
HAL Id: hal-01108425
https://hal.science/hal-01108425

Submitted on 22 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Somatic Alterations in Cancer Genome:
From SNP Arrays to Next Generation Sequencing

Tatiana Popova, Valentina Boeva, Elodie Manié, Yves Rozenholc, Emmanuel
Barillot, Marc-Henri Stern

To cite this version:
Tatiana Popova, Valentina Boeva, Elodie Manié, Yves Rozenholc, Emmanuel Barillot, et al.. Anal-
ysis of Somatic Alterations in Cancer Genome: From SNP Arrays to Next Generation Sequencing.
Genomics I Humans, Animals and Plants, 2013. �hal-01108425�

https://hal.science/hal-01108425
https://hal.archives-ouvertes.fr


Analysis of Somatic Alterations in Cancer
Genome: From SNP Arrays to Next

Generation Sequencing

Tatiana Popova
Institut Curie, Centre de Recherche

INSERM U900, INSERM U830
France

Valentina Boeva
Institut Curie, Centre de Recherche

INSERM U900
France

Elodie Manié
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1 Introduction

Abnormal genetic content is observed in many tumors and is considered as one of the hallmarks of cancer
(Hanahan & Weinberg, 2011). Evolution of cancer is thought to be tightly connected with evolution of
cancer genome (Podlaha et al., 2012). Studying the cancer genome is important as it may unravel the key
genomic events or some particular genomic features, which could shed light on tumor biology and have
clinical implications. When considering the genome of an advanced tumor, we observe the “end” point of
its evolution often showing numerous acquired rearrangements (Figures 1 & 2). Exact genetic pathways
and chronology of events acquisition remain unclear and have only started to be unraveled using whole
genome sequencing (Stratton et al., 2009). Reconstructed history of several tumor genomes supported
the hypothesis of sequential acquisition of genomic events (with possibly variable density in time) and
clonal development (Nik-Zainal et al., 2012). Although there is still debate whether genomic alterations are
causes or consequences of cancer, numerous genomic features have already been linked to initiation and
progression in many types of cancer (Tran et al., 2012). Some of these genomic features were introduced
into clinical practice largely contributing to the diagnostics and treatment choices (Stuart & Sellers, 2009).

In the last decades, several high throughput techniques have been developed to measure genetic al-
terations in cancer. Spectral Karyotyping (SKY) or other mitotic chromosome imaging gives a general view
on chromosomal content in a cancer cell, but the resolution is low, and fine description of genetic alterations
based on these images is largely impossible (Figure 2A). Array comparative genomic hybridization (CGH)
has been widely in use for the last 20 years showing relative pattern of genetic alterations at rather high
resolution (Figure 2B). Single nucleotide polymorphism-based platforms (SNP-arrays) have progressively
replaced CGH in tumor characterization, as they allowed estimation of absolute copy numbers and allelic
contents (Figure 2C). Next Generation Sequencing (NGS) gives the most complete information about cancer
genome, including point mutations and chromosomal translocations at base pair resolution (Figure 2D).

In this chapter we consider basic hypothesis, problem statements and technological and computa-
tional solutions for analysis of copy number alterations in tumor genomes. We provide a data mining tech-
nique (based on the GAP method described in (Popova et al., 2009)) which allows extraction of absolute
copy numbers and allelic contents from the whole genome copy number variation and allelic imbalance
profiles obtained by SNP arrays or NGS.

2 Basic Hypothesis in Exploratory Analysis of Cancer Genome

What events are essential for tumor initiation and evolution and how they are manifested in the tumor
genome? In the simplistic view, there are two major contributors to cancer development: first, tumor pro-
moting events, i.e. “switching on” oncogenes (growth factors, etc); second, elimination of antitumor pro-
tection, i.e. “switching off” tumor suppressor genes (genome guardians, checkpoints, etc) (Grander, 1998).
Major genomic mechanisms of oncogene activation are gain-of-function mutations, chromosome transloca-
tions (which, for example, place the gene under an activating promoter) and amplification of chromosome
region containing the gene. Major genomic mechanisms resulting in inactivation of tumor suppressor gene
are mutations and deletions of chromosome region containing the gene. The Knudson’s two hit hypothesis
for recessive tumor suppressor gene implies tumor initiation when two copies of the gene are inactivated
(i.e. in the normal diploid human genome, where autosomic genes exist in two copies) (Knudson, 1971).



Figure 1: Sequential acquisition of genetic alterations in tumor evolution.

Figure 2: Measuring alterations in a cancer genome. A. Whole genome karyotyping image
(SKY) of breast cancer cell lineMDA-MB-468 (http://www.path.cam.ac.uk/pawefish/);
B. High resolution arrays (BAC, CGH) representing relative copy number variation profile; C.
High resolution Affymetrix SNP chip 6.0 array profiles of a primary breast tumor: allelic imbal-
ance (AI), copy number variation (CNV) and recognized absolute copy number (CN) profiles; D.
Circus plot showing chromosomal translocations and copy number variation obtained by NGS
for a primary breast tumor (figure from (Natrajan et al., 2012)).

http://www.path.cam.ac.uk/pawefish/


Double deletion of a locus or combination of mutation and loss of normal copy (resulting in so called loss
of heterozygosity [LOH]) are the genomic indicators of possible tumor suppressor genes. The associa-
tion between recurrent deletions and tumor suppressors as well as amplifications and oncogenes has been
confirmed by the analysis of more than 1300 tumor genomes (Beroukhim et al., 2010).

Besides local genomic indications for lost and acquired genes the whole pattern of alterations in a
tumor genome, such as chromosomal content (ploidy), number of chromosomal breaks, complexity of intra-
and inter-chromosomal rearrangements, may evidence disruption of some pathways, such as DNA repair
or chromosome maintenance. For example, BRCA1−/− breast tumors display more rearranged genomes
compared to non-BRCA1 tumors; alternatively, non-BRCA1 tumors with highly rearranged genomes could
be mutated in another gene from the DNA repair pathway, such as BRCA2 (Popova et al., 2012). In this
regard analysis of tumor genome profiles could contribute to the tumor classification problem.

A number of studies have shown that although each tumor genome is unique, some alterations ob-
served within the type of tumor/tissue are highly recurrent. For example, more than 90% of triple negative
breast tumors carry a mutation in the TP53 gene and display LOH on the chromosome 17 (Manie et al.,
2009); almost all clear cell renal cell carcinomas have deletion in the 3p chromosome arm (Hagenkord et
al., 2011); majority of low grade estrogen receptor positive ductal breast carcinomas have 16q deletion and
half of them display 16p gain (Natrajan et al., 2009); numerous subtypes of cancers have amplification of
8q; etc. Some of these recurrent alterations were found to target certain tumor related genes as the min-
imal shared region of alteration clearly identifies a gene locus. Other recurrent alterations comprise the
whole chromosome arm. In this case the list of possible functionally related targets is large and uncertain.
On the other hand, it was shown that some genomic regions “prefer” to be gained or lost independent of
the type of tumor (Beroukhim et al., 2010). The current understanding associates some of recurrent alter-
ations with chromosome structure or function (for example, fragile sites, long repeats favoring chromosome
recombination, formation of di-centric chromosomes leading to breaks and fusion cycles, interference of
transcription and replication in large genes, etc.) (Bignell et al., 2010; Cassidy & Venkitaraman, 2012). Ge-
nomic alterations “accompanying” causative (driver) mutations or arising as a consequence of functioning
due to extensive growth were referred as passenger events (Stratton et al., 2009). Thus, the main challenge
in tumor genome interpretation is distinguishing alterations associated with the driver and the passenger
events.

To conclude, for unraveling cancer genome complexity we need to annotate alterations in tumor
genome in order to find recurrent amplifications, deletions, gains, losses, and LOH, which possibly target
cancer related genes. We need to be able to characterize tumor ploidy and the level of rearrangements to
describe cancer genomes as completely as possible.

3 Measuring Genetic Alterations by SNP Based Technique

The normal human genome contains two copies of each autosome (chromosomes 1-22) and two copies of
the sex chromosome X in females (XX) or one copy of each of the sex chromosomes X and Y (XY) in
males. These two alleles have paternal and maternal origins and are 99.9% identical in DNA sequence. A
difference between two alleles is referred as a genetic variation and includes, in particular, Single Nucleotide
Polymorphisms (SNPs) (Figure 3). We say that a SNP is homozygous if paternal and maternal alleles have
identical nucleotides; the SNP is heterozygous if paternal and maternal alleles have different nucleotides.



Figure 3: Single Nucleotide Polymorphism (SNPs) in individual genome and in population.
Status of SNP in individual genome is defined as homozygous (two identical nucleotides) or
heterozygous (distinct nucleotides). Single nucleotide variation is designated as a SNP, if its
minor allele frequency exceeds 1% in at least one population; otherwise it is called variant or
mutation.

Homozygous SNPs are called non-informative because they do not allow the two alleles to be distinguished.
At the moment, near 30 million of SNPs are annotated in the dbSNP database (to be annotated as a SNP,
variant frequency at the specific locus should exceed 1% in, at least, one population (Sherry et al., 2001)).

The cancer genome is characterized by abnormal genomic content, meaning, the number of chromo-
somes and their structure are different from the normal state. Variation in copy numbers is a result of losses
of one of the two alleles (or both alleles, so called homozygous deletion, rarely comprising a large genomic
region), gains of up to several copies of one or both alleles, and copy neutral LOH (two identical alleles,
also called uniparental disomy) (Albertson et al., 2003). Which allele is lost or gained in a cancer genome
is essentially unknown unless the parents of the patient are also genotyped (that is not a common practice
in tumor genomic studies). That is why alleles are designated arbitrarily as A and B, and characterization
of allelic content in tumor genome consists of indicating copy number (CN) and major allele (MA) counts
(for example,CN = 3 and MA = 2 correspond to genotypes AAB and ABB, and could be described as “two
identical alleles out of three”). Allelic content is characterized by B Allele Frequency (BAF) or Allelic
Difference (AD), which represent the ratio of the major allele counts and the copy number or the difference
between major and minor allele (MI) counts (MI =CN −MA), respectively:

BAF =MA/CN = nc
B/CN, (1)

AD =MA−MI = nc
B−nc

A, (2)

where CN is copy number, nc
B,n

c
A are numbers of B and A alleles in cancer genome (historically, B allele

counts are associated with the major allele counts). Plotting genomic states in two dimensions, namely,
allelic content (x axis) and copy number (y axis) gives visual representation of all possible allelic contents
and copy numbers, which could be observed in a tumor genome (Figure 4). Monoallelic genomic states (B,
BB, BBB, etc., designated by red color in the table and red rectangles in Figure 4) represent genomic states
with LOH.

Measuring genetic alterations in a cancer genome with SNP-based technology consists of measuring
allelic contents in numerous SNP loci along the genome. If the technology provided perfect measurement



Figure 4: All possible allelic contents for DNA copy number from 1 copy to 5 copies. A. Pattern
of genomic states if allelic content is characterized by B allele frequency (BAF) (Illumina); B.
Pattern of genomic states if allelic content is characterized byAllelic difference (AD) (Affymetrix
SNP 6.0, CytoScanHD).C.Evaluation ofBAF andAD fromCN andMA. CN: copy number; MA:
major allele counts; homozygous genomic states are shown in red; position of each pair (CN,
MA) is represented on the graphs by the small squares (MA: x axis; CN: y axis); red rectangles
indicate homozygous genomic states (LOH); only CN ≤ 5 are shown, however, the structure
could be easily extended to the higher CN levels.

of the number of A and B alleles in each SNP locus, each genomic region would be characterized by the
pair of values (CN, MA) corresponding to one of the genomic states shown in Figure 4. However, there is
no such perfect technology available yet. Whole genome profiles of genetic alterations provided by SNP-
arrays (or NGS) represent relative copy number variation (CNV) and allelic imbalance (AI) profiles (Figures
2C & 5, see Appendix A for SNP array platforms description). Allelic imbalance profile characterizes
allelic content by BAF or AD, depending on the normalization applied to the measured profile. These
profiles are affected by technological noise and experimental variation (biological sample preparation);
furthermore, the measured tumor sample often has significant admixture of the normal genome (so called
normal contamination, as the single cell technology is not yet a common place, the measured tumor sample
is usually a mixture of tumor and normal stromal cells). Thus, annotation of measured relative variation
profiles with absolute copy numbers and major allele counts represents a problem statement for further data
mining.



Figure 5: The whole genome profiles of genomic rearrangements for one primary breast tumor
measured on two platforms and their GAP plots. A. Illumina 300K SNP array profiles (left) and
corresponding GAP plot (right): Copy Number Variation (CNV) profile is represented by log R
ratio (LRR), Allelic Imbalances (AI) are represented by B allele frequency (BAF); B. Affymetrix
SNP 6.0 profiles (left) and corresponding GAP plot (right): CNV profile is represented by Log 2
Ratio (L2R), AI are represented by Allelic Differences (AD). GAP plots display combined side-
view projections of segmented CNV and AI profiles; each region of genome is represented by
two symmetrical circles; position of a circle is defined by median of CNV (y axis) and (lower)
mode of AI (x axis); the size of a circle is proportional to the segment size; rectangles indicate
the copy number / allelic content patterns.

4 Genome Alteration Print (GAP) for Mining Genetic Alterations

Here we describe a data mining technique developed for SNP arrays, which allows extraction of absolute
copy numbers and allelic contents from the whole genome CNV and AI profiles. The method is based on
the structure denoted by Genome Alteration Print (GAP) (Popova et al., 2009). GAP is a two dimensional
representation of segmentedCNV andAI profiles of ameasured tumor sample and characterizes the spectrum
of rearrangements presented in the tumor (Figure 5, right panels). In order to build the GAP of a tumor,
CNV and AI profiles are segmented; the values are smoothed within the segments by median (CNV) and
mode (AI); the segments are plotted on the AI × CNV plane as the circles of the radius proportional to the
segment size (see Appendix B for details).

GAP patterns of the breast tumor sample measured on the Illumina and Affymetrix platforms (Figure
5, right panels) resemble the patterns of copy numbers and allelic contents represented by BAF and AD
respectively (Figure 4). Tumor GAPs differ from the copy number / allelic content plots by (1) uneven
distribution of CN levels along the vertical axis (due to the original CNV profiles represented in the log-



scale: Log R Ratio and Log2Ratio in Illumina and Affymetrix platforms, respectively); and (2) a shift on
the horizontal axis toward 0.5 or 0 of BAF or AD, respectively (due to the normal contamination present in
the tumor).

In order to account for normal contamination in copy number / allelic content template we considered
the sample containing proportion p of normal cells and (1-p) of tumor cells. Adding proportion p of normal
heterozygous (AB) signal to the copy numbers and allelic contents we easily can obtain the model patterns
accounting for the normal contamination (Figure 6):

CN p
= (1− p) ⋅CN +2p, (3)

BAF p
=
(1− p) ⋅nc

B+ pnn
B

(1− p) ⋅CN +2p
, (4)

ADp
= (nc

B−nc
A) ⋅(1− p)+(nn

B−nn
A) ⋅ p, (5)

where CN is copy number; nc
B,n

c
A,n

n
B,n

n
A are numbers of B and A alleles in (c)ancer and (n)ormal genomes

(nc
B = [CN/2], . . . ,CN; nc

A =CN −nc
B; nn

B = 1, if nc
B <CN; nn

B = 1,2, if nc
B =CN). These two patterns represent

the model templates for mining genetic alteration measured by SNP arrays. It is worth noting that LOH
are now represented by two sets of genomic states (designated by red quadrangles in the Figure 6) and
the distance between the two LOH sets characterizes the level of normal contamination. Because of normal
contamination SNPs with acquired homozygosity had addition of normal heterozygous signal, which shifted
their AI towards heterozygous states (for example, (1− p)⋅ BB + p⋅AB). SNPs homozygous in the germline
did not change their position ((1− p)⋅ BB +p⋅BB = BB) (compare Figures 4 & 6). Thus, moderate level of
normal contamination could help distinguish segments with germline and acquired homozygosity. However,
increasing the normal contamination proportion leads to the pattern shrinkage towards 2 copies, in extremity
(when p is close to 1) converging to a normal genome. Acquired and germline homozygosities are not
distinguishable in the case of pure tumor sample or cell line.

All the GAPs obtained for a large set of SNP-arrays measuring breast, prostate, lung and some other
tumors were found resembling the model patterns of copy numbers and allelic contents defined above.
However, the dynamics of change in measuredCNV profiles was observed to have high degree of variation
from sample to sample. To account for this experimental variation we introduced the coefficient of CNV

contraction q, which is supposed to adjust the difference in scales between model CN and measured CNV

profiles (Figure 6).
The common way of annotating a SNP array profile consisted thus in finding the model template

which fits best to the measured GAP. Finding the model template means defining three parameters, namely,
proportion of normal contamination (p), coefficient of CNV contraction (q), and position of 2 copies on the
CNV scale (C), such that the model template maximally corresponds to the measured GAP. GAP plane is
annotated with CNs and MAs from the model template and genomic segments are annotated accordingly
(Figure 7).

A quality of fitness of the measured GAP to the model template is assessed by the genome cov-
erage in terms of number of SNPs that are explained by the model. However, fitting regular structures
might not result in one unique best solution. To avoid ambiguity, we filter redundant templates and choose
interpretation with the lowest possible CN set and minimal possible normal contamination. All param-
eters of the model template were set up and extensively tested on a large cohort of tumor genomes and
under manual control of recognition quality (visual representation of tumor GAPs and model templates,



Figure 6: Model templates and three parameters modifying the model (indicated by the blue ar-
rows (p,q) and stars (C)) to fit to a tumor GAP. A. Template for Illumina platform. B. Template
for Affymetrix platform. p is normal contamination proportion; q is coefficient of CNV contrac-
tion; the stars correspond to 2 copy centering position onCNV scale (parameterC). Homozygous
states are designated by red quadrants.

as shown in Figure 7, allows judging on correct or incorrect recognition). Current implementation of
the GAP method provides near 80% rate of correctly found model templates. Moreover, complicated
cases could be annotated manually by introducing three parameters, which (according to a user) provide a
proper correspondence between tumor GAP and the model template. More details and algorithm of recog-
nition are presented in Appendix C; R scripts and full details of the application are available at (http:
//bioinfo-out.curie.fr/projects/snp_gap/).

5 Validation of the GAP Method

Our group used the GAP method to process numerous SNP array profiles mainly of breast tumors. As a
result of the recognition procedure we obtained the level of normal contamination (p), and the profile of
segmental copy numbers and allelic contents (segmental genotypes) for each tumor (one example is shown
in Figure 2C). With the current implementation recognition of absolute copy number ranged from 0 to 8
copies (all segments with the copy number variation exceeding 8-copy level were ascribed 8-copy status).
Thus, 22 possible segmental genotypes were discriminated (copy number / major allele count): B (1/1); BB
(2/2) and AB (2/1); BBB (3/3) and ABB (3/2); BBBB (4/4), ABBB (4/3) and AABB (4/2); etc.

The way we model the proportion of normal contamination (p) for BAF evaluation has been already
described in a number of publications and confirmed by the dilution series and computer simulations (Nan-
carrow et al., 2007; Staaf et al., 2008a). To verify our evaluation of the normal contamination and AD we
considered the dilution series of the lung cancer cell line (H-1395) available on Affymetrix SNP 6.0 plat-

http://bioinfo-out.curie.fr/projects/snp_gap/
http://bioinfo-out.curie.fr/projects/snp_gap/


Figure 7: GAP plots and results of automatic recognition procedure of copy number and allelic
content in three primary breast tumors. The best fitting model template is shown by colored
rectangles, designated by the ratio: CN/MA. A. and B. GAPs and recognition templates for the
breast tumor sample shown in Figure 5 on Illumina (A) and Affymetrix (B) platforms; C. andD.
Examples of model fitting for two over-diploid breast tumors on Illumina (C) and Affymetrix
(D) platforms.



Figure 8: DNA indexes for the breast tumor genomes. A.Validation of copy number attribution
based on the GAPmethod: each point represents DNA index of a primary breast tumor measured
by SNP array (x-axis) and by flow cytometry (FCM) (y-axis). B. Distribution of DNA indexes
obtained from the SNP arrays of a big cohort of breast tumors.

form (GEO GSE29172) (Rasmussen et al., 2011). For the proportions 0, 0.3, 0.5, and 0.7 of the normal
cells admixture, we obtained the model parameter 2p to be 0.1, 0.44, 0.6, and 0.76, respectively (see Figure
6 B). As far as we can conclude from this small series, 2p could be considered as a reasonable upper esti-
mation of the normal contamination in Affymetrix SNP 6.0. It is worth noting that (i) the model parameter
p significantly underestimated normal contamination; (ii) 70% contaminated tumor displayed almost flat
merely recognizable profile.

In order to validate our SNP array interpretation in the total set of copy numbers, we compared DNA
contents inferred from recognized copy number profile with those provided by flow cytometry (FCM). DNA
index provided by FCM characterizes DNA content of tumor genome relative to normal diploid genome,
for which DNA index is set to 1. DNA indexes from SNP arrays were estimated by averaging segmental
copy numbers divided by 2. DNA indexes inferred from SNP-arrays are in close correspondence with actual
tumor DNA indexes measured by FCM analysis for 20 out of 23 tested samples of breast carcinomas (Figure
8A).

We also validated our recognition procedure by comparing inferred number of chromosomes with
known karyotypes or SKY data of 25 breast cancer cell lines (http://www.lgcstandards-atcc.org/,
http://www.path.cam.ac.uk/~pawefish/). The number of chromosomes was estimated by the sum
of the copy numbers detected at the pericentric regions. The status of the pericentric region of each chro-
mosome arm was defined by the corresponding juxta-centromeric segment when the latter contained 500
SNPs or more (Affymetrix SNP 6.0). When not measurable, missing values were substituted by the modal
copy number of the considered chromosome arm (3.4±2.2 out of 41 chromosome arms per genome were
substituted in the series).

Error rate was less than 2 chromosomes per sample (1.7±2.3) in the considered set of breast cancer
cell lines (Table 1). To conclude, copy number recognition by the GAPmethod results in correct predictions

http://www.lgcstandards-atcc.org/
http://www.path.cam.ac.uk/~pawefish/


in the majority of tested cases.

6 Other Approaches to Mine SNP Arrays and General Problems

Numerous studies have contributed to better understanding cancer genomics and in particular mining SNP
array measurements (Assie et al., 2008; Attiyeh et al., 2009; Gardina et al., 2008; Lamy et al., 2007).
However, it is the copy number / allelic content structure (Figure 4 & 6) standing behind the SNP-based
genomic profiling (with linear or non-linear transformation depending on the physical properties of a mea-
suring device and a way of data normalization) that should govern any copy number recognition procedure.
Simplicity of copy number / allelic content pattern implies various possible approaches for copy number
recognition. Existing integrated approaches includes Hidden Markov Models (PICNIC (Greenman et al.,
2010), GPHMM (Li et al., 2011)) and pattern recognition strategies (GAP (Popova et al., 2009), ASCAT
(Van Loo et al., 2010), TAPS (Rasmussen et al., 2011)), Absolut (Carter et al., 2012).

Quality of a SNP array mining procedure should be estimated by correspondence between reported
tumor characteristics (such as CN and MA profiles, number of breakpoints, percent of tumor cells) and
the actual tumor states in a large set of samples and under various conditions. Problems that could affect
recognition potential of all the methodsmentioned above could be subdivided into three groups: (i) technical
problems associated with quality of measured SNP array profile and physical properties of a measuring
device; (ii) tumor heterogeneity; (iii) ambiguity in interpretation of SNP array profiles.

The first class of problems associated with quality of measured SNP array profile includes various
effects of unknown origin resulted in non-specific variation in CNV profile, such as high percent of outlying
values; low-frequency fluctuations, so called waves in CNV profile; high-frequency saw-tooth waves, not
associated with CN change; etc. AI profiles appeared to be more stable and not affected by these variations.
Thus, data mining techniques more relying on AI profiles could be more successful and give more reliable
estimation of tumor rearrangements in these cases. However, low quality profiles are more exceptional than
regular cases in the latest generation of SNP arrays.

The problems associated with physical properties of measuring devices also include the signal satu-
ration effects, which hamper accurate detection of high copy number levels.

The second class of problems is intra-tumor heterogeneity, which include normal contamination and
subclonal structure (Shipitsin et al., 2007). Although presumably arisen from a single cell (monoclonal
proliferation), cancer progression leads to the sub-populations bearing different genomic alterations (sub-
clones) coexisting in most tumor samples (Navin et al., 2010). Variation observed by SNP-array in a tumor
genome reflects genomic alterations shared by all tumor cells and subclonal events shared by only subpop-
ulation of tumor. CN and MA status of an alteration specific to sub-clones is generally indefinable from
SNP arrays as the measured signal reflects the sum of unknown subclonal signals in unknown proportions.
Intermediate CNV levels due to subclonal events could be interpreted as actual CN level and overall pattern
of copy number set could be thus overestimated.

Another type of problems in mining SNP arrays is associated with classes of tumor genomes not
distinguishable by SNP array profiles. This follows from the relative nature of measured profile and regular
structure of allelic content / copy number pattern. For example, there is no way to distinguish the genomes
displaying AB and B states versus AABB and BB ones, if there are no other events (such as ABB) in the
latter case. However, this is probably a rare situation (as we can conclude at least for breast cancer genomes).



Cell line GAP ATCC ATCC min ATCC max SKY Error
HCC2157 63 75 65 79 2
HCC38 75 75 65 79 78 0
Hs-578T 61 59 50 77 0
MDA-MB-157 55 53 52 69 62 0
MDA-MB-231 63 64 52 68 0
MDA-MB-468 66 64 60 67 54 0
MDA-MB-435 58 56 55 62 0
CAMA-1 70 80 68 83 0
BT-483 81 72 46 130 0
MCF-7 84 82 66 87 0
MDA-MB-361 60 56 54 61 56 0
BT-549 83 78 73 80 3
MDA-MB-453 96 90 87 91 90 5
HCC1143 84 84 0
HCC1187 66 64 2
HCC1937 91 100 88 0
MDA-MB-436 40 45 5
HCC1569 99 132 outlier
HCC1599 73 64 9
HCC1954 101 97 4
HCC70 99 95 4
PMC-42 61 64 3
184B5 48 47 1
SKBR.3 85 84 80 1
ZR-75-1 71 72 75 1

Table 1: Number of chromosomes in the cell lines according to GAP estimation, ATCC de-
scription and SKY images. Error was calculated as minimal absolute difference between GAP
estimation and ATCC and/or SKY numbers.

Obviously, all aforementioned methods performed well on the high quality SNP array profiles with
moderate level of normal contamination, low complexity and a good contrast. The differences between the
methods start to arise when a tumor sample or its measured profile have compromised quality. PICNIC
has problems with normal contamination as it was designed for cell lines, GPHMM tolerated up to 90%
of normal contamination well but might be sensitive to sub-clones, GAP usually overestimates the number
of breakpoints (an additional smoothing procedure is needed) and looses recognition quality when normal
contamination exceeds 70%.

Accurate evaluation of performance of several SNP array mining approaches with respect to the nor-
mal contamination and profile complexity (using simulated data) has been done recently by an independent
group (Mosen-Ansorena et al. 2012). The GAPmethod showed the best performance among all approaches
tested. We consider that the major advantage of the GAP method is its visualization based strategy which
allowed setting up an automatic recognition procedure and fitting a number of hidden parameters based on
a large set of tumor genomes and under clear-cut manual control.



7 Next Generation Sequencing (NGS)

The recently developed Next generation sequencing (NGS) technology – through whole-genome, whole-
exome and whole-transcriptome approaches – provides the most complete view on the cancer genome and
has a potential to uncover all spectrum of somatic variation, deduce tumor history and sub-clonal structure
(Greenman et al., 2012; Meyerson et al., 2010). Extracting absolute copy numbers belongs to the “must
have” package for future NGS processing pipelines providing cancer genome characterization from point
mutations to large-scale chromosomal rearrangements. Here, we want to outline current methodological and
technological issues related to the large-scale absolute copy number and allelic content recognition based
on NGS data.

NGS technology consists of shearing tumor genomic DNA into small fragments (200-4000bp), am-
plifying, and reading fragments using Illumina, SOLiD, PacBio or IonTorrent Analyzers (Metzker, 2010).
The single-end or paired-end reads are mapped back to the reference genome, providing coverage of each
genomic position by a number of short fragments (reads). Window-averaged number of reads along the
genome characterizes CNV profile; reads covering known annotated SNP positions could be used to obtain
BAF profile (Nielsen et al., 2011). As soon as CNV and BAF profiles are obtained, the same strategy of
tumor genome annotation that is described for SNP arrays could be applied (Boeva et al., 2012). Due to
potentially linear relationship between the number of reads and actual DNA copy number, segmented CNV
and BAF profiles should follow the pattern shown in Figure 6A, where coefficient q is no more necessary
and dynamics of copy number layers itself could provide the level of normal contamination (see equation
(3)) (Boeva et al., 2011; Gusnanto et al., 2012).

However, at the moment a number of difficulties exist in extracting tractableCNV and BAF profiles
from NGS data. Firstly, the number of reads along the genome depends heavily on regional GC content
and read mappability, which result in large unspecific variations in CNV profile. Secondly, the reference
allele usually has more reads due to asymmetric mapping procedure and BAF calculation results in a very
noisy profile. Several normalization strategies using a matched normal sample or correcting for GC-content
and/or mappability have been suggested (Boeva et al., 2011). In the case of targeted sequencing (for ex-
ample, whole exome sequencing), in addition to mappability and GC-content, a bias resulting from uneven
capture in different targeted regions should also be corrected (Li et al., 2012; Sathirapongsasuti et al., 2011 ).
Mapping reads on the genome indexed with SNPs and exclusion of low quality reads before BAF calculation
could improve genotype prediction.

Alternatively, huge numbers of reads provided by NGS could help annotating alterations by seq-
uencing-specific approaches. In the case of paired-end sequencing, predicted alterations can be supported
and clarified by the fragments encompassing the junction, which could be detected using abnormal reads
mapping (Medvedev et al., 2010). Moreover, “split-read” mapping (i.e. partial mapping of reads encom-
passing a junction) can provide base-pair resolution of alterations (Wang et al., 2011).

To conclude, accurate evaluation of copy numbers and allelic contents directly from the read counts
is still not entirely implemented into powerful bioinformatics tools; mostly because of the short time frame
since NGS data are available for the scientific community. Bioinformatics developments and NGS tech-
nology itself advance at a staggering rate that will undoubtedly result in new computational solutions in the
future.



8 Detection of Tumor Ploidy and Attribution of Gains and Losses

Extracting biologically relevant information from a recognized tumor genome profile represents an im-
portant issue. Here we address the detection of tumor ploidy and annotation of gains and losses with the
example of breast tumor genomes.

According to the genomic content of a tumor cell, one could distinguish diploid, tetraploid, near-
diploid, over-diploid, near-tetraploid or simply aneuploid (highly differing from diploid or tetraploid) status.
We have suggested a way to ascribe tumor ploidy status based on the actual genomic content distribution
in a large cohort of breast tumors. Inferred DNA index in the cohort of 250 breast tumors showed a bi-
modal distribution (Figure 8B) similar to those demonstrated for the genomes of various types of cancers
(Storchova & Kuffer, 2008). This observation supports the hypothesis of frequent duplication of the whole
genome during cancer progression, which explains bimodality (Carter et al., 2012; Storchova & Kuffer,
2008). Two modes of the DNA index in the breast cancer cohort were found to be 1 and 1.7 units with the
cut-off distinguishing two modes approximately equal to 1.3 (1 corresponds to the normal diploid genome).
Thus, tumor genomes with DNA index less than 1.3 were considered to have a ploidy of two and are called
“near-diploid genomes”; tumor genomes with DNA index equal or higher than 1.3 were considered to have
a ploidy of four and are called “near-tetraploid genomes”. Distribution of genomic states in near-diploid
and near-tetraploid genomes was generally consistent with attributed ploidy. Near-diploid genomes had
genomic DNA mainly presented in 1, 2, 3 copies (B, AB, ABB segmental genotypes) while near-tetraploid
genomes had the well represented 2, 3, 4, 5-copy layers (BB, ABB, AABB, AABBB genotypes). Moreover,
a significant bias observed in distribution of genomic states (such as high frequency of BB compared to AB
states) in the small series of near-tetraploid basal-like breast tumors evidences the late (after a number of
alteration events) whole genome duplication (Popova et al., 2009). The same conclusion for other types of
tumors has been published recently (Carter et al., 2012).

Relative genomic alterations such as gains, losses, amplifications should be called according to the
ploidy of a tumor sample. We suggested the following procedure: for near-diploid tumors copy loss, gain,
amplification is called for the segments with ≤ 1, ≥ 3 and ≥ 4 copies, respectively. For near-tetraploid
tumors copy loss, gain, amplification is called for the segments with ≤ 2, ≥ 6 and ≥ 8 copies, respectively.
Thus, genomic segments in either of 3, 4, 5-copy states are considered to be not altered in a near-tetraploid
genome. Indeed, according to the hypothesis of the late whole genome duplication, 3 and 5 copies represent
“secondary” alteration events. Moreover, small relative changes in copy numbers are unlikely to strongly
affect gene expression. An additional evidence to support our approach is the similar rate of gains and
losses obtained for near-diploid and near-tetraploid basal-like breast tumors. With this approach the most
of known recurrent alterations in total set of basal-like breast tumors displayed 80–100% recurrence rate (as
compared to 50–60% reported based on the array CGH).

It is worth noting that genetic pathways in other types of tumors could be different from that described
for breast cancers. For example, neuroblastoma is known to frequently display genomic content close to
the near-triploid state (DNA index of 1.5), implying a high rate of whole chromosome gains or some other
mechanisms of genome transformation (Brodeur, 2003). For this reason, DNA index cut-off for ploidy
attribution (as well as annotation of gain and losses) obtained for the breast tumors might not be suitable for
the other types of tumors. However, we believe that the way of annotating genetic alteration should reflect
(as far as possible) tumor genome evolution.



9 Conclusions

In this chapter we present an approach for mining genetic alterationsmeasured by the SNP-based techniques.
The main advantages of the GAP method are its visual and contextual simplicity and natural interpretation.
Moreover, results of automatic recognition could be easily monitored manually, which increases the con-
fidence in evaluating important cases. Systematic investigation, description and comparative analysis of
cancer genomes by SNP arrays and NGS are currently ongoing. Clinical trials have been designed to trans-
late some of the genomic findings into clinic to improve cancer diagnostics and treatment. We hope to see
encouraging results in the near future.
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Appendix A SNP-arrays Platforms and Normalization (Technical Note)

Two major platforms are present in the market: Illumina and Affymetrix, providing SNP arrays contain-
ing up to million(s) of SNPs. Having different technological basis, raw data normalization of Illumina and
Affymetrix platforms is performed based on the calibrating set of HapMap individuals. Both platforms pro-
vide the software for primary data normalization (BeadStudio Illumina, Genotyping Console Affymetrix),
producing CNV and AI.

The latest evaluation of the SNP-arrays on the Illumina platform is essentially similar to all previous
versions (only the number of SNPs was increased and significant number of CN probes were included;
CN probes are intended to measure germline CNV s, which we are not considering here). All conclusions
presented here for Illumina platform equally concern all versions of Illumina SNP arrays. In contrast, the
latest versions of Affymetrix platform, Affymetrix SNP 6.0 and CytoScan HD, producing higher quality
data, compared with the previous version of SNP-arrays (Affymetrix 100K, 250K, 500K) were subjected to
specific normalization. All conclusions presented here were evaluated for Affymetrix SNP 6.0 platform and
successfully tested on CytoScan HDwith some minor modifications. Normalization of previous versions of
Affymetrix (except SNP chip 5.0) could be obtained by Aroma package http://www.aroma-project.
org and should be treated within the Illumina framework.

For the Illumina platform CNV profile is represented by the Log R ratios (LRR), which are the log-
transformed ratios of experimental and normal reference SNP intensities, centered at zero for each sample.
Allelic imbalances are represented by BAF, which are the normalized proportions of the B allele signal.
Normalization procedure designed by Illumina produces not symmetricalBAF profiles, thus, we recommend
to symmetrize BAF profile by applying the tQN algorithm for quantile normalization (Staaf et al., 2008a).

For the Affymetrix platform CNV profile is represented by the Log 2 ratios (L2R), which are the log-
transformed ratios of experimental and normal reference SNP intensities. Allelic imbalances are represented
by the AD, which represents the difference of A signal and B signal each standardized with respect to their
median values in the reference.

http://www.aroma-project.org
http://www.aroma-project.org


Appendix B CNV and AI Profiles Segmentation

The circular binary segmentation (CBS) algorithm (DNAcopy package, Bioconductor) (Venkatraman &
Olshen, 2007) was used for segmentation of all profiles presented here. There exist numerous methods
of optimal CNV profile segmentation, and any of them could be used instead of CBS. However, the GAP
method tolerated “false positive” breakpoints in either profile well, while “false negative” breakpoints could
be misleading for pattern recognition. Thus, segmentation method should be as sensitive as possible but
could tolerate less specificity.

BAF and AD profiles are supposed to be symmetric, thus both profiles were transformed in order to
reduce redundancy: BAF = 0.5+abs(BAF −0.5) and AD = abs(AD).

BAF and AD profiles represent two mode distributions in any genomic segment with heterozygous
genotype (in tumor or germline): lower mode corresponds to heterozygous SNPs (informative) and higher
mode corresponds to homozygous SNPs (non-informative). Because segmentation of a two mode profile
is less trivial than that of a one mode profile, we attempted to reduce BAF and AD profiles to one mode. In
the case of BAF, non-informative homozygous SNPs do not depend on copy number and could be filtered
out based on the threshold (BAF > 0.97, Illumina 300K, as suggested, for example, in (Staaf et al., 2008a)).

In the case of AD, non-informative homozygous SNPs depend on copy number and simple threshold
is not applicable. However, due to the fact that AD values for homozygous genomic states equal to the
corresponding copy numbers, we applied AD filtering based on the L2R profile. To filter out homozygous
mode, we defined a profile, representing a joint neighborhood of 2L2R. Those points in AD profile which
fall into the joint neighborhood of 2L2R were filtered out.

Filtered AI (BAF or AD) profiles were segmented by CBS algorithm. CNV and AI breakpoints were
united, providing segmentation of the genomic profile into alteration units with presumably stable copy
number and allelic content state.

Appendix C Algorithm of Automatic Recognition of the GAP Pattern

1. Consider GAP of a tumor sample to be a set of genomic segments (alteration units, obtained after
segmentation of CNV and AI profiles) each characterized by the three values: the median of CNV ,
the (lower) mode of AI, and the length in SNP counts:

GAP = {CNVi,AIi,Li}i=1,...,n.

2. For each p (proportion of normal contamination), q (coefficient of experimental variation), and model
centering C (corresponding to the position of 2 copies on the CNV axis) we define a model GAPT,
where eachCN/MA pair (CN = 1, . . . ,5; MA = [CN/2], . . . ,CN) is characterized by the model (CNVCN ,

AICN/MA) values:

GAPTIllumina ∶ LRRCN =C+q ⋅(log(CN)−1),

BAFCN/MA =
(1− p) ⋅nc

B+ p ⋅nn
B

(1− p) ⋅CN +2p
,



GAPTAffymetrix ∶ L2RCN =C+q ⋅((CN −1)3/4−1),

ADCN/MA = (L2RCN +1−(2−nn
B) ⋅2p)

2nc
B−CN

CN
,

whereCN = 1, . . . ,5; MA = nc
B = [CN/2], . . . ,CN; nn

B = 1, if nc
B <CN ; nn

B = 1,2 , if nc
B =CN ; approxima-

tion for L2R values was found experimentally, by considering distributions in a large set of Affymetrix
SNP 6.0 arrays.

Each (CNVCN ,AICN/MA) pair is included into the GAPT with a certain rectangle neighborhood, pro-
viding a model recognition template (similar to ones in Figure 6).

3. We define a grid in the parameter space: p ∈ [0;0.7](2p ∈ [0;0.7] for GAPTAffymetrix), q ∈ [0.1;1] ,
C ∈ [−1;1], with the step = 0.05.

4. For each set of parameters (p,q,C)we calculate goodness-of-fit criterion: Kp,q,C =∑i,(CNVi,AIi)∈GAPT Li,
(CNVi,AIi) ∈ GAPT if (CNVi,AIi) falls into any model rectangle defined by (CNVCN ,AICN/MA) pair
from GAPT.

5. We order parameter sets by the criterion value and choose the interpretation with maximal goodness-
of-fit: (p∗,q∗,C∗) = argmax(Kp,q,C), after filtering out “redundant” interpretations (in particular, such
that superimposition of GAPT and tumor GAP results in empty acquired homozygosity states, etc).
This procedure results in approximately 80% rate of correctly recognized models.

6. We annotate the segments from the tumor GAP by the closest CN and MA from the model template
(for tumor annotation we enlarge the model GAPT to 8 copies).

7. We smooth resulting CN/MA profiles and exclude redundant breakpoints. R scripts are available at
http://bioinfo-out.curie.fr/projects/snp_gap. Due to regular updating, some details or
constants in implemented code may be slightly different from those described above.
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