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KRIGING-BASED INTERPOLATORY SUBDIVISION

SCHEMES

J. BACCOU ∗ AND J. LIANDRAT †

Abstract. This paper is devoted to the definition, analysis and implementation of
a new type of subdivision schemes adapted to data (through a stochastic approach) and
to a partition of their support. Its construction combines position-dependent multiscale
approximation ([7]) and the Kriging method ([12]). After a full convergence analysis that
requires to extend classical results to this new framework, it is applied to data prediction for
uni and bi-variate problems and compared to the Lagrange interpolatory subdivision.
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1. Introduction. The work presented in this paper lies in the intersec-
tion of two fields, stochastic data modeling and multiscale approximation.
It is devoted to the reconstruction of functions, with a special attention to
piecewise-regular ones that arise in many applications, starting from an initial
sampling at low rate.
The main advantages of stochastic data modeling such as Kriging ([12]) stand
in the possibility to integrate in the prediction the spatial dependency of the
available data and to quantify the precision of the prediction thanks to the
model describing this dependency. The counterpart is that the determination
of this model is classically performed assuming large enough regularity of the
data. Even if a so called nugget effect is considered to take into account strong
local variations and therefore reduce somehow the required regularity, Krig-
ing approach is not tailored to reconstruct piecewise-smooth data. On the
contrary, multiscale approximation and associated subdivision schemes ([14]),
even if they are purely deterministic, can be data-dependent, a property that
is compulsory to maintain the efficiency in presence of discontinuities. This
property however makes the analysis of convergence, smoothness and stability
of these schemes more involved ([11]).

This paper therefore deals with the design of new stochastic subdivision
schemes that improve the accuracy of the reconstruction of non-regular data.
Their construction is performed in two steps: a segmentation of data into dif-
ferent zones of smoothness and a local subdivision based on Kriging prediction
according to the information coming from the previous step. Taking apart the
problem of data segmentation that refers to the wide literature of edge detec-
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tor, we focus in the sequel on the construction and on the convergence analysis
of position-dependent Kriging-based subdivision schemes for data prediction
i.e. of subdivision schemes with a local strategy depending on a given set of
segmentation points and involving an adaptive selection of interpolatory sten-
cils.
Our work is organized as follows: after a brief review of the background re-
lated to the Harten’s framework for subdivision (Section 2) and to the Kriging
theory (Section 3.1) a position-dependent Kriging-based prediction operator
is defined in Section 3.2; its convergence is then fully analyzed in Section
4. Numerical applications and a comparison with the position-dependent La-
grange interpolatory subdivision scheme described in [7] are finally presented
in Section 5.

2. Harten’s framework and subdivision schemes. In this section we
provide a short review on Harten’s framework including subdivision schemes
with emphasis on position-dependent strategy that appears to be suitable for
the prediction of piecewise-smooth data.

2.1. Harten’s framework. Harten’s framework for multiresolution has
been introduced in [5] or [6].

The general setting of Harten’s framework is defined by a family of triplets
(V j,Dj−1

j , P j
j−1) where j ∈ Z is a scale parameter, V j denotes a separable

space of approximation associated to a resolution level 2−j , Dj−1
j (resp. P j

j−1)

is a decimation (resp. prediction) operator connecting V j to V j−1 (resp. V j−1

to V j); Any element of V j is a sequence f j = {f j
k}k∈Z that stands for a discrete

approximation, at scale 2−j , of a function in a suitable space F .

Here, we restrict ourself to sampling, i.e. the sequences f j coincide with
the values of functions on the dyadic grid {xjk}k∈Z with xjk = k2−j . The
embedding property linking V j and V j−1 implies here that the decimation
operator Dj−1

j is a sub-sampling operator. Any right inverse of Dj−1
j in V j−1

is a suitable prediction operator1. Interpolatory subdivision schemes described
in [14], S, are therefore good candidates to define such an operator. They map
{f j−1

k }k∈Z to P j
j−1(f

j−1) = f
′j = {

(

Sf j−1
)

k
}k∈Z with

{

f
′j
2k = f j−1

k ,

f
′j
2k−1 =

∑r−1
m=−l ak−2mf j−1

k+m,
(2.1)

where the sequence {ak−2m}m∈Z is called the mask of the subdivision
scheme. The integers l and r stand for the number of left and right points in
the interpolatory stencil denoted Sl,r.
For the treatment of piecewise-smooth function (that is our concern in this
work), we introduce more flexibility in the choice of l and r. More precisely, for

1P
j
j−1 and D

j−1
j satisfy D

j−1
j P

j
j−1 = IV j−1
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any fixed integer D ≥ 0, we associate to each prediction at position (2k−1)2−j

a stencil of parameters (lj,2k−1, rj,2k−1) with lj,2k−1 + rj,2k−1 = D + 1. This

leads to a sequence of masks {aj,kk−2m}m∈Z, (j, k) ∈ Z
2 for the corresponding

subdivision scheme. If these masks are independent of f j−1, the subdivision is
said to be linear. Moreover, one speaks about stationarity (resp. uniformity)
when the masks do not depend on j (resp. on k).

There are many strategies to define the couples (lj,2k−1, rj,2k−1) ([13], [3],
[11], [7]). Among them, one can mention the two following ones that will be
considered in this paper.
The first one is lj,2k−1 = l, rj,2k−1 = r that leads to translation-invariant

stencils. The corresponding subdivision scheme is then stationary and uni-
form (and thus linear).

The second strategy is (lj,2k−1, rj,2k−1) remaining functions of an a pri-
ori defined segmentation of the real line and of a chosen couple (l, r). More
precisely, the couple (lj,2k−1, rj,2k−1) is equal to (l, r) except in some regions;
these regions and the values of (lj,2k−1, rj,2k−1) in these regions are obtained
introducing the segmentation. It leads to position-dependent stencils and
defines a linear but non-stationary and non-uniform subdivision scheme.

The family of ENO interpolation subdivision schemes addressed in [11] cor-
responds to a third strategy where the definition of (lj,2k−1, rj,2k−1) depends

on the sequence f j−1 and more precisely of its values f j−1
l for index l in the

vicinity of k.

The selection of position-dependent stencils is fully explained in the fol-
lowing section.

2.2. Position-dependent stencils. The position-dependent strategy we
are interested in is motivated by the approximation of piecewise-smooth func-
tions. This class of functions is defined as follows:

Definition 2.1.

We call C(IR) the space of functions f defined and continuous on IR\Sf where
Sf , when it is non-empty, is a set of reals (depending of f) such that ∀x ∈
Sf , limy→x,y>x f(y) = f+(x) and limy→x,y<x f(y) = f−(x) exist in IR with
f+(x) 6= f−(x).
The set Sf is moreover assumed to be separated i.e. satisfies

∃ǫSf
> 0 such that ∀x, y ∈ Sf , x 6= y ⇒ |x− y| ≥ ǫSf

.

Accordingly, position-dependent stencils rely on an adaptation of the sten-
cil according to a family of segmentation points, Ss, defining the different zones
where the function is smooth. Since the segmentation points are supposed to
be separated, there exists a scale from which each segmentation point can be
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considered as isolated with regards to the stencil length. Therefore we focus
in the following definition (proposed in [7]) on a single segmentation point y0
corresponding to Ss = {y0}.

Definition 2.2. Stencil selection

Let us define for all j ∈ Z, the index kj−1 s.t y0 ∈ [xj−1
kj−1−1, x

j−1
kj−1

]. For

all j and k such that y0 ∈ [xj−1
−l+k, x

j−1
r−1+k], the parameters rj,2k−1 and lj,2k−1

linked by the relation rj,2k−1 + lj,2k−1 = D + 1 are defined as:

• If y0 ∈ [xj2kj−1−2, x
j
2kj−1−1[, then

{

If k < kj−1 then rj,2k−1 = kj−1 − k,

If k ≥ kj−1 then rj,2k−1 = D + 1 + kj−1 − k.
(2.2)

• If y0 ∈ [xj2kj−1−1, x
j
2kj−1

], then

{

If k ≤ kj−1 then rj,2k−1 = kj−1 − k,

If k > kj−1 then rj,2k−1 = D + 1 + kj−1 − k.
(2.3)

Figure 2.1 displays this selection rule when D = 3, l = 2 and r = 2.

Y0

.  .  .

S S S S SSSSS

(b)

  (a)

Y0

S S S S S S S SS

0,43,12,22,22,2 1,3 2,2 2,2 2,2

4,03,12,22,22,2 1,3 2,2 2,2 2,2

Fig. 2.1. An example of stencil selection associated to a unique segmentation point
y0 ∈ [xj−1

kj−1−1, x
j−1
kj−1

]. (a) y0 ∈ [xj
2kj−1−2, x

j
2kj−1−1], (b) y0 ∈ [xj

2kj−1−1, x
j
2kj−1

].

In [7], a first example of Lagrange position-dependent subdivision scheme
has been constructed and fully analyzed. It is based on a local polynomial in-
terpolation. More precisely, the sequences {aj,kk−2m}m∈{−lj,2k−1,..,rj,2k−1−1} sat-
isfy:

aj,kk−2m = L
lj,2k−1,rj,2k−1
m (−

1

2
)

where

L
lj,2k−1,rj,2k−1
m (x) = Π

rj,2k−1−1
n=−lj,2k−1,n 6=m

x− n

m− n
,(2.4)
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This family of scheme has provided satisfactory results for image compres-
sion (see [4] for example). However, the underlying assumption of piecewise
polynomial to describe the data is not always satisfactory in many applica-
tions. Moreover, for safety assessment studies which is the main concern of the
french Institute for Radio-protection and Nuclear Safety, the lack of quantifi-
cation of a predicted error to ensure transparency in the communication of the
results, can reduce its interest for practical applications. Therefore, in order
to circumvent these drawbacks, we propose in the next section a new type of
subdivision scheme that combines multi-scale approach and Kriging theory.

3. Kriging theory and Kriging-based subdivision. For sake of clar-
ity, the ordinary Kriging interpolation is first described independently of the
multi-scale/subdivision framework. We postpone to Section 3.2 the description
of the way to combine them in order to construct Kriging-based subdivision
schemes.

3.1. Ordinary Kriging. Considering N observations of a function, f ∈
F , {fi}i=0,...,N−1 on the grid {xi}i=0,..,N−1 we adress the problem of the pre-
diction of f at a new location x⋆. Ordinary Kriging ([12]) belongs to the class
of stochastic prediction method. It is assumed that {fi}i∈Z are realizations of
a subset of random variables {F(xi), i ∈ Z} coming from a random process
F(x) that can be decomposed as:

F(x) = m+ δ(x),(3.1)

where m is the constant deterministic mean structure of F(x) and δ(x) is
an intrinsically stationary random process, i.e. satisfying:

{

E (δ(x+ h)− δ(x)) = 0,

var (δ(x+ h)− δ(x)) = 2γ(h),

where E and var denote the mathematical expectation and the variance
respectively2. γ is called a semi-variogram and translates the spatial depen-
dency associated to δ(x). This last quantity plays a key role in the prediction
of F(x) since according to Decomposition (3.1) and the assumption of con-
stant mean structure, it also characterizes the spatial dependency associated
to F(x). Therefore, in the sequel, we first focus on the identification of the
semi-variogram γ. It is then used to construct the ordinary Kriging estimator
of F(x⋆) as a linear combination of {F(xi)}i=0,...,N−1. Replacing F(xi) by fi,
this estimator leads to an approximation of f(x⋆).

2Let X be a real random variable of density fX . Its mathematical expectation is defined
as the integral over the realizations x of X weighted by the density function i.e. E(X) =
∫

IR
xfX(x)dx. Moreover, its variance is written as var(X) = E(X2)− (E(X))2.
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3.1.1. Spatial structure identification. Under stationarity assump-
tions and constant deterministic mean structure of the random process, the
semi-variogram is written as:

γ(h) =
1

2
E((F(x + h)−F(x))2),(3.2)

In practice,it is approximated, from the available data, by a least square fit of
the discrete experimental semi-variogram,

γexp(h) =
1

2Card(N(h))

∑

(m,n)∈N(h)

(fm − fn)
2,(3.3)

with N(h) = {(m,n) ∈ {0, ..., N −1}, |xm−xn| = h} and for every h such
that Card(N(h)), the cardinality of N(h), is sufficiently large. In practice, the
number of pairs (xm, xn) satisfying |xm−xn| = h is usually not sufficient to ac-
curately estimate the semi-variogram. Therefore, the condition |xm − xn| = h
in N(h) is replaced by h − ǫ ≤ |xm − xn| ≤ h + ǫ where ǫ is problem and
user-dependent.
The candidates for the experimental semi-variogram fitting have to be chosen
among a family of valid semi-variogram models (Figure 3.1), denoted G (see
[12] or [23]).

For the rest of the paper, we focus on the two following families of semi-
variograms (that differ according to the behavior of γ(h) when h tends to zero)
that encompass most of the classical models used in practice.

Definition 3.1.

We introduce G⋆
OD (resp. G⋆

ED), the subsets of valid semi-variograms satisfy-
ing:

G⋆
ED = {γ ∈ G, γ(h) =h→0

+∞
∑

n=0

anh
n+1 with a0 6= 0},(3.4)

G⋆
OD = {γ ∈ G, γ(h) =h→0

+∞
∑

n=0

bnh
2n+2 with ∀n ∈ IN, bn 6= 0}.(3.5)

Note that the linear, spherical and exponential semi-variograms belong to
G⋆
ED while the Gaussian, rational quadratic and hole-effect ones belong to G⋆

OD

(see Figure 3.1).

Figure 3.2 displays the different steps of the semi-variogram identification.
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Fig. 3.1. Examples of valid models of semi-variograms. From top, left to bottom, right,

linear (γ(h) = h
100

), spherical (γ(h) = 3
2

h
50

− 1
2

h3

503
for h ≤ 50 and 1, elsewhere), exponential

(γ(h) = 1 − e−
1
20

h), rational-quadratic (γ(h) = h2

1+h2 ), hole-effect (γ(h) = 1 − 5 sin(0.2 h)
h

)

and Gaussian (γ(h) = 1− e
− 1

502
h2

) models.

Remark 3.1.

- Observe that each semi-variogram of Figure 3.1 corresponds to different spa-
tial structure of the data. Since it has a zero first derivative at the origin, the
Gaussian model translates a stronger dependency between data at small scales
than the exponential one. Therefore, it is efficient to represent very regular
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Fig. 3.2. The different steps of the semi-variogram identification. From top, left to bot-
tom right, data ({fi}i=0,...,N−1), variogram cloud ({ 1

2
(fm−fn)

2}(m,n)∈(N−1)2 ), experimental
semi-variogram, identified semi-variogram model obtained by a least square fit.

data.
- There exists a more general formulation for theoretical semi-variograms in-
volving an extra-parameter called nugget effect. It corresponds to a discontin-
uous semi-variogram at the origin and is therefore suitable to model data with
strong variations at very small scales. In practice, it is difficult to specify the
semi-variogram behavior near the origin since the available set of data is usu-
ally not substantial enough to exhibit very small scales dependency. Moreover,
the strategy that will be introduced in the next section aims at considering
only strongly dependent data for the prediction. Therefore, for the rest of
the paper, the semi-variogram is assumed to be continuous at the origin, i.e.,
limh→0+ γ(h) = γ(0) = 0.
- Besides kriging and Lagrange interpolations, an important method for spatial
prediction is the spline-based one ([1]). There is a formal connection between
splines and kriging ([12]). However, this kind of prediction is not addressed
in this paper for two main reasons. For sake of simplicity, the construction of
subdivision schemes is restricted in this paper to the combination of Harten’s
multiresolution and ordinary kriging. In order to work in a unified framework
for splines and kriging, it is required to consider a more general approach than
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ordinary kriging called kriging with intrinsic random functions ([17]). In this
case, the variogram is replaced by a generalized covariance function and all
the commonly used spline basis functions appear to be valid generalized covari-
ances ([18]). Moreover, as mentioned in [12], although formally connected,
there is an important difference between these two approaches in the spatial
structure identification step. In kriging, one intends to fit, directly from the
observed data, a model translating the spatial dependency through the compu-
tation of an experimental semi-variogram for example. In this way, there is
no extra assumption related to an a priori choice of the spatial structure which
is crucial in industrial applications such as risk analysis studies. This step of
“empirical” identification is not considered in the spline-based prediction since
each spline basis function corresponds to a given covariance model.

3.1.2. Construction of the ordinary Kriging estimator. The or-
dinary Kriging estimator of the random process F at a new location x⋆ is
denoted P(F , x⋆). It is the linear, unbiased predictor3 minimizing the esti-
mation variance σ2

K = var(F(x⋆) − P(F , x⋆)). More precisely, it is written
as

P(F , x⋆) =
N−1
∑

i=0

λiF(xi).(3.6)

{λi}i=0,...,N−1 are the Kriging weights, solutions of the following problem:













γ0,0 ... γ0,N−1 1
γ1,0 ... γ1,N−1 1
... ... ... 1

γN−1,0 ... γ0,0 1
1 1 1 0

























λ0

λ2

...
λN−1

µ













=













γ⋆0
γ⋆1
...

γ⋆N−1

1













,(3.7)

where γij = γ(||xi − xj||2) and γ∗i = γ(||x∗ − xi||2) with ||.||2 the Eu-
clidean norm and µ the Lagrange multiplier enforcing the unbiasedness of the
estimator. Besides the Kriging estimator, the Kriging weights allow one to
compute the estimation variance σ2

K : this quantity can be used to provide
an a priori (i.e. depending only on the Kriging weights and on the identified
semi-variogram) local prediction error as it is explained at the end of Section
3.2.2.

3.2. Kriging-based subdivision scheme.

3P(F , x) is an unbiased estimator iif E (P(F , x)− F(x)) = 0 where E is the mathematical
expectation.
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3.2.1. Construction of the scheme. When replacing x⋆ by (2k−1)2−j ,
N by r + l and xi by (k + i− l)2−(j−1), Expression (3.6) can be plugged into
the multi-scale framework. By comparison with the second equation of (2.1),
it can then be interpreted as a two-scale relation involved in a non-stationary
and non-homogeneous subdivision scheme.

Assuming that the semi-variogram has been identified from the initial
data f0, the Kriging-based subdivision scheme is then defined in the position-
dependent case as follows:











f
′j
2k =

(

P j
j−1f

′j−1
)

2k
= f

′j−1
k ,

f
′j
2k−1 =

(

P j
j−1f

′j−1
)

2k−1
=
∑rj,2k−1−1

m=−lj,2k−1
λ
lj,2k−1,rj,2k−1

j,m f
′j−1
k+m,

(3.8)

with ∀k ∈ Z, f
′0
k = f0

k . The family {λ
lj,2k−1,rj,2k−1−1
j,m }m stands for the

Kriging weights solution of Problem (3.7) where x⋆, N and {xi}i=0,...,N−1 are
replaced by the corresponding quantities in the multi-scale framework (as men-
tioned at the beginning of this section) and the couple (l, r) by (lj,2k−1, rj,2k−1).

Note that at the first level, the subdivision scheme operates on {f0
k}k∈Z

which are the outcomes of a random process F(x) associated to the initial
mesh grid. However, for any j > 0, the data involved in the prediction can-
not be considered as realizations of the random variables {F(k2−j)}k∈Z since
they are computed from previous levels. Therefore, we denote in what follows

F
′j(x) the random process associated to {f

′j
k }k∈Z.

The masks of the associated subdivision scheme is defined for even values
as

{

aj,2k0 = 1,

aj,2km = 0, for m 6= 0,
(3.9)

and for odd values as







aj,2k−1
−2m−1 = λ

lj,2k−1,rj,2k−1

j,m for m = −lj,2k−1, ..., rj,2k−1 − 1,

aj,2k−1
2m = 0 otherwise.

(3.10)

Remark 3.2.

Note that ordinary Kriging only requires that the Kriging weights sum up to
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1. That means that the above defined Kriging-based subdivision scheme repro-
duces constants4. They are the only reproduced polynomials. It is possible to
increase the degree of polynomial reproduction by considering in Decomposi-
tion (3.1) a polynomial (of degree larger than 1) deterministic mean structure.
In that case, one speaks about universal Kriging ([12]).

3.2.2. Estimation variance. Coming back to the scheme (3.8) and ex-
ploiting the underlying Kriging framework, it is possible to define an estimation
variance that reads for each j and k:

(

σ
′j
2k

)2
= E

(

F
′j(2k 2−j)−F(2k 2−j)

)2
,(3.11)

(

σ
′j
2k−1

)2
= E (

rj,2k−1−1
∑

m=−lj,2k−1

a j,2k−1
−2m−1F

′j−1((k +m)2−(j−1))(3.12)

− F((2k − 1)2−j)
)2

.

It turns out that these variances can be expressed thanks to the identified
semi-variogram. More precisely, we have:

Proposition 3.2.

Introducing {Aj
1,m}

m∈Ij1
(resp. {Aj

2,m}
m∈Ij2

) such that,

f
′j
2k−1 =

∑

m∈Ij1

Aj
1,mf0

m,(3.13)

f
′j
2k =

∑

m∈Ij2

Aj
2,mf0

m,(3.14)

then the estimation variance associated to the prediction scheme reads:

(

σ
′j
2k

)2
= −

∑

(n,m)∈Ij2×Ij2

A j
2,nA

j
2,mγ(|n −m|)(3.15)

+ 2
∑

n∈Ij2

Aj
2,nγ(|k2

−(j−1) − n|),

(

σ
′j
2k−1

)2
= −

∑

(n,m)∈Ij1×Ij1

A j
1,nA

j
1,mγ(|n −m|)(3.16)

+ 2
∑

n∈Ij1

Aj
1,nγ(|(2k − 1)2−j − n|).

4A subdivision scheme S is said to reproduce constants if for all constant C and all scale
j, ∀k ∈ Z, f

j
k = C ⇐⇒ (Sf j)k = C,∀k ∈ Z.

11



Proof. We focus on (3.15) since (3.16) can be derived similarly.
Since the Kriging-based subdivision scheme reproduces constants (Remark
3.2), it is straightforward to get:

∑

m∈Ij2
Aj

2,m = 1. Using (3.14), (3.11) then

reads:

(

σ
′j
2k

)2
= E







∑

m∈Ij2

Aj
2,m

(

F(m)−F(k2−(j−1))
)







2

,

=
∑

m∈Ij2

(Aj
2,m)2E

(

F(m) −F(k2−(j−1))
)2

+
∑

(n,m)∈Ij2×Ij2 ,n 6=m

Aj
2,nA

j
2,mE

(

F(n)−F(k2−(j−1))
)(

F(m) −F(k2−(j−1))
)

.

Writing
(

F(n)−F(k2−(j−1))
) (

F(m)−F(k2−(j−1))
)

= −1
2 (F(n)−F(m))2+

1
2

(

F(n)−F(k2−(j−1))
)2

+ 1
2

(

F(m)−F(k2−(j−1))
)2
, the previous expression

becomes:

(

σ
′j
2k

)2
=
∑

m∈Ij2

(Aj
2,m)2E

(

F(m) −F(k2−(j−1))
)2

−
1

2

∑

(n,m)∈Ij2×Ij2 ,n 6=m

Aj
2,nA

j
2,mE (F(n)−F(m))2

+
∑

(n,m)∈Ij2×Ij2 ,n 6=m

Aj
2,nA

j
2,mE

(

F(m)−F(k2−(j−1))
)2

.

From (3.2), we get:

(

σ
′j
2k

)2
= 2

∑

m∈Ij2

(Aj
2,m)2γ(|m− k2−(j−1)|)−

∑

(n,m)∈Ij2×Ij2 ,n 6=m

Aj
2,nA

j
2,mγ(|n−m|)

+ 2
∑

(n,m)∈Ij2×Ij2 ,n 6=m

Aj
2,nA

j
2,mγ(|m− k2−(j−1)|)

= 2
∑

n∈Ij2

Aj
2,nγ(|n − k2−(j−1)|)



Aj
2,n +

∑

m6=n

Aj
2,m





−
∑

(n,m)∈Ij2×Ij2 ,n 6=m

Aj
2,nA

j
2,mγ(|n−m|).

Since
∑

m∈Ij2
Aj

2,m = 1 and γ(0) = 0 (see Remark 3.1), we finally find:
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(

σ
′j
2k

)2
= 2

∑

n∈Ij2

Aj
2,nγ(|n − k2−(j−1)|)−

∑

(n,m)∈Ij2×Ij2

Aj
2,nA

j
2,mγ(|n−m|),

that concludes the proof.

Proposition 3.2 provides an important result for practical applications.
Indeed, this proposition allows one to quantify the a priori prediction error
associated to each predicted point. More precisely, under normality assump-
tion, the estimation variance can be used to compute the so called confidence
intervals Iα defined for any confidence level α ∈ [0, 1] by

∀(k, j) ∈ Z
2, P robability

(

F
′j(k2−j)−F(k2−j) ∈ Iα

)

= α.

This error depends only on the type of identified semi-variogram and on the
distance between points involved in the Kriging system. It is an a-priori esti-
mate since its computation does not require to know the true values of f j.

In the next section, we focus on the convergence analysis of Kriging-based
subdivision schemes.

4. Convergence analysis of Kriging-based subdivision scheme. A
first result of convergence has been published in [8]; it corresponds to the case
l = r = 2 and this section can then be considered as a generalisation of [8] to
the case l = r ∈ N

∗.
This analysis is described in several steps. The key notions associated to the
convergence of subdivision schemes are first recalled. Conditions to ensure
the convergence of non-stationary schemes following translation-invariant and
position-dependent strategies are then proposed within the matrix formalism
with a special attention to the case where an asymptotical connection to a
convergent stationary subdivision scheme can be established. Finally, the con-
vergence of the kriging-based scheme constructed in this paper is fully studied.
To achieve that, two important results related to the asymptotical behavior
of kriging weights for the two types of semi-variogram models introduced in
Definition 3.1 are provided.

4.1. Definition of convergence. In order to consider a large class of
subdivision schemes, we propose a definition of convergence that can be inter-
preted as a generalization of the classical one ([14]).

According to the definition of C(IR) (Definition 2.1) we propose the follow-
ing definition for convergence taken from [7].

Definition 4.1. Convergence of subdivision scheme

13



The subdivision scheme S is said to be L∞-convergent if for any real sequence
f0, there exists a function f ∈ C(IR)5 (called the limit function associated to
f0) such that:

∀ǫ,∃J such that ∀j ≥ J either

‖ Sjf0 − f+
( .

2j

)

‖∞≤ ǫ,

or

‖ Sjf0 − f−
( .

2j

)

‖∞≤ ǫ.

where ||.||∞ denotes the l∞-norm defined for any sequence u = {uk}k∈Z by
||u||∞ = supk∈Z (|uk|).

Note that if the family of segmentation points, Sf , is empty, f+ and f−

are replaced by f and Definition 4.1 coincides with the classical convergence
definition given in [14].

All the convergence results available nowadays involve, given a subdivision
scheme S reproducing constants, the subdivision scheme 1

2S1 associated to the

subdivision of the sequence δf j with δf j
k = f j

k+1 − f j
k , k ∈ Z.

In [14], a necessary and sufficient condition is given (Theorem 3.2 p53) as:
S is a uniformly convergent subdivision scheme, if and only if 1

2S1 uniformly
converges to the zero function for all initial data f0.

Essentially, the condition requires the existence of a positive integer L and
a constant 0 < µ < 1 such that

||

(

1

2
S1

)L

||∞ ≤ µ.

where for simplicity in the notation, ||.||∞ here denotes the induced norm
for operator associated to the l∞-norm.

This result has been generalized to a sufficient condition for convergence
of quasi-linear subdivision schemes6 in [11] as follows (Theorem 1 p 99): if
the rule for the differences 1

2S1 satisfies ρ∞(12S1) < 1 then the quasi-linear
subdivision scheme S is uniformly convergent, where the joint spectral radius
of a subdivision scheme S, denoted ρ∞(S) is defined by

ρ∞(S) = lim sup
j→∞

sup
(u0,u1,...,uj−1)∈(l∞)j

||S(uj−1)...S(u0)||1/j∞ .

5The space C(IR) has been introduced in Definition 2.1
6A subdivision scheme is said to be quasi-linear if it is defined by a data-dependent

rule S and a given sequence {uj}j∈Z+ and by a sequence of initial data f0 according to
f j := S(uj−1)...S(u0)f0.
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We recall that in the framework of [11] for any sequence u, the operator S(u)
is a subdivision scheme.

For applications to specific families of subdivision schemes various versions
of these theorems have been derived (independently or not of the previously
quoted papers). They imply a matrix formalism ([19], [15], [16], [9]) and a
spectral analysis first introduced in [14]. They have been extended to sta-
tionary but non-uniform position-dependent subdivision schemes in [7]. We
present in the following section an extension of these results to non-stationary
translation-invariant and position-dependent schemes. It is then used to ana-
lyze the convergence of the Kriging-based subdivision schemes constructed in
Section 3.2.

4.2. Convergence analysis of non-stationary translation-invariant

and position-dependent subdivision schemes.

4.2.1. Matrix formalism. Extending [14] and [7], it turns out that one
can associate to a non-stationary scheme, S, a set of refinement matrices for a
translation-invariant strategy and a set of refinement and edge matrices (due to
subdivision around segmentation points) when choosing a position-dependent
stencil. More precisely, we have:

Definition 4.2.

- For a translation-invariant subdivision, let F j
k be the minimal set of N points

at level j that determines the values at dyadic points in the interval [k2−j , (k+
1)2−j ] at level above j. For each j, the two N ×N refinement matrices, A0,j

and A1,j, that transform the set F j−1
k into the sets F j

2k and F j
2k+1 are defined

as follows:

F j
2k = A0,jF

j−1
k and F j

2k+1 = A1,jF
j−1
k .

- For subdivision at level j around a segmentation point y0 characterized by the
index kj (see Definition 2.2), we introduce Gj

+ (resp. Gj
−) the minimal set of

M points at level j that determines the values at dyadic points in the interval
[k2−j , (k + 1)2−j ] on the right of y0 (resp. the values at dyadic points in the
interval [(k − 1)2−j , k2−j ] on the left of y0). For each j, the two M ×M -edge
matrices A+

2,j and A−
2,j are defined by:

Gj
− = A−

2,jG
j−1
− and Gj

+ = A+
2,jG

j−1
+ .

Following [7], the non-stationary subdivision scheme is then completely
characterized:

• when the translation-invariant strategy is used, by the set of refinement
matrices {A0,j , A1,j}j∈Z.
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• when the position-dependent strategy is used, by the two sets of re-
finement and edge matrices {A0,j , A1,j}j∈Z and {A−

2,j , A
+
2,j}j∈Z and, for

any dyadic point x = kx2
−jx (x 6= y0), by the length Tx of the transi-

tion zone corresponding to the range of scales where the two successive
differences, δf j

k2j−jx
and δf j

k2j−jx−1
, are computed mixing refinement

and edge matrices.

Remark 4.1.

Assuming that S reproduces constants, in the same way that one defines refine-
ment (resp. refinement and edge) matrices for the subdivision scheme S, we

introduce, for each j, A
(1)
0,j and A

(1)
1,j (resp. A

(1),−
2,j and A

(1),+
2,j ) the refinement

(resp. edge) matrices associated to S1.

The following convergence theorem then holds, considering a scheme that
reproduces constants:

Theorem 4.1.

Translation-invariant strategy:
If there exists J such that,

lim sup
m→+∞

||Πk≤J
1

2
A

(1)
ǫ,m+k||∞ ≤ µ0 < 1, for all ǫ ∈ {0, 1},(4.1)

then the translation-invariant subdivision scheme is uniformly convergent.

Position-dependent strategy:
Assume that there exists J such that,

lim sup
m→+∞

||Πk≤J
1

2
A

(1)
ǫ,m+k||∞ ≤ µ0 < 1, for all ǫ ∈ {0, 1},(4.2)

lim sup
m→+∞

||Πk≤J
1

2
A

(1),−
2,m+k||∞ ≤ µ1 < 1 , ||Πm≤J

1

2
A

(1),+
2,m ||∞ ≤ µ2 < 1,(4.3)

and that there exists T < ∞, such that: ∀x, Tx ≤ T ,
then the position-dependent subdivision scheme is uniformly convergent.

Proof. This theorem comes from Theorem 2.1 of [7]. Non stationarity im-
plies to replace quantities of type ||Πk≤LAk||∞ by lim supm→+∞ ||Πk≤JAm+k||∞.

The sketch of the proof remains the same: Expression (4.1) leads to the
convergence in the translation-invariant zones while Expressions (4.2)-(4.3)
lead to the punctual convergence at segmentation points. The global and uni-
form convergence can be proved focussing on the subdivision process at a fixed
point x = kx2

−jx and exploiting that the length of the transition zone (Tx) is
uniformly bounded.
Bounds (4.1) and (4.2)-(4.3) are usually difficult to prove in practice. In the
next proposition, we reformulate them in a more tractable form using the
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eigenvalues of the involved matrices. We note ρ(A) the spectral radius of a
matrix A, i.e the supremum of the modulus of its eigenvalues.

Proposition 4.3.

Condition (4.1), resp. Conditions (4.2)-(4.3), can be replaced by:

there exists J ′ such that,

lim sup
m→+∞

ρ

(

Πk≤J ′
1

2
A

(1)
ǫ,m+k

)

< 1, for all ǫ ∈ {0, 1},(4.4)

resp.:

there exists J ′ such that,

lim sup
m→+∞

ρ

(

Πk≤J ′

1

2
A

(1)
ǫ,m+k

)

< 1, for all ǫ ∈ {0, 1},(4.5)

lim sup
m→+∞

ρ

(

Πk≤J ′

1

2
A

(1),−
2,m+k

)

< 1,(4.6)

lim sup
m→+∞

ρ

(

Πk≤j
1

2
A

(1),+
2,m+k

)

< 1,(4.7)

Proof. If (4.4) (resp. (4.5)-(4.7)) holds then from norm equivalence, (4.1)
(resp. (4.2)-(4.3)) is satisfied for large enough value of J . The reverse is also
true. Therefore, the equivalence is proved.

4.2.2. Asymptotical behavior and convergence results. Inside the
general class of non-stationary subdivision schemes reproducing constants, we
focus on the class of schemes for which the masks converge towards the masks
of a stationary scheme SS reproducing constants. We then have the following
result:

Theorem 4.4.

Let S be a non-stationary subdivision scheme defined through its masks {aj,kl }l∈Z,
(j, k) ∈ Z

2. We suppose that there exists two constants M < M ′, independent

of j and k such that aj,kl = 0 for l > M ′ or l < M . If there exists a stationary
subdivision scheme SS of masks {akl }l∈Z, k ∈ Z with akl = 0 for l > M ′ or
l < M and satisfying one of the theorems of Sections 4.2.1 and such that

lim
j→+∞

||aj,k − ak||∞ = 0

then S is convergent.
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Proof. It is a classical result (see for instance [22]) that the function that
associates to a matrix A ∈ C

n×n its eigenvalues is Lipchitz of exponent 1/n.
By hypothesis, the size of the refinement/edge matrices is bounded. There-
fore, the convergence of the coefficients of the masks implies the convergence
of the refinement/edge matrices. Finally, since the refinement/edge matrices
of the scheme SS satisfy one of the convergence theorem of sections 4.2.1, it
is also true for the non-stationary scheme from a large enough scale J , that
concludes the proof.

Remark 4.2.

Extending the analysis of [11], the convergence of S towards SS under the
assumptions of the previous theorem also implies that for any initial sequence
f0, the Hölder exponents of the limit function S∞f0 and of the limit function
SS∞f0 are the same.

In the sequel, we use the matrix formalism and Theorem 4.4 to analyze the
convergence of Kriging-based subdivision schemes with parameters (D, r, r).

4.3. Convergence of Kriging-based subdivision scheme with pa-

rameters (D, r, r).

4.3.1. Refinement and edge matrices. Before studying the conver-
gence property of the Kriging-based subdivision scheme, the following propo-
sition provides the expressions of the refinement and edge matrices. They are
obtained through elementary calculus.

Proposition 4.5.

Refinement matrix:

The two refinement matrices associated to a translation-invariant Kriging-
based subdivision with parameters (D, r, r) are the two (4r − 2) × (4r − 2)
matrices defined by:

A0,j =



































0 ... ... 1 0 ... ... ... ... ... 0
λr,r
j,−r λr,r

j,−r+1 ... λr,r
j,−1 λr,r

j,0 ... λr,r
j,r−1 .. ... ... 0

0 ... ... ... 1 0 ... ... ... ... 0
0 ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
0 ... ... ... ... ... ... ... λr,r

j,−r ... λr,r
j,r−1



































,

and
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A1,j =







































λr,r
j,−r ... λr,r

j,0 ... λr,r
j,r−1 ... ... ... ... ... 0

0 ... 1 0 ... ... ... ... ... ... 0
0 ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
0 ... ... ... ... ... λr,r

j,−r ... λr,r
j,0 ... λr,r

j,r−1

0 ... ... ... ... ... ... ... 1 ... 0







































.

Edge matrix:

Moreover, writing for any j ≥ 0, y0 ∈ [xj−1
kj−1−1, x

j−1
kj−1

], then, the vectors

Gj
− and Gj

+ introduced in Definition 4.2 are:

Gj
− = {f j

kj+α, α = −2r, ...,−1},(4.8)

Gj
+ = {f j

kj+α, α = 0, ..., 2r − 1},(4.9)

and the four 2r × 2r edge matrices associated to the subdivision near the
segmentation points read:

• if y0 ∈ [xj2kj−1−2, x
j
2kj−1−1[,

A−
2,j =























λr,r
j,−r ... ... λr,r

j,0 ... λr,r
j,r−1

0 ... ... 1 0 ...

λr+1,r−1
j,−r−1 ... ... ... ... λr+1,r−1

j,r−2

... ... ... ... ... ...

... ... ... ... ... ...

λ2r−1,1
j,−2r+1 ... ... ... ... λ2r−1,1

j,0

0 ... ... ... ... 1























,

A+
2,j =























λ0,2r
j,0 ... ... ... λ0,2r

j,2r−1

1 0 ... ... 0
... ... ... ... ...
... ... ... ... ...
... ... ... ... ...

λr−1,r+1
j,−r+1 ... λr−1,r+1

j,0 ... λr−1,r+1
j,r

... ... 1 ... 0























.
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• if y0 ∈ [xj2kj−1−1, x
j
2kj−1

]

A−
2,j =



















0 ... 1 0 ...

λr+1,r−1
j,−r−1 ... λr+1,r−1

j,0 ... λr+1,r−1
j,r−2

... ... ... ... ...

... ... ... ... ...
0 ... ... ... 1

λ2r,0
j,−2r ... ... ... λ2r,0

j,−1



















,

A+
2,j =



















1 0 ... ... ... ... 0

λ1,2r−1
j,−1 ... ... ... ... ... λ1,2r−1

j,2r−2

... ... ... ... ... ... ...

... ... ... ... ... ... ...

... ... 1 ... ... ... 0
λr,r
j,−r ... λr,r

j,0 ... ... ... λr,r
j,r−1



















.

In [7], a general convergence result has been established in the case of
position-dependent Lagrange interpolation. Using the property of polynomial
reproduction up to degree D, it has been proved that the eigenvalues of the
matrices for the first differences are strictly less than 1. Here, since we are
working with ordinary Kriging, the Kriging-based subdivision scheme only
reproduces constants. This information is not substantial enough to directly
get qualitative insight on the modulus of eigenvalues of each matrix involved
in the subdivision process and provided by Proposition 4.5. However, for
semi-variograms of types G⋆

OD and G⋆
ED (Definition 3.1) (that encompass most

of the classical semi-variograms used in practice), the uniform convergence
can be derived by studying the limit process and its connection to convergent
stationary scheme (Theorem 4.4). This is why we study the limit of the Kriging
weights when j → +∞ in the sequel.

4.3.2. G⋆
OD-type semi-variograms. The following proposition holds.

Proposition 4.6.

The Kriging weights involved in the translation-invariant and
position-dependent subdivision schemes with a G⋆

OD semi-variogram satisfy:

(λr,r
j,−r, ..., λ

r,r
j,r−1) →j→+∞ (Lr,r

−r, ..., L
r,r
r−1),

(λr−1,r+1
j,−r+1 , ..., λr−1,r+1

j,r ) = (λr+1,r−1
j,r−2 , ..., λr+1,r−1

j,−r−1 ) →j→+∞ (Lr−1,r+1
−r+1 , ..., Lr−1,r+1

r ),

...

(λ1,2r−1
j,−1 , ..., λ1,2r−1

j,2r−2 ) = (λ2r−1,1
j,0 , ..., λ2r−1,1

j,−2r+1) →j→+∞ (L1,2r−1
−1 , ..., L1,2r−1

2r−2 ),

(λ0,2r
j,0 , ..., λ0,2r

j,2r−1) = (λ2r,0
j,−1, ..., λ

2r,0
j,−2r) →j→+∞ (L0,2r

0 , ..., L0,2r
2r−1).
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where {Lk1,k2
m }m are the Lagrange interpolatory weights recalled by Formula

(2.4).

Proof. We focus on the first expression, the proofs for the remaining ones
being similar.
Since we are interested in the behavior of the Kriging weights when j → ∞ (or
equivalently when h, the distance between points is small) and remembering
the definition of G⋆

OD (Definition 3.1), one writes

γ(h) = P2r(h) +O(h2r+2),

with P2r(h) =
∑r−1

n=0 bnh
2n+2. Then, introducing for the rest of the proof the

notation P2r,j(.) = P2r(2
−j .), the Kriging system from scale j to scale j + 1

becomes:

(

Γ0
j,2r+1 + Γ1

j,2r+1

)

Uj+1 = γ0j,2r+1 + γ1j,2r+1,(4.10)

where

Γ0
j,2r+1 =













0 P2r,j(1) ... P2r,j(2r − 1) 1
P2r,j(1) ... P2r,j(2r − 2) ... 1

... ... ... ... ...
P2r,j(2r − 1) P2r,j(2r − 2) ... 0 1

1 1 1 ... 0













,

and γ0j,2r+1 =













P2r,j(
2r−1
2 )

P2r,j(
2r−3
2 )

...
P2r,j(

2r−1
2 )

1













.

As for Γ1
j,2r+1 and γ1j,2r+1, it is elementary to show that:

||Γ1
j,2r+1||∞ ≤ KΓ12−(2r+2)j , ||γ1j,2r+1||∞ ≤ Kγ12−(2r+2)j .(4.11)

The solution of (4.10) can then be formally written:

Uj+1 =
(

Γ0
j,2r+1 + Γ1

j,2r+1

)−1 (
γ0j,2r+1 + γ1j,2r+1

)

,(4.12)

=
(

I2r+1 +
(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)−1
(

Γ0
j,2r+1

)−1
γ0j,2r+1

+
(

I2r+1 +
(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)−1 (
Γ0
j,2r+1

)−1
γ1j,2r+1,

where I2r+1 is the (2r+1)× (2r+1) identity matrix. Note that to go from
the first line to the second one in Expression (4.12), we have assumed that
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(

Γ0
j,2r+1 + Γ1

j,2r+1

)−1
=

(

I2r+1 +
(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)−1 (

Γ0
j,2r+1

)−1
, which

is satisfied provided
(

Γ0
j,2r+1

)−1
and

(

I2r+1 +
(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)−1

exist.

For the moment, we take for granted that this is the case and perform the
proof in three steps. The invertibility will be verified in Step 1 and Step 3.

• Step 1: Expansion of

(

I2r+1 +
(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)−1

The expression of
(

Γ0
j,2r+1

)−1
is obtained according to a classical result of

matrix calculus. More precisely, Γ0
j,2r+1 can be written as:

Γ0
j,2r+1 =

[

B 112r
11T2r 0

]

.

where 112r is the 2r-vector whose elements are equal to 1, the upper-script
T denotes the transpose operator and

B = 2−2j





0 ... Q2r−2,j(2r − 1)
... ... ...

Q2r−2,j(2r − 1) ... 0



 ,

with Q2r−2,j(h) = Q2r−2(2
−jh) =

∑r−1
n=0 2

−2njbnh
2n.

Introducing the Schur complement S = −11T2rB
−1112r,

(

Γ0
j,2r+1

)−1
is given

by:

(

Γ0
j,2r+1

)−1
=

[

B−1
(

I2r + 112rS
−111T2rB

−1
)

−B−1112rS
−1

−S−111T2rB
−1 S−1

]

.

From these definitions, it is then straightforward that for sufficiently large
j,

||B−1
(

I2r + 112rS
−111T2rB

−1
)

||∞ ≤ K12
2j , ||B−1112rS

−1||∞ ≤ K2,

||
(

S−111T2rB
−1
)T

||∞ ≤ K3, |S−1| ≤ K42
−2j ,

where K1, K2, K3 and K4 are independent of j.

Therefore, ||
(

Γ0
j,2r+1

)−1
||∞ ≤ KΓ022j . Combined with (4.11) it gives

||
(

Γ0
j,2r+1

)−1
Γ1
j,2r+1||∞ ≤ KΓ0KΓ12−2rj ,(4.13)
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and finally,
(

I2r+1 +
(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)−1

=
∑∞

i=0(−1)i
(

(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)i

.

Note that this step ensures the invertibility of I2r+1 +
(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

provided
(

Γ0
j,2r+1

)−1
exists which will be verified in Step 3.

Expression (4.12) becomes:

U j+1 =
(

Γ0
j,2r+1

)−1
γ0j,2r+1(4.14)

+

(

∞
∑

i=1

(−1)i
(

(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)i
(

Γ0
j,2r+1

)−1
γ0j,2r+1

+
∞
∑

i=0

(−1)i
(

(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)i
(

Γ0
j,2r+1

)−1
γ1j,2r+1

)

.

This step also provides the following inequalities that are useful in the
sequel:

||
(

Γ0
j,2r+1

)−1
γ0j,2r+1||∞ ≤ K0, ||

(

Γ0
j,2r+1

)−1
γ1j,2r+1||∞ ≤ K12

−2rj .(4.15)

Coming back to (4.14), in order to conclude the proof, we want to show
that the norm of the second term tends to 0 when j → +∞ and that the first
2r components of the first term are equal to (Lr,r

−r, ..., L
r,r
r−1). This is achieved

following the two next steps.

• Step 2: Second term of (4.14)
From (4.13) and (4.15), it is straightforward that:

||

∞
∑

i=1

(−1)i
(

(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)i (
Γ0
j,2r+1

)−1
γ0j,2r+1||∞ ≤ K0

∞
∑

i=1

(KΓ0KΓ1)i 2−2rij ,

||

∞
∑

i=0

(−1)i
(

(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)i
(

Γ0
j,2r+1

)−1
γ1j,2r+1||∞ ≤ K12

−2rj
∞
∑

i=0

(KΓ0KΓ1)i 2−2rij ,

which becomes for sufficiently large j,

||

∞
∑

i=1

(−1)i
(

(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)i
(

Γ0
j,2r+1

)−1
γ0j,2r+1||∞ ≤ K0KΓ0KΓ1

2−2rj

1−KΓ0KΓ12−2rj
,

||
∞
∑

i=0

(−1)i
(

(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)i
(

Γ0
j,2r+1

)−1
γ1j,2r+1||∞ ≤ K1

2−2rj

1−KΓ0KΓ12−2rj
.
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Therefore

limj→∞ ||
∑∞

i=1(−1)i
(

(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)i (

Γ0
j,2r+1

)−1
γ0j,2r+1

+
∑∞

i=0(−1)i
(

(

Γ0
j,2r+1

)−1
Γ1
j,2r+1

)i (

Γ0
j,2r+1

)−1
γ1j,2r+1||∞ = 0.

• Step 3: First term of (4.14)
Our goal is to show that the linear equation

Γ0
j,2r+1U = γ0j,2r+1(4.16)

has a unique solution whose first 2r components are (Lr,r
−r, ..., L

r,r
r−1). This

will also ensure the invertibility of Γ0
j,2r+1 which is the underlying assumption

used in this proof.

Let us first note that
∑r−1

m=−r L
r,r
m = 1. If (Lr,r

−r, ..., L
r,r
r−1) are the first 2r

components of a solution, then the Lagrange multiplier denoted µ in the sequel
satisfies the 2r following equations:



















µ = µ0 = P2r,j(
2r−1
2 )−

∑r−1
m=−r L

r,r
m P2r,j(m+ r),

µ = µ1 = P2r,j(
2r−3
2 )−

∑r−1
m=−r L

r,r
m P2r,j(m+ r − 1),

...

µ = µ2r−1 = P2r,j(−
2r−1
2 )−

∑r−1
m=−r L

r,r
m P2r,j(m+ r − 2r + 1),

(4.17)

It then remains to verify that ∀ 0 ≤ n ≤ 2r − 2, µn − µn+1 = 0. Let us
focus on n = 0, the proof being the same for n > 0. Using the expression of
P2r, one can write:

µ0 − µ1 =

r−1
∑

n=0

2−j(2n+2)bn

(

(

2r − 1

2

)2n+2

−

(

2r − 3

2

)2n+2

−
r−1
∑

m=−r

Lr,r
m ((m+ r)2n+2 − (m+ r − 1)2n+2)

)

,(4.18)

=
r−1
∑

n=0

2−j(2n+2)bn

(

R2n+1

(

2r − 1

2

)

−
r−1
∑

m=−r

Lr,r
m R2n+1(m+ r)

)

,

where R2n+1(x) = x2n+2 − (x− 1)2n+2 is a polynomial of degree (2n + 1)
since after expansion of (x− 1)2n+2, the terms of order (2n+2) are cancelled.
Keeping in mind that (Lr,r

−r, ..., L
r,r
r−1) are the Lagrange weights associated to

the 2r-point centered interpolatory stencil (Formula (2.4)),
∑r−1

m=−r L
r,r
m R2n+1(m+

r) = R2n+1

(

2r−1
2

)

for n ≤ r − 1. Therefore, Expression (4.18) leads to:
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µ0 − µ1 = 0.

In order to conclude this step, we now prove that (Lr,r
−r, ..., L

r,r
r−1, µ) with µ

satisfying (4.17) is the unique solution of (4.16).

Define (U0, ..., U2r−1, µ̃) as another solution of (4.16) and introduce V =
(∆0, ...,∆2r−1,∆µ) the vector of differences between the two solutions and
satisfying,

Γ0
j,2r+1V = 0.(4.19)

Our goal is to show that V = 0.

Let us consider the polynomial

K(x) = ∆0P2r,j(x) + ∆1P2r,j(x− 1) + ...+∆2r−1P2r,j(x− (2r − 1)) + ∆µ.

Note that since
∑2r−1

i=0 ∆i = 0 (according to the unbiasedness constraint),
the degree of K is 2r−1. Keeping in mind the expression of Γ0

j,2r+1, Equation
(4.19) means that K has 2r roots leading to K = 0. By identification and
remembering the expression of P2r, we write that each coefficient associated
to each power is equal to 0:



























for x2r−1 :
∑2r−1

i=0 i∆i = 0,

for x2r−2 :
∑2r−1

i=0 i2∆i = 0,
...

for x2 :
∑2r−1

i=0 i2r−2∆i = 0,

for x :
∑2r−1

i=0 i2r−1∆i = 0.

Finally, since
∑2r−1

i=0 ∆i = 0, (∆0, ...,∆2r−1) can be interpreted as belong-
ing to the kernel of a 2r×2r Vandermonde matrix which is invertible. It leads
to ∆i = 0, ∀i ∈ {0, ..., 2r − 1}, then to ∆µ = 0 and finally to V = 0. That
concludes Step 3.

Proposition 4.6 finally leads to the convergence result.

Proposition 4.7.

The translation-invariant and position-dependent subdivision scheme of pa-
rameter (D, r, r) associated to a G⋆

OD-type semi-variogram is uniformly con-
vergent.

Proof. Since the Lagrange interpolatory subdivision scheme with the same
translation-invariant and position-dependent strategies as for the Kriging-
based one has been proved to uniformly converge in [7], Proposition 4.6 and
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Theorem 4.4 allows one to conclude.

4.3.3. G⋆
ED-type semi-variograms. The following proposition holds:

Proposition 4.8.

The Kriging weights involved in the translation-invariant and position-dependent
subdivision schemes with a G⋆

ED-type semi-variogram satisfy:

(λr,r
j,−r, ..., λ

r,r
j,r−1) →j→+∞

1
2δr−1 +

1
2δr

(λr−1,r+1
j,−r+1 , ..., λr−1,r+1

j,r ) = (λr+1,r−1
j,r−2 , ..., λr+1,r−1

j,−r−1 ) →j→+∞
1
2δr−2 +

1
2δr−1,

...

(λ1,2r−1
j,−1 , ..., λ1,2r−1

j,2r−2 ) = (λ2r−1,1
j,0 , ..., λ2r−1,1

j,−2r+1) →j→+∞
1
2δ0 +

1
2δ1,

(λ0,2r
j,0 , ..., λ0,2r

j,2r−1) = (λ2r,0
j,−1, ..., λ

2r,0
j,−2r) →j→+∞ δ0.

where δk1 is the 2r-vector defined by δk1,m = 1 for m = k1 and 0 otherwise.

Proof. The underlying idea is similar to the proof of Proposition 4.6.
Focussing on the first limit, we start by writing the expression of G⋆

ED-type
semi-variograms for small h:

γ(h) = a0h+ δγ O(h2).

where δγ is equal to 0 or 1 depending on the chosen semi-variogram7.
Then, the Kriging system becomes:

(

Γ0
j,2r+1 + δγΓ

1
j,2r+1

)

Uj+1 = γ0j,2r+1 + δγγ
1
j,2r+1,(4.20)

where,

Γ0
j,2r+1 =













0 a02
−j ... (2r − 1)a02

−j 1
a02

−j 0 ... (2r − 2)a02
−j 1

... ... ... ... ...
(2r − 1)a02

−j (2r − 2)a02
−j ... 0 1

1 1 1 ... 0













,

and γ0j,2r =













2r−1
2 a02

−j

2r−3
2 a02

−j

...
2r−1
2 a02

−j

1













.

Similarly to the proof of Proposition 4.6, the solution of (4.20) is first de-
composed in two terms (Step 1 leading to Expression (4.14) where Γ1

j,2r+1 and

7For example, δγ = 0 (resp. = 1) for a linear (resp. exponential) model.
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γ1j,2r+1 are replaced by δγΓ
1
j,2r+1 and δγγ

1
j,2r+1 respectively) then one proves

that the second term tends to 0 (Step 2). To conclude this proof, it remains
to verify that (Ũ , 0) with Ũ = 1

2δr−1 +
1
2δr is solution of Γ0

j,2r+1Ũ = γ0j,2r+1.
After a short calculus, one gets the expected result. Note that the uniqueness
of this solution is ensured since Γ0

j,2r+1 is by construction invertible (Kriging
matrix associated to the valid linear semi-variogram model). This concludes
the proof for all the limits but the last one. In this case, the asymptotical
weights are no more the Lagrange ones associated to a two-point stencil for
extrapolation. However, a straightforward calculus shows that (Ũ , 12a0) with

Ũ = δ0 is solution of the Kriging system for large enough j.
We then have:

Proposition 4.9.

The translation-invariant and position-dependent subdivision scheme of pa-
rameter (D, r, r) associated to a G⋆

ED-type semi-variogram is uniformly con-
vergent.

Proof. The uniform convergence comes here again from the uniform con-
vergence of the stationary asymptotical subdivision scheme with the same
translation-invariant and position-dependent strategies and Proposition 4.8
combined with Theorem 4.4 allows one to conclude.

5. Numerical tests. This section is devoted to two numerical tests. In
the first one, we numerically verify the convergence results of the previous
section (Propositions 4.6 and 4.8). In the second one the efficiency of Kriging-
based subdivision schemes integrating a position-dependent strategy is illus-
trated.

5.1. Limit functions of the Kriging-based subdivision scheme.

We are focussing on the comparison between the limit functions associated to
Kriging subdivision scheme and to the corresponding stationary asymptotical
one (Propositions 4.6 and 4.8) following the same position-dependent strategy
(Definition 2.2). For sake of simplicity, we are interested in the limiting process
starting from an initial sequence fJ0 = {δk,m}k∈Z, m ∈ Z with the parameters
characterizing the position-dependency fixed to D = 3, r = 2, l = 2 and
Ss = {0.5} (i.e. two zones). We assume that, moreover, the data exhibit the
following structure:

{

1− e−ah (G⋆
ED-type semi-variogram), in Zone 1= [0; 0.5]

1− e−(ah)2 (G⋆
OD-type semi-variogram), in Zone 2= ]0.5; 1]

with a ∈ IR. In order to verify the convergence result, the limit functions
of the Kriging-based subdivision scheme when j → +∞ are evaluated substi-
tuting the limit in j by the limit when a → 0.
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Figures 5.1 and 5.2 display a comparison between some limit functions asso-
ciated to both subdivision schemes with respect to a. The initial sequence is
defined by J0 = 5, m = 15 (exponential semi-variogram) and m = 20 (Gaus-
sian semi-variogram) respectively.
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Fig. 5.1. Examples of limit functions associated to Kriging (solid line) and corresponding
asymptotical interpolatory (dashed line) subdivision schemes. For sake of clarity, a zoom
of these functions is performed by restriction to an interval containing their support. Left
column, exponential case, m = 15 (Zone 1), from top to bottom, a = 0.2, a = 0.04. Right
column, Gaussian case, m = 20 (Zone 2), from top to bottom, a = 0.2, a = 0.02.

As expected, when a → 0, each limit function of the position dependent
Kriging-based subdivision scheme converges to the limit function of the corre-
sponding asymptotical one.

5.2. Data prediction.

5.2.1. 1d discontinuous function. Kriging and Lagrange interpolatory
subdivision schemes are here compared on 1d discontinuous data. The test
function is the following (thick solid line on Figure 5.3):

∀x ∈ [0, 1000], f(x) =

(

−2 ∗
sin( 30

1000x)

2 + x
1000

+ 2

)

χ[255,475]−

(

2 ∗
sin( 8

1000x)

1 + x
1000

)

χ[0,1000]\[255,475]
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Fig. 5.2. l2 error with respect to a between the limit functions associated to Kriging and
corresponding asymptotical interpolatory subdivision schemes. Left, exponential case, right,
Gaussian case. The crosses correspond to the different values of a for which the error has
been evaluated.

For sake of simplicity, in the case of a Kriging strategy, we have chosen to
decouple the problem of the semi-variogram identification and the subdivision
scheme-based prediction. For this simplified 1d example, the semi-variogram
in each zone is therefore estimated by considering a sufficiently fine discretiza-
tion of the test function. Moreover, since our goal is to focus on prediction, we
assume for the moment that the segmentation points {255, 475} are known at
each scale j and we apply a position-dependent Kriging and Lagrange inter-
polatory predictions between J0 = 4 and Jmax = 9. The questions related to
semi-variogram identification from the initial data and to data segmentation
are postponed to Section 5.2.2 where a 2d case study is considered.

Table 5.1 provides the l2-error corresponding to each type of subdivision
scheme and Figure 5.3 displays the predicted and exact data in order to visu-
alize the difference between both approaches around the segmentation points.

Method l2-error

Lagrange 0.4

Kriging 0.1

Table 5.1

l2-error between predicted and exact data provided by position-dependent Kriging and
Lagrange interpolatory subdivision schemes.

It comes out that the position-dependent Kriging-based strategy improves
the prediction (the l2-error is reduced by a factor 4). As for the data in the
vicinity of the segmentation points, a strong undershoot appears at x = 250
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Fig. 5.3. Predicted data (J0 = 4, Jmax = 9). Left, position-dependent Lagrange (dashed
line) interpolation, right, Kriging (solid line) interpolation. The thick solid line corresponds
to the exact surface.

in the Lagrange case whereas it is reduced with the Kriging-based predic-
tion. A similar behavior has already been noticed in the limit function of
Figure 5.1, top, right. Even if it has been shown that the two schemes have
the same asymptotical behavior, there is a big difference between them for
small j especially in the extrapolation process: Lagrange interpolation assigns
large weights (in absolute value) to each point of the interpolatory stencil
(i.e. (3516 ,−

35
16 ,

21
16 ,−

5
16) in our example) while for Kriging with gaussian semi-

variogram, since it assumes a strong spatial dependency, most of the total
weight is given to the closest point to the predicted one.
The improvement of the prediction is not only restricted to the area around
the segmentation points. More precisely, thanks to the construction of a semi-
variogram in each zone, the structure of the data is faithfully identified leading
to a better prediction around x = 470 for example.

5.2.2. 2d discontinuous surface. The previous 1d example is here ex-
tended to the bivariate case by considering the following test function (Figure
5.4, top):

∀(x, y) ∈ [0, 1000]2, f(x, y) =











10
sin( 30

1000
x)

2+ x
1000

sin( 10y
1000

)

5+ y
1000

+ 2, in Zone 1=C

2
sin( 8

1000
x)

1+ x
1000

sin( 2y
1000

)

8+ y
1000

, in Zone 2=[0, 1000] × [0, 1000]\C,

where C = {(x, y) ∈ [0, 1000]×[0, 1000]/( x
1000−0.5)2/3.0+( y

1000−0.5)2/3.0 ≤
0.02}.
Contrarly to the previous section, it is assumed that the only available in-
formation is provided by the data at the coarse level J0 where the semi-
variogram identification and the segmentation curve detection are performed.
Our position-dependent kriging-based subdivision scheme is here applied from
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J0 = 4 to J0 = 9. Therefore, we first focus in the sequel on the estimation of
the semi-variogram for each zone.

• Semi-variogram identification:

This identification is performed using the SUNSET software ([10]) developped
at IRSN. The two experimental semi-variograms associated to each zone have
been first computed from the available data corresponding to the discretiza-
tion of the test function on the dyadic grid XJ0 = {(1000 ∗ m2−J0 , 1000 ∗
n2−J0), (m,n) ∈ {0, ..., 2J0}2} with J0 = 4.. They are depicted by the cross
signs on Figure 5.4 bottom. Then, two Gaussian models of type γ(h) =

c
(

1− e−(ah)2
)

have been fit by a least square method (see Table 5.2 and Fig-

ure 5.4).
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Fig. 5.4. Top: Test function. Bottom: semi-variograms of Zone 1 (left) and Zone 2
(right).
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Parameters c a

Zone 1 0.17 0.014

Zone 2 0.01 0.003

Table 5.2

Estimated parameters (c, a) for the two gaussian semi-variograms.

Obviously, the data exhibit two different spatial structure in each zone.
Even if the behavior of the semi-variogram is smooth at the origin for both
zones, it is interesting to notice that 95% of the asymptotical sill (i.e. limh→+∞γ(h))
is reached when h = 120 and h = 500 for Zone 1 and 2 respectively. This trans-
lates the stronger variation at small scales associated to the test function in
Zone 1.

• 2d kriging-based prediction:

The prediction is here performed with a 2d kriging-based subdivision
scheme. It is constructed by tensorial product of two 1d schemes ([2], [7]).
Figure 5.5, top, displays two cuts of the predicted data and Table 5.3 (first
column) provides the associated l2-error. Since the segmentation curve is not
exactly known at each scale, it appears that the misleading localization of
the segmentation curve for j ≥ J0 strongly deteriorates the accuracy of the
prediction.

Initial grid XJ0 , J0 = 4 XJ0,J0+1, J0 = 4 XJ0 , J0 = 5

(289 points) (349 points) (1089 points)

l2-error 0.42 0.29 0.21

Table 5.3

l2-error with respect to the initial grid.

In order to circumvent this limitation, we propose a grid refinement algo-
rithm based on the kriging estimation variance. More precisely, noticing that
the estimation variance given by Expressions (3.11) and (3.12) is bigger along
the segmentation curve (Figure 5.6, left) due to adaptation of the stencil, the
algorithm with grid refinement reads as follows:

1) Starting from the initial coarse grid, XJ0 , apply the position-dependent
Kriging-based prediction until J0 +1 and compute the associated esti-
mation variance,
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2) Construct a new refined grid XJ0,J0+1 by adding to the original coarse
grid new points corresponding to the grid points of XJ0+1 with the
maximal estimation variance, i.e. larger than a given threshold Th,

3) From the data associated to XJ0,J0+1, apply the Kriging-based predic-
tion to get the predicted values at level j > J0 + 1.

Figure 5.6, right, provides the refined grid XJ0,J0+1. Moreover, Figure 5.5,
bottom, displays a cut along x = 375 and y = 500 of the predicted data and
the corresponding l2-error is given by Table 5.3 (second column).
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Fig. 5.5. Cross section of the prediction surface using a position-dependent Kriging-
based subdivision scheme (Left x = 375, Right y = 500), J0 = 4, Jmax = 9. Top, without
grid refinement, bottom, with grid refinement. The thin (resp. thick) solid line stand for the
predicted (resp. exact) surface.

As expected, the 60 added points allow one to reduce the l2-error (of a
factor 1.5). By iterating this algorithm through the scales j, one can limit
the impact of a misleading localization of the segmentation curve. Moreover,
comparing with the third column of Table 5.3, it comes out that the regular
grid associated to J0 = 5 and the non-regular one generated by our algorithm
lead to similar l2-error. Therefore, by automatically refining the information
in some region of interest (such as where the estimation variance is large), it
has been possible to reach the same accuracy in the prediction with a gain of 3
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Fig. 5.6. Grid refinement. Left, estimation variance
(

σJ0+1
)2

(J0 = 4) (the grey
squares stand for the predicted points with an estimation variance larger than 0.014) , right,
refined grid XJ0,J0+1 (cross sign for the coarse grid and circle one for the 60 extra points
corresponding to the grey squares of the left-hand plot).

in the number of points in the initial grid. This is an important result for real
applications such as risk analysis studies where considering a fine discretization
grid is not technically or economically affordable.

Remark 5.1.

- The previous algorithm is generic and can be applied to any functions ex-
hibiting discontinuities as soon as the data segmentation has been properly
performed and the spatial structure in each zone has been identified through
the estimation of a semi-variogram. Moreover, it is straightforward to itera-
tively extend the underlying procedure in order to increase the number of extra
points in the new grid coming from finer level, i.e. j > J0 + 1 if we are inter-
ested in a more accurate prediction in the vicinity of the segmentation curve.
- This last result points out an important advantage of Kriging-based approach.
The computation of the estimation variance associated to the prediction pro-
vides an extra-information that can be easily integrated to improve the recon-
struction by pointing out the zones where to refine the set of known values: it
leads to adaptive design of experiments ([21], [20]) . Moreover, this variance
is of great interest in practice such as in risk analysis studies since it controls
the confidence that we can have in the predicted values ([8]).

6. Conclusion. A new type of subdivision schemes adapted to data and
to a partition of their support has been introduced. The originality of its con-
struction lies in the coupling of position-dependent multiscale approximation
and Kriging theory. In this way, it exploits the advantages coming from both
approaches:

• the integration of the data spatial dependency (through the estima-
tion of a semi-variogram) in the computation of the mask leading to a
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relevant prediction,
• the estimation of an a priori prediction error (through the computa-

tion of an estimation variance that can be used to exhibit confidence
intervals) allowing one to quantify the uncertainty associated to each
predicted point and that can be iteratively used in a grid refinement
procedure,

• the flexibility in the choice of the interpolatory stencil ensuring a
position-dependent strategy to faithfully reconstruct piecewise-regular
data.

The proposed Kriging-based subdivision schemes have been fully analyzed
by extending classical results of convergence for subdivision scheme to this
new framework. The numerical tests and the comparisons to the position-
dependent Lagrange interpolatory scheme introduced in [7] have shown a sig-
nificant improvement for the prediction of non-regular functions which remains
a key issue in many industrial problems.
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