior of the
pressure at large densities

/
i P (0)

Jim “TF = Poo > 0 with some v > 1; (1.6)
0

furthermore, if 7 < 2 in (1.6), we need the additional condition (for small densities):

/
lim inf r'(o) =
0—0 Qa+1

po >0 with some a < 0. (1.7)

In particular, for d = 3, our error estimate is valid in the case of the equation of state p(p) = o7 (isen-
tropic gas) with v > 3 (see Remark 3.1 for the simpler case d = 2).

The main underlying idea of this paper is to derive the error estimates for approximate solutions of
problem (1.1) —(1.3) obtained by time and space discretization by using the discrete version of the rel-
ative energy method introduced on the continuous level in [12,13,15]. In spite of the fact that the
relative energy method looks at the first glance pretty much similar to the widely used relative entropy
method (and both approaches translate the same thermodynamic stability conditions), they are very
different in appearance and formulation and may provide different results. The notions of relative en-
tropy and relative entropy inequality were first introduced by Dafermos [7] in the context of systems
of conservation laws and in particular for the compressible Euler equations. The relative energy func-
tional was suggested and successfully used for the investigation of the stability of weak solutions to
the equations of viscous compressible and heat conducting fluids in [13]. In contrast with the relative



entropy of Dafermos, for the viscous and heat conducting fluids, the relative energy approach is able
to provide the structural stability of weak solutions, while the relative entropy approach fails in this case.

Both functionals coincide (modulo a change of variables) in the case of (viscous) compressible flows
in the barotropic regime. The relative energy functional and the intrinsic version of the relative energy
inequality have been recently employed to obtain several stability results for the weak solutions to these
equations, including the weak strong uniqueness principle, see [12,15]. Note that particular versions of
the relative entropy inequality with particular specific test functions had been previously derived in the
context of low Mach number limits, see e.g. [30,32].

The discrete version of the Dafermos relative entropy was employed in the non viscous case to de-
rive an error estimate for the numerical approximation to a hyperbolic system of conservation laws and,
in particular, to the compressible Euler equations [4]. In this latter paper, the authors assume an L>
bound for the discrete solution, which is uniform with respect to the size of the space and time disretiza-
tion (usually called stability hypothesis), that is not provided by the discrete equations. The same
method with the same severe hypotheses have been used in [33] to treat the compressible Navier-Stokes
equations. The error analysis in the present paper relies on the theoretical background introduced in [12]
and yields an unconditional result; in particular, we do not need any assumed bound on the solution to
get the error estimate.

The mathematical analysis of numerical schemes for the discretization of the steady and/or non steady
compressible Navier-Stokes and/or compressible Stokes equations has been the object of some recent
works. The convergence of the discrete solutions to the weak solutions of the compressible stationary
Stokes was shown for a finite volume— non conforming P1 finite element [10,11,18] and for the wellknown
MAC scheme which was introduced in [21] and is widely used in computational fluid dynamics. The
unsteady Stokes problem was also discretized by some other discretization schemes on a reformulation
of the problem, which were proven to be convergent [23-25]. The unsteady barotropic Navier-Stokes
equations was recently investigated in [26] in the case 7 > 3 (there is a real difficulty in the realistic
case 7 < 3 arising from the treatment of the non linear convective term). However, in these works, the
rate of convergence is not provided; in fact, to the best of our knowledge, no error analysis has yet been
performed for any of the numerical schemes that have been designed for the compressible Navier-Stokes
equations, in spite of its great importance for the numerical analysis of the equations and for the math-
ematical simulations of compressible fluid flows. We present here a general technique to obtain an error
analysis and apply it to one of the available numerical schemes. To the best of our knowledge, this is
the first result of this type in the mathematical literature on the subject.

To achieve the goal, we systematically use the relative energy method on the discrete level. From
this point of view, this paper is as valuable for the introduced methodology as for the result itself. Here,
we apply the method to the scheme of [26]. In spite of the fact that this latter scheme is not used in
practice (see e.g. [27] for a related schemes used in industrial codes), we begin the error analysis with
the scheme [26] because of its readily available convergence proof. In fact, we aim to use this approach
to investigate the numerical errors of less academic numerical schemes, such as the finite volume — non
conforming P1 finite element [17,19,20,27] or the MAC scheme [1,22].

The paper is organized as follows. After recalling the fundamental setting of the problem and the
relative energy inequality in the continuous case in Section 2, we proceed in Section 3 to the discretiza-
tion: we introduce the discrete functional spaces and the definition of the numerical scheme, and state
the main result of the paper, that is the error estimate formulated in Theorem 3.1. The remaining
sections are devoted to the proof of Theorem 3.1:

e In Section 4 we recall the existence theorem for the numerical scheme (Lemma 3.1) and derive



estimates provided by the scheme.

e In Section 5, we derive the discrete intrinsic version of the relative energy inequality for the solutions
of the numerical scheme (see Theorem 5.1).

e The relative energy inequality is transformed to a more convenient form in Section 6, see Lemma
6.1.

e Finally, in Section 7, we investigate the form of the discrete relative energy inequality with the
test function being a strong solution to the original problem. This investigation is formulated in
Lemma 7.1 and finally leads to a Gronwall type estimate formulated in Lemma 8.1. The latter
yields the error estimates and finishes the proof of the main result.

Fundamental properties of the discrete functional spaces needed throughout the paper are reported in
Appendix (Section 9). Some of them (especially those referring to the LP setting, p # 2 that are not
currently available in the mathematical literature) are proved. Section 9 is therefore of the independent
interest.

2 - The continuous problem

The aim of this section is to recall some fundamental notions and results. We begin by the definition of
weak solutions to problem (1.1)- (1.3).

Definition 2.1 (Weak solutions). Let gp : @ — [0,+00) and up : Q — RY with finite energy Ey =
Jo(300luol? + H(00)) dz and finite mass 0 < Mo = [, 0o dz. We shall say that the pair (o,u) is a weak
solution to the problem (1.1)—(1.3) emanating from the initial data (0o, uo) if:

(a) o € L®(0,T; LY(Q)), 0> 0 a.e. in (0,T), and u € L2(0,T; Wy(Q)).

(b) 0 € Cyear([0,T]; LY(R)), and the continuity equation (1.1a) is satisfied in the following weak sense
/ ngdx‘; = / / (Q@tgp + ou - Vzgz) dx dt, vr € [0,T], Vo € C([0,T] x Q). (2.1)
Q 0 JQ

(c) ou € Cyear ([0, T); L1(2)), and the momentum equation (1.1b) is satisfied in the weak sense,

/gu'godx
Q

—/ / (,uVu : Vepdrdt+(p+ A)divudivgp) dzdt, V7 € [0,T], Vo € C°([0,T] x ;R?).
0 Jo
(2.2)

0:/0 /Q(Qu-atw—i-gu@u:V(p—i—p(g)divgp)dxdt

(d) The following energy inequality is satisfied

/Q (%Q‘UF —|—H(g)> dx‘; —i—/OT/Q <M|Vu\2 + (n+A)|div u\Q) dzdt <0, for a.a. 7€ (0,7T), (2.3)
with oH'(e) ~ H(e) = o), (for example H() = o [ az) (2.4

Here and hereafter the symbol/ gdz |§ is meant for / g(r,x)dz — / go(z) dx.
Q Q Q



In the above definition, we tacitly assume that all the integrals in the formulas (2.1)—(2.3) are defined
and we recall that Cyeax ([0, T]; L1(£2)) is the space of functions of L°([0,T]; L'(€2)) which are continuous
for the weak topology.

Note that the existence of weak solutions emanating from the finite energy initial data is well-known
on bounded Lipschitz domains under assumptions (1.5) and (1.6) provided v > d/(d — 1), see Lions [28]
for "large" values of -y, Feireisl and coauthors [14] for v > d/(d — 1).

Let us now introduce the notion of relative energy. We first introduce the function
E: [0,00) x (0,00) = R,
(0,r) = E(elr) = H(o) — H'(r)(e — 1) — H(r),

where H is defined by (2.4). Due to the monotonicity hypothesis in (1.5), H is strictly convex on [0, c0),
and therefore

(2.5)

E(olr) >0 and FE(o|r)=0 < o=r.

In order to measure a “distance” between a weak solution (g, ) of the compressible Navier-Stokes system
and any other state (r,U) of the fluid , we introduce the relative energy functional, defined by

r,U) = /Q (%Q\u ~U*+ E(o] 7“)) dz. (2.6)

It was proved recently in [12] that, provided assumption (1.5) holds, any weak solution satisfies the
following so-called relative energy inequality

& (g,u T, U) (r)=¢& (Q,u)r, U) (0) + /OT/Q (u!V(u ~U)P + (p+ )| div(u — U)\2) dz dt

g/OT/Q(MVU:V(U—u)+(u+>\)dideiv(U—u)) dz dt

E(o,u

+/ /g@tU-(U—u) d:cdt+/ /gu-VU-(U—u) dz dt
0 Jo 0o Jo

—/ /p(g)divU dxdt+/ /(r—g)@tH’(T) dxdt—/ / oVH'(r) - u dxdt
0 JQ 0 JQ 0 JQ
for a.a. 7 € (0,T), and for any pair of test functions
re CH[0,T) x Q), r>0, U e CH[0,T] x %GR3, Ulspg = 0.
The stability of strong solutions in the class of weak solutions is stated in the following proposition.

Proposition 2.1 (Estimate on the relative energy). Let Q be a Lipschitz domain. Assume that the
viscosity coefficients satisfy assumptions (1.4), that the pressure p is a twice continuously differentiable
function on (0,00) satisfying (1.5) and (1.6), and that (o, w) is a weak solution to problem (1.1)—(1.3)
emanating from initial data (09 > 0,ug), with finite energy Ey and finite mass My > 0. Let (r,U) in
the class o
re CH[0,T]xQ), 0<r= min r(t,z) <r(t,z) <T= max r(tz),
(t,I)EQT (t,CC)EQT
(2.8)
Ue Cl([O,T} X ﬁv R3)7 U‘(07T)><8Q =0
be a (strong) solution of problem (1.1) emanating from the initial data (ro,Uy). Then there exists
c = C(T, Q, M(), E07£7 F’ ‘p/‘cl([ﬁﬂ)’ H (VT, 8157", U, VU, 8tU)”L°°(QT;R19)> >0
such that for almost allt € (0,T),

E(o,u

r,U)(t) < cg(go,uo‘ro, Uy). (2.9)

This estimate (implying among others the weak-strong uniqueness) was proved in [12] (see also [15])
for pressure laws (1.6) with v > d/(d — 1). It remains valid under weaker hypothesis on the pressure,
such as (1.6) with v > 1; this can be proved using ideas introduced in [2] and [29].



3 - The numerical scheme

3.1 Partition of the domain

We suppose that € is a bounded domain of R?, polygonal if d = 2 and polyhedral if d = 3. Let T be a
decomposition of the domain €2 in tetrahedra, which we call hereafter a triangulation of €2, regardless of
the space dimension. By £(K), we denote the set of the edges (d = 2) or faces (d = 3) o of the element
K € T called hereafter faces, regardless of the dimension. The set of all faces of the mesh is denoted by
E; the set of faces included in the boundary 9 of Q is denoted by ekt and the set of internal faces (i.e
E\ Eext) is denoted by Eini. The triangulation 7 is assumed to be regular in the usual sense of the finite
element literature (see e.g. [5]), and in particular, 7 satisfies the following properties:

e O =UkerK;
o if (K,L) € T2, then KNL=0or KNLis avertex or KN L is a common face of K and L; in the
latter case it is denoted by K|L.

For each internal face of the mesh ¢ = K|L, n, g stands for the normal vector of o, oriented from
K to L (so that n, x = —n, ). We denote by |K| and |o| the (d and d — 1 dimensional) Lebesgue
measure of the tetrahedron K and of the face o respectively, and by hx and h, the diameter of K and
o respectively. We measure the regularity of the mesh thanks to the parameter 6 defined by

hk hp )

0 = inf ({i—K,KET}U{h—,h—,K\Le&m} (3.1)
K L K

where £ stands for the diameter of the largest ball included in K. Last but not least we denote by h
the maximal size of the mesh,

h= h he)- 2

(g i gy ) 32)

The triangulation 7T is said to be regular if it satisfies
0> 6y > 0.
For a regular triangulation, there exists ¢; = ¢;(6p, K) > 0 such that
cihg < hs < cohg, lK| <|olh, < cololhg < c3]K]| (3.3)

for any o € £(K).

3.2 Discrete functional spaces

Let 7 be a mesh of 2. We denote by L () the space of piecewise constant functions on the cells of
the mesh; the space L (£2) is the approximation space for the pressure and density. For 1 < p < oo, the

mapping

1/p
¢ llallzz @) = lallre = (Y 1Kllaxl?)
KeT

is a norm on L;(€2). We also introduce spaces of non-negative and positive functions:
L;(Q) ={q € Ly(Q), qx 20, VK € T}, L,TJF(Q) ={q€ Lp(), gqx >0, VK € T}.

The approximation space for the velocity field is the space W3 (Q) = (V3,(Q))¢, where V;,(£2) is the non
conforming piecewise linear finite element space [6, 8] defined by:.

Vi(Q) = {v e L*(Q), VK € T, vk € P1(K),
Vo € &, 0 = K|L, /U|KdS:/U|LdS, Vo € Eext, /vdS:O}, (3.4)



where P1(K) denotes the space of affine functions on K and dS the integration with respect to the
(d — 1)-dimensional Lebesgue measure on the face . Each element v € V3 () can be written in the
form

v = Z Voo, Vo €R, (3.5)

o€Eint

where the set {¢s}oee,, C Va(Q2) is the classical basis determined by

Y(o,0') € E2,, / 0odS =650, Vo' € Eexts / vsdS = 0. (3.6)

Notice that V},(92) approximates the functions with zero traces in the sense that for all elements in V},(2),
vy = 0 provided o € Egyt. Since only the continuity of the integral over each face of the mesh is imposed,
the functions in V},(€2) may be discontinuous through each face; the discretization is thus nonconforming
in WP (Q;RY), 1 < p < co. Finally, we notice that for any 1 < p < oo the expression

vlve@) = ( Z ||V””Lp KiRY) )

is a norm on V;,(Q) and we denote by VP(Q2) the space V;,(£2) endowed with this norm.
We finish this section by introducing some notations. For a function v in L'(Q), we set

1
Vg = —/ vdx for K € T and ¥ = Z vrlk, (3.7)
‘K’ K KeT

so that 0 € L, (). If v € Wol’p(Q), we set

1
Vo = H/’UdS for o € &y and vy, = Z VoPos (38)
Ol Jo

€&t

so that v, € V4(Q). Finally, if v € WP(Q), we set

1
v =1 / vdS for o € €. (3.9)
| Jo

3.3 Discrete equations

Let us consider a partition 0 = ¢ty < t; < ... < ty = T of the time interval [0, 7], which, for the sake
of simplicity, we suppose uniform. Let k be the constant time step k =t¢, —t,—1 forn =1,...,N. The
density field o(t,,x) and the velocity field w(t,, z) will be approximated by the quantities

Mz) =) diklk(z), uw(z) =) ugps(z), (3.10)

KeT oce€

where the approximate densities (0% )xeT n=1,..,n and velocities (u})yeg.n=1,.., N are the discrete un-
knowns (with o% € R" and ul} € R%). The numerical scheme consists in writing the equations that
are solved to determine these discrete unknowns. In order to ensure the positivity of the approximate
densities, we shall use an upwinding technique for the density in the mass equation. For ¢ € L (£2) and
u € Wy (Q), the upwinding of ¢ with respect to u is defined, for 0 = K|L € &y by

if us -m >0
gp _ dK '1 o o, K (311)
qr, if u, - na,Kgoa
so that
> Pus ngg =Y, (QK[UU 0y 1] — qrlug - no,K]_),
oe€(K) oe&(K)
o=K|L



where a® = max(a,0), a~ = — min(a,0).
Let us then consider the following numerical scheme [26]:

Given (0°,u®) € L () x Wi,(Q) find (0™)1<n<n C (Ln())Y, (u™)1<n<n C (Wi(Q)YN such that for
alln=1,...N

n _ n—l1
K| S ool [ul - m ] =0, VK €T, (3.12a)
k
ceé(K)
S Bl otk — o) o S ol P g o v
L KYK K K K o o o o, K K
KeT KeT 0e&(K)
S w6k S oo nex +u S / Vu': Vo do (3.12b)
KeT oe&(K) KeT
+ (p+A) Z / dive"dive dz = 0, Yv € Wp,(Q).
KeT

Note that the boundary condition u!} = 0 if 0 € & is ensured by the definition of the space V().
Note also that if o € &y, 0 = K|L, one has, following (3.7) and (3.11),
1 1

W =yl = — —
K] L]

/u (x)dz if uy - ngyx >0and 4"’ =uf = /u”(m)dxifug-no7K<0.
K L

It is well known that any solution (0")1<n<n C (Lp(Q2))Y satisfies " > 0 thanks to the upwind
choice in (3.12a). Furthermore, summing (3.12a) over K € 7 immediately yields the total conservation
of mass, which reads:

Vn =1,...N, /gndx:/ 0" de. (3.13)
Q Q
We finally state in this section the existence result, which can be proved by a topological degree
argument [17,26].
Proposition 3.1 (Existence). Let (¢°,u%)€ LT (Q) x W,(Q). Under assumptions (1.4) and (1.5),

Problem (3.12) admits at least one solution

(@"1<n<n € [Li T (Y, (u™)1<nn € WR(Q)Y.

3.4 Main result: error estimate

Let (r,U) : [0,T] x 2+ (0,00) x R3 be C? functions such that U = 0 on 99. Let (o, u) be a solution
of the discrete problem (3.12). Inspired by (2.6), we introduce the discrete relative energy functional

1 ~n rn | AN
g(g",un]rn,m):/ (5e"la" - OR[> + E(")™)) d (3.14)

=Y |K\( orc|ufe — Ul ge|? +E(QK|7"K))
KeT

where
r(x) =r(ty,x), U"(z) =U(ty,x), n=0,...,N, (3.15)
(0™, u") is defined in (3.10), and E is defined by (2.5). Let us finally introduce the notations

My= 3" Ko, and By = 3 |K|(gollulel? + Hok)).
KeK Kek
Now, we are ready to state the main result of this paper. For the sake of clarity, we shall state the
theorem and perform the proofs only in the most interesting three dimensional case. The modifications
to be done for the two dimensional case, which is in fact more simple, are mostly due to the different
Sobolev embedings, and are left to the interested reader.



Theorem 3.1 (Error estimate). Let 6y > 0 and T be a regular triangulation of a bounded polyhedral
domain 0 C R3 introduced in Section 3.1 such that 0 > 0y, where 0 is defined in (3.1). Let p be a twice
continuously differentiable function satisfying assumptions (1.5), (1.6) with - > 3/2, and the additional
assumption (1.7) in the case v < 2. Let the viscosity coefficients satisfy assumptions (1.4). Suppose that
(0%, u%) € LI (Q) x Wi(Q) and that (0™)1<n<n C (L (D], (u™)1<n<n C [Wr(Q)]Y is a solution of
the discrete problem (3.12). Let (r,U) in the class

r e 02([0,T] xQ), 0<r:= min < r(t,z) <7:= max r(t,x), (3.16a)
(t,ﬂ?)EQT (tvz)eQT
U € C*([0,T] x % R?), Ulpa =0 (3.16b)

be a (strong) solution of problem (1.1). Then there exists
¢ = o(T, 19, diam(2). 60, v, Mo, Eo, T,
\ﬂbwmmJKvn&naﬂhjﬁnLLVTLV%L@JL&VUNuw@ﬂM%)G(Q+aﬁ

(independent of h, k) such that for anym =1,... N,

E(Q”,u”‘r”, U") < c(é’(go, uolro, U% +hrt + \/E), (3.17)
where .
Y — .
R SR 1)
1/2 if v > 2.
Remark 3.1.

1. Theorem 3.1 holds also for two dimensional bounded polyhedral domains under the assumption
that v > 1. Assumption(1.7) on the asymptotic behavior of pressure near 0 is no more necessary
in this case. The value of A in the error estimate (3.17) is

2v—2 .
A 5 ifred2
1 ify>2.

2. Theorem 3.1 can be viewed as a discrete version of Proposition 2.1. It is to be noticed that the
assumptions on the constitutive law for pressure guaranteeing the error estimates for the scheme
(3.12) are somewhat stronger (y > 3/2) than the assumptions needed for the stability in the
continuous case (y > 1). The threshold value v = 3/2 is however in accordance with the existence
theory of weak solutions. The assumptions on the regularity of the strong solution to be compared
with the discrete solution in the scheme are slightly stronger than those needed to establish the
stability estimates in the continuous case.

3. If d = 3, we notice that the assumptions on the pressure (as function of the density) in Theorem
3.1 are compatible with the isentropic case p(g) = ¢ for all values v > 3/2.

4. The scheme [26] contains in addition artificial stabilizing terms both in the continuity and momen-
tum equations. These terms are necessary for the convergence proof in [26] even for the large values
of . It is to be noticed that the error estimate in Theorem 3.1 is formulated for the numerical
scheme without these stabilizing terms. Of course similar error estimate is a fortiori valid also for
the scheme with the stabilizing terms, however, this issue is not discussed in the present paper.



The rest of the paper is devoted to the proof of Theorem 3.1. For the sake of simplicity, and in order
to simplify notation, we present the proof for the uniformly regular mesh meaning that the relation (3.3)
holds globally, namely there exist positive numbers ¢; = ¢;(6p) such that

cihg < h < cohy < cshg, c|K| <|olh < elolhg < cslolhe < ey K| (3.19)

for any K € T and any o € £. The necessary (small) modifications needed to accommodate the regular
mesh satisfying only (3.3) are left to the reader.

4 - Mesh independent estimates

We start by a remark on the notation. From now on, the letter ¢ denotes positive numbers that may
tacitly depend on 7', ||, diam(2), v, «, 6y, A and p, and on other parameters; the dependency on
these other parameters (if any) is always explicitly indicated in the arguments of these numbers. These
numbers can take different values even in the same formula. They are always independent of the size of
the discretisation k£ and h.

4.1 Energy Identity

Our analysis starts with an energy inequality, which is crucial both in the convergence analysis and in
the error analysis. We recall this energy estimate which is already given in [26], along with its proof for
the sake of completeness.

Lemma 4.1. Let (0°,u’) € L () x W,(Q) and suppose that (0")1<n<n € [LiF (DY, (u™)1<n<n €
[W3,(Q)]V is a solution of the discrete problem (3.12) with the pressure p satisfying condition (1.5). Then
there exist

@Z [min(Q?ﬁ Q%):maX(Q?o Qz)]a 0= K|L € gintv n=1,...,N

—n—1n

QK e [min(lg?l(_17 Q%)’max(g%_:l? 97}()]7 K G T’ n= 17 R 7N

such that

S KI(GoR IR + HeR)) — Y 1K (gelkludl? + H(ok))

KeT KeT
+kZ Z /\un”\zdx—i- (L4 A) / \dlvu”IZdac
n=1KeT
1A JA A A
+ [Dfe ™ + D] + (D] + [Dia) = 0, (4.1)
forallm=1,..., N, where
m n—1,2
tmleAUI - Z Z e 1k 2“1{ | (4.2a)
n=1 KeT
|Ag\ - " n 1,n |QK_QK 1|2
tlmc = Z Z H 0 ) 92 ) (42b)
n=1 KeT
u — u” 2
PR =k S ol S (4.20)
lo=K|LEEnt
~ Qn o Qn 2
(D! —kz > \U\H"(@Z)M lug - no K (4.2d)

2
n=1oc=K|LEEint

10



Proof. Mimicking the formal derivation of the total energy conservation in the continuous case we take
as test function v = w™ in the discrete momentum equation (3.12b)" and obtain

Lh+L+1I3+1,=0, (43)
where
_ |K‘ . n—1,n—-1 n _ 7n,up A n,up n n
L = Z 2 —(opuk — o uy ) ufk, Ilr= Z Z o]0y U™ - uf [ug - Mo k],
KeT KeT oeé(K)
o=K|L
Z Z lo|p(ok)[uy - ne k], I, = Z / pVau'" : Vu" (,u+)\)divu”divu”) dz.
KET 0e&(K) KeT

o= K|L

Next, we multiply the continuity equation (3.12a)% by %|u7}(]2 and sum over all K € T. We get

Is+15=0 (4.4)
th I — — 1|K]| 0w |? and I 7upy n |2
with Iy = — 3 5= (o — o Dkl and Io = — 3 Z 1103 P - g s
KeT KeT oe&(K
77 K|L

Finally, we multiply the continuity equation (3.12a)% by H'(¢};) and sum over all K € 7. We obtain

Ir + Iy = 0, (4.5)
: K -
with I = Y Wl igp g gy and 1= 35 oo s - o] H )
KeT KeT 0eg(K)
o=K|L

We now sum formulas (4.3)—(4.5) in several steps.
Step 1: Term Iy + I;. We verify by a direct calculation that
K| 2 1 n12 K| nl‘uK uy s
Il—ng(Q ok |u K‘_ié)K ) Z f

In order to transform the term Ir, we employ the Taylor formula
_ _ 1 e
/(o) ok — o) = Heko) — H(eie) + 5 H' (@ ") ek — o),

where @?{1’” € [min(g’}(_l, o%), max(g’;(_l, 0%)]. Consequently,

K| 1 K| _
L+1Ir=) A (2 ok lu K|2_§QK nl?)"‘E: ( —H(Q%1)>
KeT KeT
KET 2 KeT k 2

Step 2: Term Iy + Is. The contribution of the face 0 = K|L to the sum I + I reads, by virtue of
(3.11),

1 1
o [l - i)™ o (e = whe -} — 5 lufe? + Sl )

+[o] [y - 1o 2] or (Jup 2 = whe -} — Sluf P + S |uk?).

11



Consequently,
u — u? 2
Iy + I = Z lo||lul - no k|0 UP(KQL). (4.7)
o0=K|LEEnt
Step 3: Term I3+ Is. We have
=3 Y ol mox] (H' (k) (3™ — ok) + H(ok))
KeT oeé(K)
oc=K]|L
+ 3 S ol [l nox] (e H' (o) — Hek)).
KeT ce&(K)
o=K|L

Recalling (3.11), we may write the contribution of the face ¢ = K|L to the first sum in Ig; it reads
o] [ - moi] " (H(ok) — H'(0}) (0l — o) — H(o}))
+ [0 [uf - mo,]* (H(o}) — H () (of, — o) — H(ok))-
Recalling that rH'(r) — H(r) = p(r), we get, employing the Taylor formula

(o — @2)2

I3+ 1Ig = Z lug - na,K‘H”@g) 9

o=K|LEEins

with some oy € [min(o}%, 0}), max(o%, o7)].

Step 4: Conclusion
Collecting the results of Steps 1-3 we arrive at

1K K
22|k‘(%u?{|2_&(1|un 12)+Z| |( +Z /\Vu”|2dx

KeT KET
K 12 K o n—1p2
+ (M+ )\)/ ]divu”\2 da:) Z | ‘ n IM Z | ’H//(fn IR)M
K 2 2
KeT KeT
(o n)2
2 O — 01
+ Z lo|ol “p ui) luy - no k| + Z |0'|H”(Qa)f luy -n, x| =0. (4.8)
0€Eint 0€Ent
o=K|L o=K|L

At this stage, we get the statement of Lemma 4.1 by multiplying (4.8)" by k and summing from n = 1
to n = m. Lemma 4.1 is proved. O

4.2 Estimates

In order to simplify the notations, we denote here and hereafter,

Z Qn n 1 n) Z u” n l,n)(t) (4'9)
and recall that the usual Lebesgue norms of these functions read
al /
n P
HQ”L‘X’(O,T;LP(Q) = Hia‘X’NHQ HLP () ||uHLP (0,T;La(UR3) = k(zluu HLq QR3)> (410)

We have the following corollary of Lemma 4.1.

12



Corollary 4.1. (1) Under assumptions of Lemma 4.1, there exists ¢ = ¢(My, Ey) > 0 (independent of
h and k) such that

|20 mv2@ms) < € (4.11)
1wl 207,00 (r2)) < € (4.12)
108° || Lo (0711 () < € (4.13)

(2) If in addition the pressure satisfies assumption (1.6) then
ol zoe (0,327 () < € (4.14)

(3) If the pair (r,U) belongs to the class (3.16) there ezists c = ¢(Mo, Eo, 7,7, [|U, VU || oo (g pr12)) > 0
such that for alln=1,..., N,
E(e" ulr U™ < c. (4.15)

where the discrete relative energy £ is defined in (3.14).
Proof. Recall that

N
’u|2L?(O,T;VhQ(Q;]R3) =k Z Z / V,u”|? da;
n=1KeT 'K
the estimate (4.11) follows from (4.1). The estimate (4.12) holds due to imbedding (9.29) in Lemma 9.3
and bound (4.11). The estimate (4.13) is just a short transcription of the bound for the kinetic energy
in (4.1). The estimate (4.14) involving the density follows from the boundedness of 3 s |K|H (0%)
and Yo7 |K|0%, by virtue of hypotheses (1.5) and (1.6). Finally, to get (4.15), we have employed
(3.14), (2.5), (4.14) to estimate [, E(0"[7") dz and (9.3), (9.21), (4.13) to evaluate 3" g7 [ 0k |UR jc —
u? | dz. O

The following estimates are obtained thanks to the numerical diffusion due to the upwinding, as is
classical in the framework of hyperbolic conservation laws, see e.g. [9].

Lemma 4.2 (Dissipation estimates on the density). Let (¢°,u®) € LI (Q) x Wj,(Q). Suppose that
(0")1<n<n C [Li (DY, (u)1<n<n C [WHIN(Q) is a solution of problem (3.12). Finally assume that
the pressure satisfies hypotheses (1.5) and (1.6). Then we have:

(1) If v > 2 then there exists ¢ = c(v, 00, Ep) > 0 such that

N
kY. > W% lug -n, x| < c. (4.16)
"t o—K|Teen,  Mex(k )

(2) If v € [1,2) and the pressure satisfies additionally assumption (1.7) then there exists ¢ = c¢(My, Ep) >
0 such that

i > (0} — 01)?
k o] 5= Lgr>1y [ug - o k|
n=1 U:KlLegint [max(g?(a Q%)] v

+ko Y ollek — 01) Lgr<ny lug no k| < e (4.17)
a:K|LESim

where the numbers 9y are defined in Lemma 4.1.
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Proof. We start by proving the simpler statement (2). Taking into account the continuity of the pressure,
we deduce from assumptions (1.6) and (1.7) that there exist numbers p, > 0, P, > 0 such that

H'(s) > {sgm“ ts21,

ﬁosa 2 ﬁo, if s < ]., .

whence, splitting the sum in the definition of the term [Dég’a%g] (see (4.2d)) into two sums, where (o, n)
satisfies p[r > 1 for the first one and o)} < 1 for the second, we obtain the desired result.
Let us now turn to the proof of statement (7). Multiplying the discrete continuity equation (3.12a)%

by In % and summing over K € T, we get

Qn _ Qn—l
DK i+ 30 3 () Puy moc =0,
KeT KeT 0e&(K),0=K|L

By virtue of the convexity of the function ¢ — oln ¢ — ¢ on the positive real line, and due to the Taylor
formula, we have
of In o — o I 0t — (o — oY) < o (o — o );

whence, thanks to the mass conservation (3.13) and the definition of giP, we arrive at

Qn In Qn o anl In anl
> KPS 3 ool - o] (Inof — In o)
KET O’Egjnt

oc=K|L

+ Y loleius nes] (o} —ngk) <0,
o€€int
o=K|L

or equivalently

kY Jolupno k)" (ok (n ofc—In of)— (o —o}))+k Y lol[up-no o]t (of (n o} ~In of)— (o} —0k)) <

o€E€int o€E€int
o=K|L o=K|L
= > K|(ok ok — o o) kY ol ([uf - mok]* (0} — ) + [l - mo ] T (ok — 01)))-
KeT o€€int
o=K|L

(4.18)

From [16, Lemma C.5], we know that if ¢ and 1 are functions in C((0, 00); R) such that si'(s) = ¢'(s)
for all s € (0,00), then for any (a,b) € (0,00)? there exits ¢ € [a, b] such that

(%(b) = ¥(a))b = (p(b) — @(a)) = 5 (b — a)*¥'(c).

Applying this result with ¢(s) = Ins, p(s) = s we obtain that the left hand side of (4.18) is greater or
equal to
no__ n\2
Y ’U|([u2'no,K]++[ug~nU’L]+)M

n AN
o E€Eint maX(QKvQL)
o=K|L

On the other hand, the first term at the right hand side is bounded from above by ||Q”||17(Q). Finally
the second term at the right hand side is equal to

—k Z/ o divu™,
KeT 7K

whence bounded from above by l<:||u"||Vh2 @r3) 0" 12()- The statement (1) of Lemma 4.2 now follows

from the estimates of Corollary 4.1.
O
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5 - Exact relative energy inequality for the discrete problem
The goal of this section is to prove the discrete version of the relative energy inequality.

Theorem 5.1. Suppose that Q C R? is a polyhedral domain and T its reqular triangulation introduced
in Section 3.1. Let p satisfy hypotheses (1.5) and the viscosity coefficient p, X obey (1.4). Let (0°,u®) €
L (9) x Wi(Q) and suppose that (0")1<n<n € [Li (DY, (u™)1<n<n € [Wir(Q)]Y is a solution of the
discrete problem (3.12). Then there holds for allm =1,... N,

1
> S IKl (il = URl® = dclule = UR k?) + 3 IKI(E(RIFR) - BlekIri))

KeT KeT
+E> (u/ Ve (u™ —Up)|? dz + (u—i—)\)/ |div(u” — U;;)y?dx)
n=1Ker 'K K
SkZZ(M/VUh- Uy —u")dx + ,u—i—)\/dlthdlv(Uh—u)dm)
n=1KeT K
m U™ 1 Un—l Unr
+ES S Ko Up,x hK_( hE T h,K_u,;(_l)
n=1KeT k 2
Uik +Unr
— ]{:Z Z Z |U|Qnup(# _ug,UP> Uﬁ]{[ug Ny K| (5.1)
n=1 KeT ce&(K)
o= K\L
—kY. > > lolp(ei) U, - nok]
n=1 KeT ce&(K)
U*K\L
vEY Z K — of) (H' () = H' (7))

n=1KeT

—i—kzz Z lo|oy P H' (r} 1)['u, ‘Ng K],

n=1KeT ce&(K)
o= K\L

for any 0 <r € CY[0,T] x Q), U € C([0,T] x Q), Ulsq =0, where we have used notation (3.15) for
r’, Un.

We notice, comparing the terms in the “discrete” formula (5.1) with the terms in the “continuous”
formula (2.7), that Theorem 5.1 represents a discrete counterpart of the “continuous” relative energy
inequality (2.7). The rest of this section is devoted to its proof. To this end, we shall follow the proof of
the “continuous” relative energy inequality (see [12] and [15]) and adapt it to the discrete case.

Proof. First, noting that the numerical diffusion in the energy identity (4.8) is positive, we infer

L+1,+13<0, (52)
with
1 |K‘ n n (2 -1 2 ’K‘ n n—1
no= Y S (ki - o i P), = Y S (H k) - H o),
KeT KeT
fyi= 30 (u [ [Vow et (s ) [ Jdiver?da).
KeT
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Next, we multiply the discrete continuity equation (3.12a)% by %\U h |2 and sum over K € T to
obtain

1|K
L= Y Mg g = - XY el g eV = (53)
KeT KGTUES(K)
o=K|L

In the next step, taking —U™ as test function in the discrete momentum equation (3.12b); we get

K
Is = — Z|k’(gKu —Q}‘(lu}l(l)-UﬁK:Jz—i-Jg—i—le,
KeT

with

o= D loley™ag™ - Uy i [ug - nox],

KeT ce&(K)
o=K|L

Jg—,uz / Vu" : VU dz + (p+ N) Z / dive"divUy, dz
KeT KeT

and

= > > lolp(ek) U} - ng k).

KeT ce&(K)
o= K\L

We then multiply the continuity equation (3.12a)% by H'(r% 1) and sum over all K € 7 and obtain

—Z QK_QK =" > olopPlul - ne k] H (rE ).
KeT KeT oce&(K)
o=K|L

Observing that o H'(r%) — o7 "H' (rit) = o (H’(r?{) - H’(T?(_l)) + (0% — o HH (r7 1), we rewrite
the last identity in the form

K _ _
foi= = Y Bl o) - g 105 ) = s+
KeT
. K (5.4)
with Js = — Y |k|g?<(H'(r?() —H @) and Jo= Y > [olon P lup - gk H (1Y),
KeT KET 0c&(K)
o= K|L
Finally, thanks to the the convexity of the function H, we have
K] _ _
Iri= 30 o [(FeH (i) = HOR) = (ri "H 05 = HOR )|
KeT
K] - K] - -
= > rk(H ) - B OR) = Y T (HOR) - 0% - i WE R — HOR) (5.5)
KeT KeT
K -
< > B (o) - mes) =
KeT
Now, we gather the expressions (5.2)-(5.5); this is performed in several steps.
Step 1: Term Iy + I4 + I5. We observe that
iacl o gty = IR~ G IR URR U s
9 0Kk — Ok 9 K 9 h,K hK )
— (okul — o ") - Upt e = — (0wl - Ul i — i it UR ) — o i - (U = U g).
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Consequently,

1 _
Dt = Y S (o~ UF P - o g - U )
KeT
-1
_Z’K‘ Uy - Uk (U}?K +UhK
KeT k 2
Step 2: Term Jy + J2. The contribution of the face 0 = K|L to Jj reads
Ul +Uj U/ +U]
~lolgk IR (U~ Ut ) [ g ] — oo TR (U, — U )
Similarly, the contribution of the face o = K|L to Js is
lolokuk - (Upx — U p)lug - nox|™ +lolopul - (UL — Uy k) ug - o]
Consequently,
Uik +ULL
J o+ Jy = — Z Z |O_|Qnup(%_u?up> 'U}TLL,K[UZ'"U,K]'

KeT o=K|Lek
Step 3: Term I3 — J3. This term can be written in the form

13—J3—

/|V u — UM P dz 4 (u+ N / |div(u" —Uh)|2dsv>
KeT

Y M/ (VU V(UF — ™) + (u+ )\)/KdivU,?div(U,? —um).

KeT
Step 4: Term Iy + Ig + I7. By virtue of (5.2), (5.4-5.5), we easily find that

K]

Lt Is+1r =Y o (Blek i) - E(ei i),

KeT
where the function F is defined in (2.5).
Step 5: Term Js + Jg + J7. Coming back to (5.4-5.5), we deduce that

K]

Js+Jg+Jr = Z T(T}I{—Q?{)(H,(Tn) H'(r )+ Z Z o]0y P luly - ng k| H' (ry
KeT KeT 0eé(K)
oc=K|L

Step 6: Conclusion
According to (5.2)—(5.5), we have

7 7
SLi<> T

i=1 i=1
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whence, writing this inequality by using expressions (5.6)—(5.10) calculated in steps 1-5, we get

1|K K
3 B it~ Up s~ i i - U ?) + Y S (e - B )

KeT KeT
+3 ( / IV (u —U,y)|2dx+(u+A)/ div(u" — U de)
KeT
<> ( /v U V(U —u™)dz + (p+ \) / divUpdiv(Uf — u”) da)
KeT
Un _ Un—l UTL—l + Un
n1YhK hK hK hK n—1
+KZ Ko 2 (5 —up ") (5.11)
€T
n,u U;;LK + U]:/LL A T, U n n
-2 > ol p(f — ™) - UR i [uf - noi]

KeT o=K|Leék

| 7 n n—
=3 Y Jelpe)[Ury  mok] + z (rf — o) (H' () = H'(ri ™))
KETU:K|L68K KeT

+ > D ol ™ H (r ) ug - ne k]

KeT o=K|Le€k

We obtain formula (5.1) by summing (5.11)" from n = 1 to n = m and multiplying the resulting
inequality by k. O

6 - Approximate relative energy inequality for the discrete problem

The exact relative energy inequality as stated in Section 5 is a general inequality for the given numerical
scheme, however it does not immediately provide a comparison of the discrete solution with the strong
solution of the compressible Navier-Stokes equations. Its right hand side has to be conveniently trans-
formed (modulo the possible appearance of residual terms vanishing as the space and time steps tend to
0) to provide such comparison tool via a Gronwall type argument.

The goal of this section is to derive a version of the discrete relative energy inequality, still with
arbitrary (sufficiently regular) test functions (r,U), that will be convenient for the comparison of the
discrete solution with the strong solution.

Lemma 6.1 (Approximate relative energy inequality). Suppose that Q C R? is a bounded polyhedral
domain and T its reqular triangulation introduced in Section 3.1. Let the pressure p be a C%(0,00)
function satisfying hypotheses (1.5), (1.6) with v > 6/5 and satisfying the additional condition (1.7) if
< 2.

Let (¢°,u®) € L () x Wy(Q) and suppose that (0™)1<n<n € [L} ()Y, (u™)1<n<n € [Wi(Q)]V is
a solution of the discrete problem (3.12) with the viscosity coefficients j, \ obeying (1.4).

Then there exists

= (Mo, Eo, 7,7, [P |c1 o, | (O, 0, Vi, 0,V U, 0,U, VU, 0,VU) || oo (g pr31)) > 0
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(where T = max; oo r(t,x), r= min(m)em r(t,x)), such that for allm =1,..., N, we have:
g(gma um‘rma Um) - 5(007 ’U,O‘T‘(O), U(O))

—I—k’z 3 M/ IV, (u” —U”)|2dx—|—(u+)\)/K|div(u”—U{})|2dx)

n=1KeT

Skzz Z / V.U V(U —u™)de + (u+ N) / divUy div(U}} u”)dx)

n=1 KGT

u LUk —Uny
+k [ LU | 5

;Kg k ( h.K K) (6.1)
> olo ™ (TP = ap™) - (U7 = Up i JUR® - noe

n=1KeT occ&(K)

Fqg

1KeT n=1KeT "'k

3
I

Ky (rfe)u™ - V™ dz + Ry +G™

;
/ (0% dlvU”daz—}—kZ Z/ T — 0%) n?()[(?tr]"dx
/Q

||M3

for any pair (r,U) belonging to the class (3.16), where

U -2 .
G™) < ek 308" u | U, |REy] < e(VE+ ), andA:{ Fyel322)
n=1

1/2 if v > 3/2. (6.2)

Proof. The right hand side of the relative energy inequality (5.1) is a sum >°0_; T}, where

Tl—k‘z Z /V Up V., (Up —u")de + (p+ N / divUpdiv(U} — u" )d:n)

n=1KeT
Unfl Unfl_’_Un
TQ—kZZ‘K’ th h,K_( h,K2 h,K_u?(—1>,
n=1KeT
m Uy +Up
T — _kz Z Z wwnup(% _ﬁg,up> U g [ul o k),

n=1KeT c=K|LeE(K)
To=-kY > > lolp(ex)Uis noxl,
n=1KeT c=K|LeE(K)
- n n Hl(rn) _H/<Tn_1)
Ti=k) Y |K|rk—ok)—" A =,

n=1KeT

Ta—kZZ S olaR P H (Y [l - ng k.

n=1KeT o=K|LeE(K)

The term T; will be kept as it is; all the other terms T; will be transformed to a more convenient
form, as described in the following steps.

Step 1: Term T5. We have

m U, — Unfl m
. — h,K — —
Ty =Tou+Roq, with To1 = kY > Ko 1#.(@3[{1—%} '), and Roy =k > Ry,
n=1KeT n=1KeT
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K Ur, — U 12
where RglK = ’2|erz(—1( h,K . h,K)
M,
the property (9.20) of the projection onto the space V3 (2), we get ‘Rgﬁ < 70 |K’k”atU||%oo(0 .

Therefore,

; thanks to the mass conservation (3.13), the Taylor formula and

‘RQJ’ < k C(Mo, H (8tU, 8,5VU) ”LO"(QT;RR)) (63)
Let us now decompose the term 751 as
N Uik —Upx N
To1 =12+ Roo, withToo =k Z Z ’K‘Q?(_I# . (UﬁK - u?(), and Roo =k Z R;z,
n=1KeT n=1
(6.4)
LUk —Unk e LUk -Unk
where Ry o = Z |K|o% 1# . (UﬁKl - U;?}() - Z | K| 0% 1# . (u?{ L u?{)
KeT KeT

By the same token as above, we may estimate the residual term as follows

1/2 _ _ 1/2
[REa| <k Mol 00U |3 o s e emsy + Mo (30 1K 105 e = wiel?) O oo o w100
KeT

whence, by virtue of estimate (4.2a),

|Ra2| < Vk (Mo, Eo, [ (0:U, 8:VU) | oo (m12))- (6.5)

Step 2: Term T5. Employing the definition (3.11) of upwind quantities, we easily establish that

T3 =131+ R31,

m m
. ~ ~rn,u n,o
with Tor =k > >0 0 lolop™ (ap™ — Upa?) - Upgul - now, Roa=kY. > B3,
n=1KeT occ&(K) n=10€Ent

Uik — UL up o Unr = Ui gl ur ]

and RyY = |o|ok 5 ul n, ]+ oo} 5 ul ny )", Vo = K|L € Ep.

Employing estimates (9.1) and (9.21),=1 and the continuity of the mean value Uy= Uy, of U} over
faces o, we infer

RET| < 02 VU2 g0y 01 (0 + @)l Yo = KL €

whence

5/6 M 1/311/2
Roal < h el VU S wigrzny (Do D Blol(ek + o)) [Z(Z > hlolugl®) ]
KeT

KeT o=K|LeE(K) n=1 cel(K)
< h (Mo, Ey, HVU”LOO(QT;RQ)),

(6.6)
provided v > 6/5, thanks to the Holder inequality, the equivalence relation (3.19), the equivalence of
norms (9.34) and energy bounds listed in Corollary 4.1.

Evidently, for each face 0 = K|L € &int, U} - Ny + ul} - 0y 1, = 0; whence, finally

T =k 5 S lolan (- Op) - (U — U2 )ul - mo (6.7)

n=1KecT oce&(K)

20
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Let us now decompose the term 731 as

m
T31 =132+ R32, with R3o =k Z Ry,

n=1

T390 = kzz Z |a|g”up( U, ag’up)-(U - Uy ) o ng i, and

n=1KeT ce&(K)

Ria= Y S lolam (0720~ ap) - (U2~ Up) (s — ) -moc

KeT ce&(K)

By virtue of Holder’s inequality and the Taylor formula, we get

- o |2Y 172
Rs| < el VU ey (30 30 hloli®lazee — o7 )
KeToeg( )
(XY wellrr) (S Y holfun - ane)
KeT ce&(K) KeT oce&(K)

where 1 + 270 + % =1, 70 = min{~, 2} and v > 3/2. For the sum in the last term of the above product,

we have
D h|a|‘u ar®|" <e ST Y hlofjul — upf
KeT oe&(K KeT ce&(K)
< C( Z Z (Hug _uan K;R?) + Z Hu _uKHLq K;R3 ) < Ch 270 q’un|v2(g R3)?
KeT ce&(K)

where we have used the definition (3.11), the Minkowski inequality and the interpolation inequalities
(9.18-9.19). Now we can go back to the estimate of Rj 5 taking into account the upper bounds (4.11),
(4.14-4.15), in order to get

|Raz| < 1 e(Mo, Eo, [|VU|| oo (g 29)) (6.8)

provided v > 3/2, where A is given in (6.2).
Finally, we rewrite term 73 o as

m
T372 = T373 + R3,3, with R373 =k Z Rg’z)},

n=1

T35 = kz Z Z \U]Q"UP( U — A”UP) : (U;L - U}’ZK)(?}?’;I) “Ng i, and (6.9)
n=1KeT oe&(K) ’

n,u n up ~n,U n n ~n,up Arn,up .
Riy= 3 30 lolap (007 —a5)  (UF = Uhe) (45" = OF") moc

KeT océ(K

whence
m

|R33| < (VU oo (gpr9)) K Z E(e™,u" | r", UM). (6.10)

n=1

Step 3: Term Tj. Using the Stokes formula and the property (9.22) in Lemma 9.2, we easily see that

=—k Z Z %) divU" dz. (6.11)

n=1KeT

Step 4: Term T5. Using the Taylor formula, we get
1
() = H'( ) = HY () (e — ) = SH ) (e — )2,
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n—1 1

where 7 € [min(ry *, 7% ), max(ry ,rk)]; we infer

. - n o PR R — !
Ts = Tsi+ Ry, with Tsp =k Y Y |K|(rk — o) o o fts —"?Z > Ry
n=1KeT n=1KeT

1 _ = 1\2
S S S g )

Consequently, by the Taylor formula and thanks to the mass conservation (3.13)
|R571‘ <k c(Mo,r,T, ‘plycl([zf]v ||atrHL°°(QT))7 (6.12)

where r, 7 are defined in (3.16).

Let us now decompose 75 1 as follows:

/
Ts51 =152+ Rs2, WlthT52—/€Z > IKI( TK—QK)p( )[aﬂ" R52—kz > R52 ; an

n=1KeT K n=1KeT
/(M n—1
K p(ry) prE —r
R = (K| — o) PR (TR T (gpm).
i k
(6.13)
In accordance with (3.15), here and in the sequel, [0;r]"(x) = Oyr(ty, x).
By the same means as the preceding residual term, we may estimate
|Rs | < k c(Mo,r, 7, |p|cr o), (077, 0:V7) || oo (pmh))- (6.14)

Step 5: Term Ty. Using the same argumentation as in formula (6.7), we may write

T61+R61, Rﬁl—kzz Z RnUK, with
n=1KeT ce&(K)

Ts1 =k Z Z Z lo| o' (H'(r?{l) — H’(rg_l))ug ‘N, and (6.15)

n=1KeT c=K|LeE(K)

Ry = ol (e — ol ) (H'(ric ") = H'(ry™") )} - mo i, for o = K|L.
We estimate this term separately for v < 2 and v > 2. If v < 2, motivated by Lemma 4.2, we may write

R < VRIVH (1) e (52|

n,up

|05 o] )
8 (maX(gK,QL)é(—’Y)M \/W\lggzm/ﬁ(g’;{w@(z v)/zm‘
1o — ol Jluz - ol gV lug - mol). (6.16)

where we again use the Taylor formula and where the numbers p)} are defined in Lemma 4.1. Conse-
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quently, an application of the Holder and Young inequalities yields

m

up __ 1/2
Roal < VEAVE Ollimioraok 2 (X 5 o= LG jyn 1)

2—
n=1 KT o=K|LeE(K) maX(QK’QL)( ”

_ 1/2
(X lolhal fupmg i)

KeT 0e&(K)

Y Y ol = o g moxliga) (X Jelhul moxd)

KeT o=K|Le&(K) KeT ce&(K)

m n,up __
VRAVE ezt X[ X oG —gk) Sl g kg

n=1 KT o=K|LEE(K) maX(QKaQL)(
5/6
(X 1K1 (S (o)
KeT ce€
n,up 2(,,n 5/6 n61/6
+3 Y lolh(er™ — o) [uh - mokligy <1 + QP lolalugl®) ]

KeT o=K|LeE(K) oef
< Vh (Mo, Eg, 1,7, |p/ le@m) IVl Lo (@rr3))

(6.17)
provided v > 12/11, where we use estimate (4.17), estimates (4.12), (4.14) of Corollary 4.1 and equiva-
lence relation (9.34). In the case v > 2, the same final bound may be obtained by a similar argument,
replacing the estimate (4.17) by (4.16).

Let us now decompose the term 7§51 as

m
Ts1 =Ts2+ Re2, with T2 =k Z > Yoo olekH (i (it — i Dy - no k],
n=1KeT c=K|LeE(K)

R62—kz Z Z RnoK7

n=1KeK cec&(K)
R5™ = [oloe (B (") = H (5 7) = H' (5 )0t =) Tl - mo ]
Therefore, by virtue of the Taylor formula, Holder’s inequality, (9.29), (9.34), and (4.11), (4.14) in
Corollary 4.1, we have, provided v > 6/5,

|Re 2| < hC(|H”\C([L?]) + IH”/|C([3,?])) HVTHLC’O(QT;R?’)HQHL‘”(O,T;L’Y(Q))||uHL2(0,T;VhQ(Q;]R3))
<h C(M(), Ey,r,T, |p/|cl([ﬁ,ﬂ)? HVTHLOO(QT;]R?’))? (618)
where in the first line we have used notation (4.9).
Let us now deal with the term 7§ >. Noting that / vt lde = Z lo|(r2~t =1 Dng, i, we may
K

cel(K)
write

ST ook H' (et — ) [ul - ng k]
ceé(K)

= / o H" (r D - Ve da + Z ook H" (P D (et — e Y (ul — ul) - ng k.
c€e€(K)
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Consequently, Ts2 = T3 + g3, with

m
Tos=-kY > / o H" (r Hu™ - v da,
n=1KeT 'K

Roa=kY. > [ a0 )"~ uj) - Vo da
n=1KeT 'K

m
+EY ST ST ol H' (et = r ) (ul — ulk) - nok,
n=1KeT ocec&(K)

where, by virtue of Holder’s inequality, (9.18), (9.19), and (4.11), (4.14) in Corollary 4.1,
|Re 3] < b (Mo, Eo,v, 7, [Pl or (e | V7Nl oo (k) (6.19)

where A is defined in (6.2).
Finally we write Tg 3 = T 4 + Rg.4, with

i np’(?“?{) n n
TﬁA:_kZZ/KQK . u" - Vr dl‘,

n=1KeT % (6 20)
Res =k Z Z / o% (H”(T?{)VTn o H”(T‘?(_I)VTn_l) udz,
n=1keT 'K
where
|R674‘ < k C(Mo, Eo,f, T, |pI|C’1(fﬂ)7 HV"I’, 8t7’, 8tVr\|Loo(QT;R7)). (6.21)

We are now in position to conclude the proof of Lemma 6.1: we obtain the inequality (6.1) by
gathering the principal terms (6.4), (6.9), (6.11), (6.13), (6.20) and the residual terms estimated in (6.3),
(6.5), (6.6), (6.8), (6.10), (6.12), (6.14), (6.16), (6.17), (6.18), (6.19), (6.21) at the right hand side
S8, T; of the discrete relative energy inequality (5.1).

O

7 - A discrete identity satisfied by the strong solution

This section is devoted to the proof of a discrete identity satisfied by any strong solution. This identity
is stated in Lemma 7.1 below. It will be used in combination with the approximate relative energy
inequality stated in Lemma 6.1 to deduce the convenient form of the relative energy inequality verified
by any function being a strong solution to the compressible Navier-Stokes system. This last step is
performed in the next section.

Lemma 7.1 (A discrete identity for strong solutions). Suppose that Q C R3 is a bounded polyhedral
domain and T a reqular triangulation introduced in Section 8.1. Let the pressure p be a C%(0,00)
function satisfying hypotheses (1.5) and (1.6) with v > 3/2. Let (r,U) belong to the class (3.16) satisfy
equation (1.1) with the viscosity coefficients p, A obeying (1.4).

Let (0°,u®) € L () x W,(Q) and suppose that (0™)1<n<n € [Li (DY, (u™)1<n<n € [Wr(Q)]Y s
a solution of the discrete problem (3.12). Then for any § > 0 there exists

c= C(MO, Eo, 7.7, lc1 e |(Vr, 0, U, VU, VU, 0,U, 0;U , 8, VU, )||LM(QT;R58))) >0,
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such that for any m =1,..., N, the following identity holds:

£y Zr/ (6VU™ -V (u" — Up) + (u+ N div U div(u" — UF) ) da
n=1Ke

+kZZ/

n=1KeT

U U 1
M (uf — U ) da
(7.1)

+kZ ST ol PO e k| (UY — U ) - (43" — U,P)
n=1KeT cc&(K)

—|—k2 Z/ dlvUndm—i—k:ZZ/ Ju™ - Vr' dz+Ry", = 0,

n=1KeT n=1KeT

where

Rl < e(h+k).

Before starting the proof we recall an auxiliary algebraic inequality whose straightforward proof is
left to the reader, and introduce some notations.
Lemma 7.2. Let p satisfies assumptions (1.5) and (1.6). Let 0 < a < b < oo. Then there exists
¢ = c¢(a,b) > 0 such that for all p € [0,00) and r € [a,b] there holds

E(Q|T) 2 C(a’7 b) (1Ores + leores + (Q - T) 10855)’
where E(p|r) is defined in (2.5) and
Oess = [a/2,2b], Ores = R\ [a/2,2b).

For r and 7 defined in (3.16), we define for a.e. ¢ € (0,7") the residual and essential subsets of 2 as
follows:
No, = {0 jr < o'(e) < 27}, NI, =0\ N, (72)
where o™ € Lj(Q2), and where, for a function g defined a.e. in 2, we define:
[9less = 91Nz, [9les = glnp, -

Lemma 7.2 implies that for any pair (r, U) belonging to the class (3.16) and any o™ € L, (), there exists
¢(r,7) > 0 such that

7“7“2/

We are now ready to proceed to the proof of Lemma 7.1.

)7} + [Qn - f”r ) dr < S(Q”,u”‘r”, um). (7.3)

res res ess

Proof. We start by projecting the momentum equation to the discrete spaces. Since (r, U) satisfies (1.1)
and belongs to the class (3.16), Equation (1.1b) can be rewritten in the form

roU +rU - VU + Vp(r) = pAU + (u+ NV divU. (7.4)

We write equation (7.4) at ¢ = t,, multiply scalarly by u™ — U}}, and integrate over Q2. We get, after
summation from n =1 to m,

5 m
2’7}:0, with ﬂ:—kZ/ (,uAU”+(u+)\)VdivU”)-(u"—Uﬁ)dx,
] n=1 Q

—k:Z/ "o U™ - (u — U du, ﬁ:kZ/r"U"-VU"-(u”—Uﬁ)dz

ﬁ:kZ/QVp(r")-u”dx, —kZ/Vp -Updx = 0.
n=1
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In the steps below, we deal with each of the terms 7;.

Step 1: Term 7. Integrating by parts, we get:
7-1 = 7—1 1+ Rl , 1y

Wlth'Tll:k‘Z Z/ uNVU"™ : V(u" —U,?)+(,u—|—)\)diVU"div(u"—U,?)) dzx
n=1KeT
and

Ri=—k3 Y Y /(;mg,K~VU"'(Un—Uf?)‘F()\‘FM)diVUn(Un—Ui?)'"U,K>d5
n=1KeT oce&(K)

(7.6)

:—kz Z/ png - VU™ - [u" — U}

n=1 oc&

+ A+ p)divO" {u” - Uﬂ na) ds,

ong ong

where in the last line n, is a unit normal to o and [|sn, is the jump over sigma (with respect to n,)
defined in Lemma 9.5. Since the integral over any face o of the jump of a function from V() is zero,
we may write

Riq = —k f: 3 / (umo- (VU= [VU, ) [w"=Up| 4+ () (div U= [divU"], ) [u"~Uf]|  n,) dS;
n=1 occ&’? Mg oo
whence by using the Taylor formula and Hélder’s inequality
Rual < kh e |V2U | g oz, 353 VIolVa ( H[ -up L2(U.R3))
n= 10’65 g ’
< Bh | VRO ey 353 (lolh+ 5 = [wr - g . ;(o;u@)) (7.7)

n=1c€c€&
< he(Mo, Eo, [|U, VU, VU || oo (g 59 )5

where we have employed Lemma 9.5 and (4.11) in Corollary 4.1 in order to get the last line.

Step 2: Term 7T3. Let us now decompose the term 75 as
To="Ta1 + Rapy,

Ur U»— 1
wthQl_k;Z > / 17 (u" — U}) d, R21_k2 ST RYL,
n=1KeT n=1 KeT
Un_Un—l
and RglK:/ (r" — " H[o,U]" - (u™ — UY) dx—i—/ 8tU] —T)-(u”—Uﬁ)dx.
’ K

We have
IRY| < k{(HTHLOO(QT)"’_HatT”L“(QT))(||atU||L°°(QT;R3)+H81£2U||L°°(QT;R3))\/’K|(Hun||L2(K)+||Ui?||L2(K))§

whence
Raa| < ke(Mo, Eo, 7, |8, U, 8:U, VU, U )| oo (2195 (7.8)

thanks to the Holder and Young inequalities, to the estimates (9.20), (9.23), (9.28), (9.29), and to the
energy bound (4.11) from Corollary 4.1.

Step 2a: Term T>;1. We decompose the term 731 as
Toq = To2 + Raz2,

U — Un 1 m
WIthEQ_kZZ/ e (" - U da, Rep=k Y. > RYS,
n=1 KeT n=1 KeT
n n—1
and Rgfz/ (r"=t — ol )%(u"—Ug)dx;
’ K
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therefore,
K
Rg72| = | Z RS,Z | S hC||V7“||L00(QT;R3)||8tU||Loo(QT;R3)||u" — UfZLHLﬁ(Q;RS)'
KeT

Consequently, by virtue of formula (4.12) in Corollary 4.1 and estimates (9.29), (9.24),
|,R’2,2‘ <h C(M(), Ey, H(VT', U,0U, VU)HLOO(QT;RlS))' (79)

Step 2b: Term T32. We decompose the term 739 as

T22 = To3 + Rag,
n— 1UhK U;zl;{l
w1th7'23—k22/ — (W' - Up)de, R23—k2 S Ry,

n=1KeT n=1KeT

and R’g;f = /K rjggl(Un _kUnl - {Un _kUnl}h) (u" = UP) da

U" 1 ur -yt
Jr/ ]h_[ k }h,K

) (u" = Uyp)de.
Therefore,

n n,K n n
R2,3’ = | Z R2,3 | < hCHTHLOO(QT)HatUaatVUHLoo(QT;RB)HU - Uy HLﬁ(Q;R?’)a
KeT

where we have used the Taylor formula, Holder’s inequality, (9.20)s=1, 9.1), (9.14), (9.28). Consequently,
by virtue of formula (4.12) in Corollary 4.1 and estimates (9.29), (9.24),

’R273| < h C(M(), Eo, H (VT’, U'7 VU, 8tU, 8tVU)HL°°(QT;R25))‘ (710)
Step 2c: Term Tz 3. We rewrite this term in the form

To3=Toa+Rou, Roa= kz Z 7324 ;

n=1KecT

ur
w1th7§4—k22/ n1 ZhK

n=1KeT

Un 1
K TRE (wf — U ) da, (7.11)

Ul — UM
n, K n—1_hK h,K n n n n

Thanks to the Holder inequality, to the estimates (9.1), (9.14), (9.21)s=1, (9.28) and finally to the
estimate (4.11) in Corollary 4.1, we then get:

’RQA‘ <h C(M(), E(),?, H (615U, U, VU, GtVU)HLOO(QT;Rm)). (7.12)

Step 3: Term 7T3. Let us first decompose 73 as

T3 =T31 +R3,
with Ty = k30 3 / UL VU™ (W — U ) de, Req=kY Y REEK
n=1KeT n=1KeT

annglK—/(T — U - VU™ - (u" — UP) d:z—i—/ (U —UR) - VU™ - (u" — UP) da

+/ r (U = Ul ) - VU™ - (u" — Up) dx—l—/ U - VU™ - (w" = ufe — (U - Upl ) ) da
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We find that
n,K n n
REAT < R IR 2" 2 ges) + 1R 2gaems)) + VK129 2y + IVUR I p2ic29)]

2
x (I7llzoo(@r) + 197l oo (@) ) (10N (piy + IVU e 0rpe))

where we have used several times Hélder’s inequality and the standard first order Taylor formula, along
with the estimates (9.20) (to evaluate U™ — U}'), (9.1), (9.21)s=1 (to evaluate U}’ — U}’ x), (9.1) (to
evaluate u” — ul). ’

Consequently, using again (9.21)s=1 (to estimate ||VU}|| 2k g3)), the definition of | - ]th(Q) norm,
the Sobolev inequality (9.29) and the energy bound (4.11) from Corollary 4.1, we conclude that

’R&l‘ <h C(M(), Ey, 7, H (VT, U, VU)HLOO(QT;RH’))' (7.13)
Now we shall deal wit term 73 1. Integrating by parts, we get:

/K PUR g VU (e — Ul ) de = Y |olrk[Up e - o JU - (ul — U )
cel(K)

= Y |olrk[Uhk -nox](Us = U ) - (uf — Uy ),
ceé(K)

thanks to the the fact that 3, co i) [, Uf i - Do xdS = 0.
Next we write

Tsi=Ts2+Raz, Rsa=k> Rio,

n=1

Tsa=kY>, > > |olfr™O0"  ng k|(UF = Uplge) - (4™ — UpP), (7.14)
n=1 KeT cc&(K)

and Ry = > D |olrk —70") Uk k  0o.x](Us = Ui k) - (ufc — Uy )

KeT oeé(K)
+ 30 % 1ol [(Unk = U3is®) - nou | (UF = Up) - (whe = Ujl )
KeT oeé(K)

+ 30 ol PO ne k(U — Ui - (e — @) = (Up = UR3P) ).
KeT oe&(K)

We may use several times the Taylor formula to get the bound

3
Rl < hellrllwroeoy (1+ 10l oms) - 3 hlollu
( : KeT
€

2
tellrllwroeio) (14 10w gs) D Y. Alolluf —ugl,
KeT ce&(K)

where by virtue of Holder’s inequality, (9.16), (9.30), (9.18) (9.19),

1/6
Zh\oHuK|<(Zh\o—r|uK|) <el( X I —ukllsems)  F 1w llsrs)| < clunlveom,
KeT KeT
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1/2 1/2
> 2 hlolluf—upl <ef(X lut—uliagegsy) (X a1 gnmsy) | < helunlyaoms).

KeT ce&(K) KeT KeT

Consequently, we may use (4.11) to conclude

[Ras| < he(Mo, Eo, 7, ||V, U, VU poggpmrs) ) (7.15)

Step 4: Terms T4 and T;. We decompose Ty as

Ta=Tsn +Rapa,
WlthﬁlszZ/ Ju" - Vr'dex, R41—kZZ/ K))u"-Vr"dx;
n=1KeT n=1KeT
(7.16)
whence
[Raj| < he(Mo, Eo, v, 7, [P o (i) IV | oo (0rm?))- (7.17)
Employing integration by parts, we infer
Ts =Ts1 + Rs 1, Wlthﬁl—kZZ/ p(r) divU" dz,
=t ReT (7.18)
Ron=k3 Y / (Vo) - (U™~ UF) + (p(r™) — p(rfe)) divU™] da,
n=1KeT
and
Rs.1| < he( [Plogm) VT, VU Lo (o iri2))- (7.19)
Gathering the formulae (7.6), (7.11), (7.14), (7.16), (7.18) and estimates for the residual terms (7.7),
(7.8-7.12), (7.13-7.15), (7.17), (7.19) concludes the proof of Lemma 7.1. O

8 - End of the proof of the error estimate (Theorem 3.1)

In this Section we put together the relative energy inequality (6.1) and the identity (7.1) derived in the
previous section. The final inequality resulting from this manipulation is formulated in the following
lemma.

Lemma 8.1. Under assumptions of Theorem 3.1 there exists a positive number
Cc = C(MO, EO,f, r, |p/|c1([£f]), ||(VT‘, aﬂ’, 3tVr, 8t27’, U, VU, VQU, 875U, atVU) ||L°°(QT;R65)>

(depending tacitly also on T, Oy, v, diam(Q2), |2|), such that for allm =1,..., N, there holds:

E(, um|r™ u™) < c[hA +Vk+ E(°,ur?, uo)} +ck Z E(0™, u"|r", u"),

n=1
where A is defined in (6.2).

Proof. Gathering the formulae (6.1) and (7.1), one gets

E(Qm,um‘rm,Um)—S(QO,u0’ (0) —I-,uk'Z’u -

V2(Q %) <P1+P2+Ps+Q (8.1)
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where

Ur Un—l
Pi= kYD 0 IKIg — ) R (),
n=1KeT

m
Po=kY Y S ol - ) (O - ap) - (UF - Upk ) U no

n=1KeT O'_K|L€€K

3—]{:22/ ))leU”dm

n= lKeT

> /TK 9 (Y - dot | i’QK P (rj)[orr)" dal,

n=1KecT
Q=TRpy+ Ry +G™.
Now, we estimate conveniently the terms P;, Py, P3 in three steps.

Step 1: Term P;. Due to Holder’s inequality, Taylor’s formula we have with vy = min{~, 2},

Ur,. — Un—l
| KNG = )T (Ul — k)| < (10U | g + 10VU e im0 ) X
KeT

(3 1Kl i Proc(en) +( X 1Kl 15 o) ] (0 1K I|0R k)
KeT KeT KeT
(|0, 0T | e gz (€2 (0" L U )

n— n— n— n— v ' e
+EY0 (@ ur L U Y) (N Uk — wikleems))
KeT

where we have used Lemma 7.2 and estimate (4.15) to obtain the last line. Now, by the Minkowski

inequality

(3 10 =~ i) < (32 1Rk = k) = (UF = 0 ugrens)
KeT KeT

n n n n
HIUE = @z < dfu” = UR| o

where we have used estimate (9.14) and the Sobolev inequality (9.29). Finally, employing Young’s

inequality, and estimate (4.15), we arrive at

1| < (6, Mo, Eo, v, 7. ||(U, VU, U, 0,VU)| 1 (0 521))

2
0 0 u” n S
(k:E(Q Ll U —1—1{:25 (o™, u"|r",U") )4—51{:2 ‘u Uy V2o

(8.2)

n=1

with any 6 > 0.
Step 2: Term Py. We write Po = kY.,- | P3 where Lemma 7.2 and the Holder inequality yield,

similarly as in the previous step,
P3| < c(r,T, HVUHLOO(QT;R9)>X
S X lolh(BYA ) B g ) [T U —

KeT oe&(K)
< e, (U, VO | i) [ X2 D0 lolh (B "“pV"“p))l/Q
KeToe£ K)
+<Z Z |0“hE nup|~nup) } (Z Z |U|h‘U;:;p anmP )1/6
KeT oe&(K KeT océ(K
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provided v > 3/2. Next, we observe that the contribution of the face ¢ = K|L to the sums ) pcr
Y ocek) loIRE(0y " PIFy P) and 3 a7 Ypes (k) \o\h\(jﬁ’;p—ﬁg*ul’lﬁ is less or equal than 2|o|h(E (0% |#% )+
E(07|77)), and than 2[o|h(|U} ;- — u|% + UL — u|%), respectively. Consequently,we get by the same
reasoning as in the previous step, under assumption v > 3/2,

|Pa| < (6, Mo, Eo,r, 7, (U, VU) || oo (0 pm12)) * S E UM UM+ 0 kY u — Ug)|2V£(Q;R3). (8.3)
n=1 n=1

Step 3: Term Ps. Since the pair (r,U) satisfies continuity equation (1.1a) in the classical sense, we
have foralln=1,..., N,
O]+ U™ - Vr" = —r"divU",

where we recall that [0yr]"(x) = O¢r(ty, x) in accordance with (3.15). Using this identity we write

m
Py =Ps1+Psa, Psi=kY P,

n=1

with Pfy == - [ (plek) ~ P07 (e — i) — plri)) div U™ do
KeT K

and Pgy = Z [/ rKT;nQKp’(r?{)(u" —U") - Vr'dz.
KeT 7K K

Now, we apply Lemma 7.2 in combination with assumption (1.6) to deduce

P3| < clldivU| poo(opk Y E(™, u"r™, U™). (8.4)

n=1

Finally, the same reasoning as in Step 2 leads to the estimate

|P3,2’ <h C(M07 EOvﬂv T, |p,’C([f,ﬂ)||(vrv VU)HLOO(Q;RQ))

= S n ny,.n n m n n (85)
+ C((S, Htv T, ‘p,‘C([[ﬂ)||VTHL°°(Q;R3)) k Z g(@ U ’7” U ) +dk Z ‘U - Uh |%/h2(Q;]R3)'
n=1

= n=1

Gathering the formulae (8.1) and (8.2)-(8.5) with ¢ sufficiently small (with respect to u), we conclude
the proof of Lemma 8.1. O

Finally, Lemma 8.1 in combination with the bound (4.15) yields

m—1
E(™, um|r™ u™) < c[hA +VE+k+ €(go,u0\r0,u0)} +ck Z E(™, ur™, u");
n=1
whence Theorem 3.1 is a direct consequence of the standard discrete version of Gronwall’s lemma.
Theorem 3.1 is thus proved.

9 - Appendix: Fundamental auxiliary lemmas and estimates

In this section we report several results related to the properties of the Sobolev spaces on tetrahedra and
of the Crouzeix-Raviart (C-R) space. We refer to the book Brezzi, Fortin [3] for the general introduction
to the subject.

We start with the inequalities that can be obtained by rescaling from the standard inequalities on a
reference tetrahedron of size equivalent to one.
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Lemma 9.1 ( Poincaré, Sobolev and interpolation inequalities on tetrahedra). Let 1 < p < oco. Let
0o > 0 and T be a triangulation of Q such that 6 > 0y where 0 is defined in (3.1). Then we have:
(1) Poincaré type inequalities on tetrahedra

Let 1 < p < co. There exists ¢ = c(0y,p) > 0 such that for all K € T and for all v € WYP(K) we
have
lv = viclle(r) < chlVolle ), (9.1)

Vo € E(K), |lv— UoHLp(K) < ch||V|| L (k) (9.2)

(2) Sobolev type inequalities on tetrahedra

Let 1 < p < d. There exists ¢ = c(0,p) > 0 such that for all K € T and for all v € W'P(K),
1 <p < d we have

lo = vkll Lo (1) < €l VollLex), (9:3)

Vo € E(K), [[v = voll e iy < €l Vollogro, (9.4

where p* = dd—pp

(8) Interpolation inequalities on the tetrahedra

Let 1 < p <dandp < q < p*. There exists c = c(0p,p) > 0 such that for all K € T and
veWLP(K), 1 <p<dwe have

lv = vkl Lare) < b [IV0 )l Loy (9.5)
o = ooy < B2Vl camess (9.6)
where * i ﬂ + 1 ﬁ
Combining estimates (9.1-9.6) with the algebraic inequality

(3 1a?) " < (3 )" 0.7)
=1 =1

for all (a = (a1,...,ar) € RY, 1 < ¢ < p < 0o, we obtain the following corollaries.

Corollary 9.1 (Poincaré and Sobolev type inequalities on the Sobolev spaces). Under the assumptions
of Lemma 9.1, we have:

(1) Poincaré type inequalities on the domain
Let 1 < p < co. There exists ¢ = c(fy,p) > 0 such that for all v € WP () we have

R 1/p
o= 0lloe) = (D v =velliw) < bl Vollpqme (98)
KeT
1/p
(X > lo-wllby) < chlVolmoms (9.9)
KeT 0e&(K)

where 0 and v, are defined by (3.7) and (3.9).

(2) Sobolev type inequalities on the domain )
Let 1 < p < d. There exists ¢ = c(0p,p) > 0 such that for allv € WP(Q), 1 < p < d we have

v =0l o () < VOl zr (0, (9.10)

" 1/p*
(3 lo-vwltw) " <elVolmap. (9.11)

KeT oeé(K)
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(8) Interpolation inequalities on the domain

Let 1 < p < dandp < q < p*. There exists ¢ = c(fp,p) > 0 such that for all v € WHP(Q),
1 <p < d we have
[v =l Lage) < eh? (Vo] Lo, (9.12)

1

(X > v =vllbam)” < P2 IVoloomay, (9.13)
KeT ce&(K)

whereq—ﬁ—i- B

Corollary 9.2 (Poincaré and Sobolev type inequalities on V). Under assumptions of Lemma 9.1, there
holds:

(1) Poincaré type inequality in Vi (Q): Let 1 < p < 0o. There exists ¢ = ¢(0p, p) such that for all v € Vp,

v =0llr (o) < chlvlyr(a), (9.14)

=

(3 > o =vll)” < chlolyr (9.15)

KeT oe&(K)

(2) Sobolev type inequality in V3, (2): Let 1 < p < d. There ezists ¢ = c(0y, p) such that for allv € V3 (),

[0 =0l Lo () < clvlyrq), (9.16)
RN
(X X w=vll ) < el (9.17)
KeT ce&(K)

(3) Interpolation type inequalities in Vi, (€2)
Let 1 <p<dandp<q<p*. There exists c = c(bp,p) > 0 such that for allv € V}(Q), 1 <p<d

we have
v =9 paq) < chﬁ|v\vp(m, (9.18)
1
(3 > o =vllbum)” < P lolp, (9.19)
KeT ce&(K)

whereq—ﬁ—k 5

The next fundamental lemma deals with the properties of the projection vy, defined by (3.8).

Lemma 9.2 (Projection on V},). Let 8y > 0 and T be a triangulation of Q such that 0 > 6y where 6 is
defined in (3.1).

(1) Approximation estimates on the tetrahedra

Let 1 < p < oco. There exists ¢ = c¢(6p,p) > 0 such that
RS Wol’p NWP(Q),VK € T, ||v—vpllrr(r) < cthstHL,,(K;Rds), (9.20)
V(v = o)l Lo ey < Ch871Hvs/U||Lp(K;RdS), s=1,2. (9.21)

(2) Preservation of divergence

Vv € W&’Q(Q,Rd),Vq € Lp(Q Z / g divvy, dz —/ q divevdzx (9.22)
KeT
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(3) Approximation estimates of the Poincaré type on the whole domain

Let 1 < p < oco. There exists ¢ = c(0p,p) > 0 such that for all v € Wol’p(Q),

lo = vnll oy < AVl e (0.23)

(4) Approximation estimates of the Sobolev type on the whole domain

Let 1 < p < d. There exists c = c¢(0y,p) > 0 such that for all v € Wol’p(Q),
o = vl < eIVl gy (9.24)

Statement (2) of Lemma 9.2 is proved in [6], where one can find also the proof of item (1) for p = 2.
We present here the proof of statements (1), (3), (4) for arbitrary p for the reader’s convenience, since
a straightforward reference is not available.

Proof. Step 1: We start with some generalities. First we complete the Crouzeix-Raviart basis (3.6) by
functions ¢, indexed also with o € Eqx saying

1
o / 60dS = 8501, (0,0") € E2

|U o’

and observe that

Z ¢o(x) =1 for any z € K. (9.25)
o€€(K)
A scaling argument yields
[¢ollLoe@) < c(0o), MV poo(qpray < c(bo). (9.26)

Second, we define the projection v — vy, for any v € W1P(Q) by saying

Vp = Z Vo Do

oe€
We notice that if v € W, ?(Q) then vy, coincides with (3.5). Moreover,
vp, = v for any affine function v. (9.27)

Third, due to the density argument, it is enough to show the remaining statements (1), (3), (4) for
v e WP (Q) NWH®(Q), s = 1,2, according to the case.

Step 2: We denote by xx = ﬁ Ji xdzx the center of gravity of the tetrahedron K. We calculate
by using (9.27) and the first order Taylor formula

v(@) —wn(z) = v(z) = v(rk) = [v = v(zK)]n (@)

1 1 1
— (2 — k) / Vook +ta —zi))dt— Y golz)— / [CRETE / Volax + t(x — zx))di]dS,
0 lo| Jo 0
ceé(K)

where € K. This formula yields immediately the upper bound stated in (9.20)s—; if p = oco. If
1 < p < 0o we calculate the upper bound of the LP-norm of each term at the right-hand side separately
by using (9.26), Fubini’s theorem, Holder’s inequality and the change of variables y = zx + t(z — =)
together with the convexity of K.
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The same reasoning can be applied to prove (9.20)s—2. Indeed, we observe that
v(z) —vp(x) =v(x) — (v —zx) - Vo(zg) —v(zg) — [v— (z —2k) - Vo(zg) — v(zr)|n(x)

by virtue of (9.27). Now we apply to the right hand side of the last expression the second order Taylor
formula in the integral form, and proceed exactly as described before.

Finally, one applies the same straightforward argumentation to get (9.21). This completes the proof
of statement (1).

Step 3: Statement (3) follows easily from (9.20)s—; and the algebraic inequality (9.7).
Step 4: We use (9.25) and (9.27) to write

v(@) —wp(z) = > (v(x) —ve)de(x), € K;
c€e&(K)
whence
lv — UhHLP*(K) < CHV,UHLP(K;Rd)

where we have used the Sobolev inequality (9.4) on the tetrahedron K € T and the L*°-bound (9.26). We
conclude the proof of statement (4) by using the relation (9.7). The proof of Lemma 9.2 is complete. [

The following corollary is a direct consequence of (9.21).

Corollary 9.3 (Continuity of the projection onto V3). Under assumptions of Lemma 9.2, there exists
¢ = c(0o,p) > 0 such that
1p
Vv € Wo(Q), |vnlvr) < cllVoll o ora): (9.28)

where 1 < p < 0.

Although the non conforming finite element space V}, is not a subspace of any Sobolev space, its
elements enjoy the Sobolev type inequalities. This important fact is formulated in the next lemma.

Lemma 9.3 (Sobolev inequality on V3,). Let Q be a bounded domain of R:. Let T be a triangulation of
the domain Q in simplices such that 8 > 6y > 0 where 0 is defined in (3.1). Then we have:

(1) Sobolev inequality in V() (case 1 < p < d):
There exists ¢ = c(6p,p) such that for all v € V},(Q),

V]l 2o (@) < clvlvra)- (9.29)

(2) Sobolev inequality in Vi (2), case p > d
Let 1 < q < 0o. There here exits ¢ = c(6o, p,q) > 0 such that forall v € V,(Q),

[0l La@) < clvlyvro) (9.30)

Proof. Step 1 Let 1 <r < o < 0. Let u € Vj,. We call v the element of V}, such that v, = |uy|%. Then
there exists C' only depending on d, r, « such that

gy < Il 2 0 (9.31)

To prove (9.31) we remark that, using a change of variable, it is enough to show to prove the existence
of C for only the unit symplex K. Let u € P1(K) and we call v the element of P; (K) such that v, = |us|®.

1
Let T(u) = [full ) and S(u) = [[ul[ 75 .

. These two functions are continuous, homogeneous of degree
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1 and non zero if u # 0. Since Py (K) is a finite dimensional space, we can choose a norm on P; (K and
take C = ()@ where M = max{T'(u) Mullp, gy = 1} and m = min{T'(u), ||ullp, 7 = 1}-

Step 2: Proof for p =1.
We set u = 0 outside Q. For o € &n,0 = K|L, we set |[u(z)]| = |ux(z) — ur(z)| for x € o. For
0 € Eext NE(K), we set |[u(x)]| = |uk(x)| for x € 0. We first remark that there exists C1,; and C 2 only
depending on d such that

lull oy o < Crallullyee < CrallVaul ey +Cra Y [ Jiull .
oef

We now prove that there exits C; 3 only depending on d and 6y such that

Z/| [ldy < Cusl|Vaullpa

ce€

Let K € T and 0 € £(K). Let x, be the center of mass of 0. We have, withuyg = v in K,

1
ug () —u(zy) = /0 Vug - (z — z5) dz.

Then if 0 = K|L we have
(@) = ur(@)| < ho (|Vux| + |Vu]).

Integrating this inequality on o gives
2
L [l dy < |olho (|Vu| + [Vur]) < *g(nwnp x) + 1Vl ).
Similarly for o € Ecxe NE(K) we have
2
[ Iwllay < I Vullzi
g 0

Then there exists C 3 = C(d, 0y) such that

> [

1,0€€

and then,
|l 1= () < e(d, 00)|[Vrul| L1 (-
Step 3: Proof for 1 <p < d.
Let 1 < p<dandp*= pfdp and let u € V},. We set u = 0 outside €. Let o = p(dd__pl), so that o > 1 and

al* = p*. We call v the element of V}, such that v, = |u,|* for 0 € £. One has v # |u|* but there exits
(5,1 only depending on d and p (see lemma 9.31) such that

ullZor (@) < CaallvllL @) < e(d, p, 00)[[VrollL(q)
Moreover using a scalling argument we obtain

IVhollpiry < e(dp,60) Y Juo|™H[Vug||K].
cel(K)
Then, using Holder Inequality, we have, with ¢ = 1% (so that ¢(a — 1) = p*),

*

p_

IVrollrag) < edsp, 00) [ Vull oy [l o -
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Summing on K € T we obtain
[l Lo () < CollVhullLe(e)-
Step 4: Proof for p > d.
Let 1 < ¢ < oo. There exists r = r(d, ¢) such that r < d and 7* > q. We have

ull1r= ) < e(r,d, q,00) ||V hul|Lr(o)-

Moreover L L
Nullrag) < (€7 [|ull o) < e(d, g, 00)[2c 7 [[Vaull @)
and o
[Vrullr@) <1917 #|[Vaul|pe)-
Finally

|ullLae) < c(Q,d,p,q,00)||VhullLr(o)-
O
A Combination of Lemma 9.3 with estimates (9.14), (9.16) and the Holder inequality yields the
following corollary.
Corollary 9.4 (Estimates of the norms of mean values). We have under the assumptions of Lemma 9.3:
(1) Poincaré type inequality involving mean values on tetrahedra
There exists ¢ = c¢(0y,p) such that for all v € Vp,,

. 1/p
lollzoy = (32 1Klloxl?) ™ < elllollzr@ + hlelypa): (9.32)
KeT

(2) Sobolev type inequality involving mean values on tetrahedrons

Let 1 < p < d, there exists ¢ = c¢(0y,p) such that for all v € V},

[l 2y = (3 1K]lvi

KeT

«\ 1/p*
) < elllollp oy + olve)- (9.33)

Note that the Last but not least, we recall a result on equivalence of norms in the space V},(€2) which
is a consequence of a discrete Poincaré inequality on the broken Sobolev space V}, [31, proposition 4.13].

Lemma 9.4 (Discrete and continuous norms in V). Let 1 < p < co. Let 6y > 0 and T be a triangulation
of Q such that 0 > 6y where 0 is defined in (3.1). Then the norms

1/p
(> lolhluol?) ™ and (ol (9.34)
Uegint
are equivalent on Vi, () uniformly with respect to h > 0.

The last lemma in this overview deals with the estimates of jumps over faces. The reader can
consult [8, Lemma 3.32] or [18, Lemma 2.2] for its proof.

Lemma 9.5 (Jumps over faces in the Crouzeix-Raviart space). Let 6y > 0 and T be a triangulation of
such that 0 > 0y where 0 is defined in (3.1). Then there exists c = c¢(0y) > 0 such that for all v € V;(Q),

1
> 5 [0, 4 < clofa, (9.35)
oce€ g
where [V]gn, s a jump of v with respect to a normal n, to the face o,
_ : _ ) vlk(@) —olp(@) if ng = no
o=KL S b te)= | T 2o

and
Ve € o € Eext, [Vom, (z)=uv(x), with n, an exterior normal to OS.
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