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STABILIZED GALERKIN METHODS FOR MAGNETIC ADVECTION

Holger Heumann1 and Ralf Hiptmair2

Abstract. Taking the cue from stabilized Galerkin methods for scalar advection problems, we adapt
the technique to boundary value problems modeling the advection of magnetic fields. We provide
rigorous a priori error estimates for both fully discontinuous piecewise polynomial trial functions and
H (curl, Ω)-conforming finite elements.
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1. Introduction

The behavior of electromagnetic fields in the stationary flow field of a conducting fluid can be modelled by
the (non-dimensional) advection-diffusion equation [16], Section 5

curl ν curlA︸ ︷︷ ︸
diffusion

+ αA︸︷︷︸
dissipation

+ curlA× β + grad (A · β)︸ ︷︷ ︸
advection

= f in Ω . (1.1)

Here Ω ⊂ R
3 is a bounded domain scaled such that diam(Ω) ≈ 1, and the vector field A = A(x) stands for

the magnetic vector potential. The fluid velocity is β = β(x), of which we assume β ∈ W 1,∞ (Ω) and a scaling
that achieves max

x
|β(x)| ≈ 1. The coefficient ν = ν(x) ≥ 0 controls the strength of magnetic diffusion, whereas

the conductivity of the fluid enters through the bounded scalar function α = α(x). The model underlying (1.1)
is known as quasi-magneto-static with temporal gauge.

Remark 1.1. In a time-harmonic setting with linear materials A would represent a complex amplitude (pha-
sor). In this case α will turn out to be purely imaginary. We are not going to deal with complex-valued fields in
this article. On the other hand, we point out that our theoretical developments still apply to them. Indeed, a
purely imaginary coefficient function α enhances stability of the problem and facilitates the numerical analysis
of the stabilized Galerkin methods.

The focus of this article is on dominant advection that is, ν−1|β| � 1. More precisely, we are keen to obtain
methods that are robust with respect to the singular perturbation limit ν → 0. Necessarily, these methods must
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remain viable even if ν = 0. Therefore, we confine the presentation to the pure magnetic advection boundary
value problem

αA + curlA× β + grad (A · β) = f in Ω,

A|Γin = g on Γin.
(1.2)

Note that in (1.2) we impose Dirichlet boundary conditions only on the inflow boundary Γin, i.e. that part of the
domain with β ·n < 0, with n the outward normal on ∂Ω. In the case of translational symmetry, known as the
transversal electric (TE) setting in computational electromagnetics, (1.2) can be reduced to the 2D boundary
value problem on a cross section Ω ⊂ R

2

αu + grad(β · u) − Rβ div(Ru) = f in Ω,

u|Γin = g on Γin,
(1.3)

with the π
2 -rotation matrix R =

(
0 1
−1 0

)
. The numerical experiments reported in Section 5 all rely on this

boundary value problem in 2D. Yet, we stress, that it retains all crucial features of (1.2) and the derivation,
analysis, and behavior of our numerical method will be very much alike for (1.2) and (1.3).

Remark 1.2. If a diffusive term as in (1.1) is present, one may simply augment our proposed stabilized Galerkin
scheme with an interior penalty discontinuous Galerkin (IP-DG) discretization of the curl ν curl-operator, as
introduced in [18]. Stability results for the two methods can be combined in a straightforward way. Note that
diffusion entails imposing tangential boundary conditions even at the outflow boundary, where boundary layers
may emerge.

Magnetic advection-diffusion (1.1) is closely related to advection-diffusion for a scalar function u : Ω → R

div ν grad u︸ ︷︷ ︸
diffusion

+ αu︸︷︷︸
dissipation

+ β · grad u︸ ︷︷ ︸
advection

= f in Ω. (1.4)

This relationship becomes apparent when stating the differential operators in the language of exterior calculus [3],
Section 2; both problems turn out to be particular instances of a linear advection-diffusion problem for differential
forms. We are not going to dip into details, but instead refer the reader to [16], Section 1 for further explanations.
We only emphasize that the close link of (1.1) and (1.4) initially motivated the research underlying this paper,
because it strongly suggests that successful numerical approaches to (1.4) can be adapted to (1.1).

Thus, let us recall some numerical methods developed for the scalar advection-diffusion problem (1.4) and
its pure transport limit

αu + β · gradu = f in Ω,

u|Γin = g on Γin.
(1.5)

The starting point is the observation that straightforward Galerkin finite element discretization of (1.4) suffers
from instability. As a consequence, much effort has been devoted to devising stabilized Galerkin methods. We
would like to refer to [36], Chapter 3 for a comprehensive presentation.

We can distinguish stabilized Galerkin methods based on either discontinuous or continuous approximation
spaces. Stabilized Galerkin methods with discontinuous approximation spaces, the stabilized or upwind discon-
tinuous Galerkin methods, e.g. [22,28,34], achieve stabilization by means of upwind fluxes on element interfaces.
Classical stabilized Galerkin methods with continuous approximations spaces are the so-called residual-based
Galerkin methods [36], Chapter 3.2. These methods, e.g. the streamline diffusion method [23] or the Galerkin
least-squares method [24], augment the standard Galerkin formulation adding terms that represent the residual
of the original equation. That preserves consistency of the formulation but introduces some sort of artificial
diffusion with stabilizing effects.

The stationary magnetic advection problem (1.2) has received much less attention from numerical analysts.
Its transient variant is studied in the context of magneto-hydrodynamics (MHD) and eddy current problems with
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moving conductors. MHD models often tackle the magnetic induction B and the focus is on divergence constraint
preserving finite volume methods, see [13] and the articles cited there. In transient eddy current simulation
Lagrangian methods are popular [9], beside numerous ad-hoc approaches based on upwinding [6,14,30]. To the
best of our knowledge, hardly any convergence results are available.

Our derivation of a stabilized Galerkin methods for the magnetic advection boundary value problem (1.2)
runs parallel to that of the discontinuous Galerkin method for scalar advection. A key tool is the Leibniz rule
for transport operators and the corresponding integration by parts formulas. This is elaborated in Section 2.

Piecewise polynomial trial spaces are used for the Galerkin discretization of the resulting variational problems.
In Section 3 we briefly review the convergence estimates in the cases of totally discontinuous approximations.
As magnetic advection falls into the class of Friedrichs symmetric operators [12] we could just appeal to the
abstract convergence theory for discontinuous Galerkin approximation from [10,11,26]. Yet, as a stepping stone
for further developments, in Section 3 we pursue a different approach.

Our main interest is in the use of H (curl, Ω)-conforming piecewise polynomial trial spaces that feature
tangential continuity across interelement boundaries. Meanwhile such spaces have become well established and
they are known as discrete 1-forms or (higher order) edge elements [17, 31, 32]. There are several reasons for
insisting on tangential continuity: Firstly, since A is a magnetic vector potential we want its curl to be a
well-defined square integrable magnetic flux field. Secondly, H (curl, Ω)-conforming trial and test spaces pave
the way for a stable Galerkin discretization of the magnetic diffusion operator curl ν curl. This is important,
because we always regard the discretization of the pure advection problem as a mere building block in schemes
for the more general advection-diffusion problem (1.1). Of course, totally continuous (H1(Ω))3-conforming trial
spaces are an option in principle. However, they usually fail to provide stable Galerkin discretization of the
diffusion operator [4, 5]. Therefore, we do not investigate this possibility.

The main result of this article is stated as Theorem 4.2 in Section 4. It reveals that the stabilized Galerkin
method with H (curl, Ω)-conforming approximation spaces enjoys the same rates of convergence as the stabi-
lized Galerkin methods with globally discontinuous approximation spaces. Thus, it suffices to aim stabilization
at the discontinuous normal components. In particular, we do not need introduce additional stabilization such
as the residual-based techniques for stabilizing Galerkin methods with continuous approximation spaces. The
final Section 5 presents various numerical experiments for the 2D boundary value problem (1.3) that confirm
that the theoretical estimates are sharp and illustrate the strengths and weaknesses of the method.

Before we plunge into the discussion of discretization, we have to make sure that the boundary value prob-
lem (1.2) is well posed. This is guaranteed by the following assumption that will be made throughout the
remainder of this article:

Assumption 1.3. We assume that α ∈ L∞(Ω) and β ∈ W 1,∞ (Ω) are such that

λmin

{
(2α − div β)I3 + Dβ + (Dβ)T

}
≥ α0, (1.6)

almost everywhere in Ω for some α0 > 0, where Dβ is the Jacobi matrix of β.

Here, λmin stands for the smallest eigenvalue of a symmetric matrix and I3 denotes the 3 × 3 identity
matrix. Assumption 1.3 may seem awkward, but it is nothing but the counterpart of the common assumption
2α − div β > α0 for the case of scalar advection. Further explanations on Assumption 1.3 will be given in the
beginning of Section 3.

2. Derivation of the method

The derivation of the method follows the derivation of the stabilized discontinuous Galerkin method for scalar
advection in [7]. By similar arguments we get stability and consistency of the method.
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Let T be a regular partition of Ω into tetrahedral elements T ; hT is the diameter of T , and h = maxT∈T hT .
The boundary of each element is decomposed into 4 triangles, called facets. We assume that each facet f has a
distinguished normal nf . If a facet f is contained in the boundary of some element T then either nf = n∂T |f or
nf = −n∂T |f . Then, if u is a piecewise smooth vector field on T , u+ and u− denote the two different restrictions
of u to f , e.g. u+ := u|T+ where element T + has outward normal nf . With these restrictions we define also
the jump [u]f = u+ − u− and the average {u}f = 1

2 (u+ + u−). For f ⊂ ∂Ω, we assume f to be oriented such
that nf points outwards. Let F◦ and F∂ be the set of interior and boundary facets. F∂

−,F∂
+ ⊂ F∂ are the sets

of facets on the inflow and outflow boundary, respectively.
We define the bilinear mapping:

(u,v)f,β :=
∫

f

(β · nf )(u · v) dS, (2.1)

the magnetic advection operator, the Lie derivative,

Lβ u := grad(β · u) + curl u× β (2.2)

and its formal adjoint

Lβ u := curl(β × u) − β div u, (2.3)

e.g. for smooth u and v we have

(Lβ u,v)Ω − (u,Lβ v)Ω = (u,v)∂Ω,β . (2.4)

Further let Vh denote some finite element space of piecewise smooth vector fields. We fix some element T ,
test (1.2) with v, v ∈ Vh, integrate the product over T and apply the partial integration rule (2.4):

(αu,v)T + (u,Lβ v)T + (u,v)∂T,β = (f ,v)T .

Summing this equation over all elements yields:

(αu,v)Ω +
∑
T

(u,Lβ v)T +
∑
T

(u,v)∂T,β = (f ,v)Ω ,

or, if we write the sum over boundaries of elements as sum over facets:

(αu,v)Ω +
∑
T

(u,Lβ v)T +
∑

f∈F◦

(
u+,v+

)
f,β

−
(
u−,v−)

f,β
+
∑

f∈F∂

(u,v)f,β = (f ,v)Ω .

The identity (
u+,v+

)
f,β

−
(
u−,v−)

f,β
=
(
[u]f , {v}f

)
f,β

+
(
{u}f , [v]f

)
f,β

(2.5)

shows (
u+,v+

)
f,β

−
(
u−,v−)

f,β
=
(
{u}f , [v]f

)
f,β
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for smooth solutions of u of the advection problem (1.2), since u is non-smooth only across characteristic faces,
i.e. those faces f with nf · β = 0. But for f with nf · β = 0. we have (·, ·)f,β = 0, anyway. We are now in the
position to define a stabilized Galerkin scheme for the advection problem (1.2):

Find u ∈ Vh, such that:

a (u,v) = l (v) , ∀v ∈ Vh, (2.6)

with

l (v) := (f ,v)Ω −
∑

f∈F∂
−

(g,v)f,β (2.7)

and

a (u,v) := (αu,v)Ω +
∑
T

(u,Lβ v)T +
∑

f∈F∂\F∂
−

(u,v)f,β

+
∑

f∈F◦

(
{u}f , [v]f

)
f,β

+
(
cf [u]f , [v]f

)
f,β

,

(2.8)

where cf ∈ R is a stabilization parameter that will be specified later. Since the stabilization terms(
cf [u]f , [v]f

)
f,β

vanish for u solution to (1.2), the derivation proves consistency.

Corollary 2.1. The variational formulation (2.6) is consistent with problem (1.2).

Remark 2.2. The choice cf = 1
2

β·nf

|β·nf | yields a scheme with so-called upwind fluxes:

(
{u}f , [v]f

)
f,β

+
(
cf [u]f , [v]f

)
f,β

=
(

1
2

(
1 +

β · nf

|β · nf |

)
u+ +

1
2

(
1 − β · nf

|β · nf |

)
u−, [v]f

)
f,β

.

When we want to implement our variational formulation, we realize that the evaluation of the terms
(u,Lβ v)T requires knowledge of first order derivatives of β due to Lβ v = curl(β × v) + β div v. There-
fore, the representation of a (u,v) in the following proposition is much more convenient for implementation.

Proposition 2.3. The following equality holds for all u,v ∈ Vh:

a (u,v) = (αu,v)Ω +
∑
T

(curl u × β,v)T − (u, βdiv v)T

+
∑

f∈F◦

∫
f

β · {u}f [v]f · nf dS −
∫

f

(
[u]f × nf

)
·
(
{v}f × β

)
dS

+
∑

f∈F◦

∫
f

cfβ · [u]f [v]f · nf dS +
∫

f

cf

(
[u]f × nf

)
·
(
[v]f × β

)
dS

+
∑

f∈F∂\F∂
−

∫
f

(β · u)(v · nf ) dS −
∑

f∈F∂
−

∫
f

(u × nf ) · (v × β) dS,
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Proof. The proof follows from integration by parts, standard identities from vector calculus and the identity
u+ · v+ − u− · v− = [u]f · {v}f + {u}f · [v]f , cf. [18]

∑
T

(u, curl(β × v))T =
∑
T

(curl u, β × v)T −
∫

∂T

(u × (β × v)) · n∂T dS

=
∑
T

(curl u× β,v)T −
∫

∂T

(u × n∂T ) · (v × β) dS

=
∑
T

(curl u× β,v)T −
∑

f∈F∂

∫
f

(u × nf ) · (v × β) dS

−
∑

f∈F◦

∫
f

(u+ × nf ) · (v+ × β) dS −
∫

f

(u− × nf ) · (v− × β) dS

=
∑
T

(curl u× β,v)T −
∑

f∈F∂

∫
f

(u × nf ) · (v × β) dS

−
∑

f∈F◦

∫
f

([u]f × nf ) · ({v}f × β) dS +
∫

f

({u}f × nf ) · ([v]f × β) dS.

Then we get

a (u,v) = (αu,v)Ω +
∑
T

(curl u × β,v)T − (u, β div v)T +
∑

f∈F∂\F∂
−

(u,v)f,β

+
∑

f∈F◦

(
{u}f , [v]f

)
f,β

+
(
cf [u]f , [v]f

)
f,β

−
∑

f∈F∂

∫
f

(u × nf ) · (v × β) dS

−
∑

f∈F◦

∫
f

([u]f × nf ) · ({v}f × β) dS +
∫

f

({u}f × nf ) · ([v]f × β) dS

and the assertion follows from

(B ·N)(U ·V) − (B · U)(V · N) = (U × N) · (V × B). �

We proceed by proving stability in the mesh dependent norm:

‖u‖2
h := ‖u‖2

L2(Ω) +
∑

f∈F◦

∥∥∥[u]f
∥∥∥2

f,cf β
+

∑
f∈F∂\F∂

−

‖u‖2
f, 1

2 β +
∑

f∈F∂
−

‖u‖2
f,− 1

2 β , (2.9)

with the definition ‖·‖2
f,β := (u,u)f,β. ‖·‖h is a norm for any choice cf with cfβ · nf ≥ 0, because then

(cfu,u)f,β is non-negative according to the definition of (·, ·)f,β and ‖u‖2
f, 1

2 β, f ∈ F∂ \ F∂
− and ‖u‖2

f,− 1
2 β,

f ∈ F∂
− are non-negative according to the definition of the inflow boundary.

In the following we will consider the Galerkin formulation (2.8) where the parameter fullfills the following
positivity condition.

Assumption 2.4. Assume the parameters cf in the definition (2.8) satisfy for all faces f the positivity condition

cfβ · nf>0.

Lemma 2.5. Let the Assumptions 1.3 and 2.4 hold. Then we have for all u ∈ Vh:

a (u,u) ≥ min
(

1
2
α0, 1

)
‖u‖2

h .
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Proof. A short calculation verifies:

Lβ u + Lβ u = grad(β · u) + curl u× β + curl(β × u) − β div u

= Dβu + (Dβ)T u − div βu
(2.10)

and the assertion follows from the partial integration formula (2.4):

a (u,u) = (αu,u)Ω +
∑
T

(u,Lβ u)T +
∑

f∈F∂\F∂
−

(u,u)f,β

+
∑

f∈F◦

(
{u}f , [u]f

)
f,β

+
(
cf [u]f , [u]f

)
f,β

= (αu,u)Ω +
∑
T

1
2

(u, (Lβ +Lβ)u)T +
∑

f∈F∂\F∂
−

(u,u)f,β

+
∑

f∈F◦

(
{u}f , [u]f

)
f,β

+
(
cf [u]f , [u]f

)
f,β

− 1
2

∑
f∈F◦

(
{u}f , [u]f

)
f,β

+
(
[u]f , {u}f

)
f,β

− 1
2

∑
f∈F∂

(u,u)f,β

= (αu,u)Ω +
∑
T

1
2

(u, (Lβ +Lβ)u)T +
∑

f∈F◦

(
cf [u]f , [u]f

)
f,β

+
1
2

∑
f∈F∂\F∂

−

(u,u)f,β − 1
2

∑
f∈F∂

−

(u,u)f,β

≥min(
1
2
α0, 1)‖u‖2

h,

since (u,u)f,β ≥ 0 for f ∈ F∂ \ F∂
−. �

Remark 2.6. The case cf = 0 corresponds to the unstabilized Galerkin formulation, where we have stability
only in L2 (Ω):

a (u,u) ≥ min(
1
2
α0, 1) ‖u‖2

L2(Ω) .

3. Convergence: discontinuous approximation spaces

In the case of discontinuous approximation spaces, the stabilized Galerkin methods for the magnetic advection
problem could be treated in the framework of Friedrichs symmetric operators.

A Friedrichs symmetric operator is a linear first order differential operator of the following form:

Tv :=
n∑

j=1

B(j)∂jv + Cv, (3.1)

with B(j),C : Ω → R
n×n, B(j)T = B(j) and λmin

{
C + CT −

∑n
j=1 ∂jB(j)

}
≥ α0, α0 > 0. The short calculation

Lβ u = grad(β · u) + curl u × β

=

⎛
⎝
∑

i ∂1βiui +
∑

i βi∂1ui∑
i ∂2βiui +

∑
i βi∂2ui∑

i ∂3βiui +
∑

i βi∂3ui

⎞
⎠+

⎛
⎝β3∂3u1 − β3∂1u3 − β2∂1u2 + β2∂2u1

β1∂1u2 − β1∂2u1 − β3∂2u3 + β3∂3u2

β2∂2u3 − β2∂3u2 − β1∂3u1 + β1∂1u3

⎞
⎠

= DβT u +
3∑

i=1

βi∂iu
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verifies that the magnetic avection operator in (1.5) is an operator of this type if Assumption 1.3 holds. In [12],
Friedrichs gives the general form of admissible boundary conditions that ensure uniqueness of boundary value
problems with Friedrichs symmetric operators. Under appropriate smoothness assumptions it then follows that
the magnetic advection problem (1.2) with inflow boundary condition has a unique solution if Assumption 1.3
holds. A similar result can be derived within the framework of exterior calculus and Lie derivatives [15],
Section 3.4.

We refer to [10], Section 4, [25, 26], Chapter 3 for details on discontinuous Galerkin methods for Friedrichs
systems. The typical convergence results for such methods (see [10], Thm. 4.6 Cor. 4.7 or [25], Thm. 50 and
Cor. 12) are optimal order convergence in the norm ‖ · ‖h, i.e. order r + 1

2 if r is the polynomial degree of the
approximation space and the solution is sufficiently smooth.

Nevertheless we present here a proof that is adapted to the magnetic advection problem and stresses the
significance of globally discontinuous approximation spaces for obtaining optimal convergence estimates.

Theorem 3.1. Let the Assumptions 1.3 and 2.4 hold. Let Vh be the finite element space of discontinuous
piecewise polynomial vector fields:

Vh = Vr
dis := {v ∈ L2 (Ω) , v|T ∈ (Pr(T ))3 , T ∈ T }, (3.2)

where Pr, r ≥ 0 is the space of polynomials of degree r or less. Let u ∈ Hr+1 (Ω) and uh ∈ Vh be the solutions
to the advection problem (1.2) and its variational formulation (2.6). We get with C > 0 depending only on α, β,
the polynomial degree and the shape regularity

‖u − uh‖h ≤ Chr+ 1
2 ‖u‖Hr+1(Ω).

Proof. Let ūh denote the L2-projection of u on Vh. Then stability (Lem. 2.5) and consistency (Cor. 2.1) show

min
(

1
2
α0, 1

)
‖uh − ūh‖2

h ≤ a (uh − ūh,uh − ūh) = a (η, γh) ,

with η := u − ūh and γh = uh − ūh. Let βh denote the L2-projection of β onto V0
dis, then Lβh

γh ∈ Vh, i.e.(
η,Lβh

γh

)
T

= 0, and

a (η, γh) = (αη, γh)Ω +
∑
T

(
η, (Lβ −Lβh

)γh

)
T

+
∑

f∈F∂\F∂
−

(η, γh)f,β

+
∑

f∈F◦

(
{η}f , [γh]f

)
f,β

+
(
cf [η]f , [γh]f

)
f,β

.
(3.3)

The pairing
(
[η]f , [γh]f

)
f,cf β

=
(
cf [η]f , [γh]f

)
f,β

is a semi-definite bilinear form by the assumption cfβ ·
nf ≥ 0. Hence Cauchy−Schwarz inequalities yield:

(η, γh)f,β ≤ ‖η‖f,β ‖γh‖f,β , for f ∈ F∂ \ F∂
−,(

c−1
f {η}f + [η]f , [γh]f

)
f,cf β

≤
∥∥∥c−1

f {η}f + [η]f
∥∥∥

f,cf β

∥∥∥[γh]f
∥∥∥

f,cf β
, for f ∈ F◦,(

η, (Lβ −Lβh
)γh

)
T
≤ ‖η‖L2(T )

∥∥(Lβ −Lβh
)γh

∥∥
L2(T )

,

(αη, γh)Ω ≤ ‖α‖W 0,∞(Ω) ‖η‖L2(Ω) ‖γh‖L2(Ω) .



STABILIZED GALERKIN METHODS FOR MAGNETIC ADVECTION 1721

Next we use

• the multiplicative trace inequality,

‖η‖2
f,cf β ≤ C(h−1

f ‖η‖2
L2(T ) + hf |η|2H1(T )),

with diameter hf of face f and C > 0 depending on the minimum angle of T and β, that follows analogous
to the one for scalar functions in [1], Theorem 3.10;

• the estimate ∥∥(Lβ −Lβh
)γh

∥∥
L2(T )

≤ |β − βh|W 1,∞(T ) ‖γh‖L2(T ) + ‖β − βh‖L∞(T ) |γh|H1(T )

≤ max
(
|β − βh|W 1,∞(T ) , C |βh|W 1,∞(T )

)
‖γh‖L2(T ) ,

that follows by the product rule;
• the inverse inequality,

|γh|H1(T ) ≤ Ch−1
T ‖γh‖L2(T ) ,

with element diameter hT and C > 0 independent of hT .

In conclusion we find with C > 0 depending only on α and β

(αη, γh)Ω +
∑
T

(
η, (Lβ −Lβh

)γh

)
T
≤ C ‖η‖L2(Ω) ‖γh‖L2(Ω)

and with C > 0 depending on cf , β and the minimum angle of elements of T

∑
f∈F∂\F∂

−

(η, γh)f,β +
∑

f∈F◦

(
{η}f , [γh]f

)
f,β

+
(
cf [η]f , [γh]f

)
f,β

≤ C
(
h− 1

2 ‖η‖L2(Ω) + h
1
2 ‖η‖H1(Ω)

)
‖γh‖h .

Then triangle inequality and the approximation estimates for Vh, e.g.

inf
wh∈(Pk(T ))3

‖u − wh‖L2(T ) ≤ Chr+1‖u‖Hr+1(T ),

and
inf

wh∈(Pk(T ))3
‖u − wh‖H1(T ) ≤ Chr‖u‖Hr+1(T ),

yield the assertion. �

For the non-stabilized scheme, i.e. cf = 0 in (2.6), we get a sub-optimal convergence estimate, since we have
to use another inverse inequality to bound the facet integrals ‖γh‖f,β by L2-norms on elements [7], page 1902.

4. Convergence: H (curl, Ω)-conforming approximation spaces

The crucial step in the Proof of Theorem 3.1, equation (3.3), is based on the property Lβh
γh ∈ Vr

dis for
γh ∈ Vh and piecewise constant velocity fields βh, βh|T ∈ (P0(T ))3. For approximation spaces Vh with some
continuity across facets this will not hold true in general. At first, a proof similar to the proof of Theorem (3.1)
gives only a suboptimal estimate, since in this setting

(
η,Lβh

γh

)
�= 0, hence step (3.3) fails and we need an

additional inverse estimate for ‖Lβ γh‖L2(Ω).
To adapt the Proof of Theorem 3.1, we need to introduce so-called averaging interpolation operators mapping

discontinuous piecewise polynomial vector fields to H (curl, Ω)-conforming piecewise polynomial vector fields
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and discontinuous scalar piecewise polynomial scalar functions to H1 (Ω)-conforming piecewise polynomial func-
tions. Such interpolation operators have been used previously in the analysis of Discontinuous Galerkin methods
([21], Appendix, [18], Appendix, [19], Thm. 5.1, and [27]). We recall the definition (3.2) of the discontinuous
finite element vector fields Vr

dis, and introduce H (curl, Ω)-conforming finite element fields

Vr
cnf := {v ∈ H (curl, Ω) , v|T ∈ (Pr(T ))3 , T ∈ T } (4.1)

and the corresponding counterparts for scalar functions; the finite element space of discontinuous piecewise
polynomial scalar functions:

Sr
dis := {v ∈ L2 (Ω) , v|T ∈ Pr(T ), T ∈ T } (4.2)

and the finite element space of continuous piecewise polynomial scalar functions

Sr
cnf := {v ∈ H1 (Ω) , v|T ∈ Pr(T ), T ∈ T }. (4.3)

Again, Pr is the space of polynomials of degree r or less.

Proposition 4.1. Let u ∈ Vr
dis and u ∈ Sr

dis. Then there exist uc ∈ Vr
cnf and uc ∈ Sr

cnf such that

‖u− uc‖2
L2(Ω) ≤ C1

∑
f∈F◦

hf

∫
f

∣∣∣[u]f × nf

∣∣∣2 dS (4.4)

and
‖u − uc‖2

L2(Ω) ≤ C2

∑
f∈F◦

hf

∫
f

∣∣∣[u]f
∣∣∣2 dS , (4.5)

where hf is the diameter of facet f and C1 and C2 depend only on the shape-regularity and the polynomial
degree r, and, in particular, are independent of the mesh size.

Proof. The proof of (4.4) can be found in [18], Appendix. The degrees of freedom of the finite element space Vr
cnf

are associated to the edges, faces and elements of the mesh T . For given u ∈ Vr
dis the degrees of freedom of Vr

cnf

associated to edges and faces are not well-defined. But if we use the average of all one-sided limits we can define
a H (curl, Ω)-conforming approximation uc, that differs from the finite element representation of u only in
those coefficients that are associated to edges and faces. A technical scaling argument then yields the assertion.
The proof of (4.5) follows similarly. �

Theorem 4.2. Let Assumptions 1.3 and 2.4 hold. Pr, r ≥ 0 is the space of polynomials of degree r or less. Let
then Vh be a finite element space of H (curl, Ω)-conforming piecewise polynomial vector fields of degree r or
less:

Vh = Vr
cnf :=

{
v ∈ H (curl, Ω) , v|T ∈ (Pr(T ))3 , T ∈ T

}
,

such that best approximation estimates

min
wh∈Vh

‖u − wh‖Hs(T ) ≤ Chr+1−s‖u‖Hr+1(T ), s = 0, 1, ∀u ∈ Hr+1 (Ω)

hold with constants depending only on shape regularity of the mesh, e.g., Vh can belong to one of the two families
of spaces proposed in [31] and [32]. Let u and uh ∈ Vh be the solutions to the advection problem (1.2) and its
discrete variational formulation (2.6). Then, with C > 0 depending only on α, β, the polynomial degree and
shape regularity, we get

‖u − uh‖h ≤ Chr+ 1
2 ‖u‖Hr+1(Ω),

provided that h is sufficiently small.
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Proof. We recall a few important properties of our approximation space Vh. The tangential trace of vector fields
in Vh on the intersection of elements is continuous. The normal trace of curl u, u ∈ Vh, is also continuous,
since curl u ∈ H(div, Ω) and piecewise polynomial. The gradient of an element of the H1 (Ω)-conforming finite
element space Sr

cnf is an element of Vr−1
cnf ⊂ Vr

cnf .
Let ūh denote the global L2-projection of u onto Vh and define η := u− ūh and γh := uh − ūh. At first we

recall that by the assumptions of the theorem

‖η‖L2(T ) ≤ Chr+1‖u‖Hr+1(T ).

Then by stability, consistency and γh ∈ Vr
cnf :

min(
1
2
α0, 1) ‖u− uh‖2

h ≤ a (η, γh) .

Let βh be the L2-projection of β onto V0
dis. As in the Proof of Theorem 3.1, we add and subtract the Lie-

derivative with respect to the projected, piecewise constant velocity field βh:

a (η, γh) = (αη, γh)Ω +
∑
T

(
η, (Lβ −Lβh

)γh

)
T

+
(
η,Lβh

γh

)
T

+
∑

f∈F∂\F∂
−

(η, γh)f,β +
∑

f∈F◦

(
{η}f , [γh]f

)
f,β

+
(
cf [η]f , [γh]f

)
f,β

.

Yet, as
∑

T

(
η,Lβh

γh

)
T
�= 0, in addition we have to prove∣∣∣∣∣∑

T

(η, curl(γh × βh) + βh div γh)T

∣∣∣∣∣ ≤ Ch− 1
2 ‖η‖L2(Ω) ‖γh‖h .

Since, by (2.10) for piecewise constant βh, we have the local identity Lβh
= −Lβh

, this is implied by∣∣∣∣∣∑
T

(η, βh × curlγh)T

∣∣∣∣∣ ≤ Ch− 1
2 ‖η‖L2(Ω) ‖γh‖h (4.6)

and ∣∣∣∣∣∑
T

(η,grad (βh · γh))T

∣∣∣∣∣ ≤ Ch− 1
2 ‖η‖L2(Ω) ‖γh‖h . (4.7)

We use the approximation results of Proposition 4.1 to prove the two assertions (4.6) and (4.7). Let wc ∈ Vr
cnf

and wc ∈ Sr
cnf be the conforming approximations of βh × curlγh ∈ Vr

dis and βh · γh ∈ Sr
dis. Since η = u − ūh

and both wc ∈ Vr
cnf and grad wc,0 ∈ Vr

cnf we find

| (η, βh × curlγh)Ω| =
∣∣ (η, βh × curlγh − wc,1

)
Ω

∣∣
≤ ‖η‖L2(Ω)

∥∥βh × curlγh − wc,1
∥∥

L2(Ω)

and

| (η,grad (βh · γh))Ω | =

∣∣∣∣∣∑
T

(
η,grad

(
βh · γh − wc,0

))
Ω

∣∣∣∣∣
≤ C0h

−1 ‖η‖L2(Ω)

∥∥βh · γh − wc,0
∥∥

L2(Ω)
.

The approximation results (4.4) and (4.5) give∥∥βh × curlγh − wc,1
∥∥2

L2(Ω)
≤ C1h

∑
f∈F◦

∥∥∥[βh × curlγh]f × nf

∥∥∥2

L2(f)
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and ∥∥βh · γh − wc,0
∥∥2

L2(Ω)
≤ C2h

∑
f∈F◦

∥∥∥[βh · γh]f
∥∥∥2

L2(f)
.

Further we have by inverse inequalities, approximation properties of βh and normal continuity of curlγh ∈
H(div, Ω): ∥∥∥[βh × curlγh]f × nf

∥∥∥
L2(f)

≤
∥∥∥[(βh − β) × curlγh]f × nf

∥∥∥
L2(f)

+
∥∥∥[β × curlγh]f × nf

∥∥∥
L2(f)

≤ C3h
∥∥∥[curlγh]f

∥∥∥
L2(f)

+
∥∥∥[β × curlγh]f × nf

∥∥∥
L2(f)

≤ C3h
1
2 ‖curlγh‖L2(T1∪T2)

+
∥∥∥[curlγh]f · nfβ − β · nf [curlγh]f

∥∥∥
L2(f)

≤ C3h
− 1

2 ‖γh‖L2(T1∪T2)
+ C4

∥∥∥β · nf [curlγh]f
∥∥∥

L2(f)

≤ C3h
− 1

2 ‖γh‖L2(T1∪T2)
+ C4h

−1
∥∥∥β · nf [γh]f

∥∥∥
L2(f)

and similar by tangential continuity of γh ∈ H (curl, Ω):∥∥∥[βh · γh]f
∥∥∥

L2(f)
≤
∥∥∥[(βh − β) · γh]f

∥∥∥
L2(f)

+
∥∥∥[β · γh]f

∥∥∥
L2(f)

≤ C5h
1
2 ‖γh‖L2(T1∪T2)

+
∥∥∥β · nf [γh]f

∥∥∥
L2(f)

,

with constants C3, C4 and C5 independent of h, and T1 and T2 those elements that share f . Hence we have
proved ∥∥βh × curlγh − wc,1

∥∥
L2(Ω)

≤ C6h
− 1

2 ‖γh‖h

and ∥∥βh · γh − wc,0
∥∥

L2(Ω)
≤ C7h

1
2 ‖γh‖h ,

which yields estimates (4.6) and (4.7). �

Remark 4.3. Theorems 4.2 and 3.1 show that the stabilized Galerkin method (2.6) with H (curl, Ω)-
conforming approximation spaces provides the same approximation properties as the stabilized Galerkin methods
with globally discontinuous approximation spaces. The representation of a (·, ·) in Proposition 2.3 reveals that
all the terms with jumps in tangential direction, i.e. [u]f × nf , vanish in the case of H (curl, Ω)-conforming
approximation spaces. The stabilization or upwinding affects only the normal components.

5. Numerical experiments

In this section we set Ω ⊂ R
2 and focus on the advection problem (1.3). We consider simplicial triangu-

lations and finite element approximation spaces Vh = Vr
dis ⊂ L2 (Ω) with no global continuity, and finite

element approximation spaces Vh = Vr
cnf ⊂ H(div R, Ω), with R =

(
0 1
−1 0

)
, i.e. spaces that contain piecewise

polynomials that are globally tangential continuous. The derivations and assertions in the previous sections, in
particular the Theorems 3.1 and 4.2, remain true this setting.

All calculations are based on the C++/Python finite element library FEniCS/Dolfin [2,29]. We use uniform
meshes and interpolate all coefficient functions, like the velocity β, the boundary data g or the source term f into
high order Lagrangian finite element spaces. FEniCS/Dolfin automatically applies quadrature rules of sufficient
accuracy to evaluate all occurring integrals exactly.
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Figure 1. Experiment 1: fully discontinuous approximation spaces Vh = Vr
dis and stabilization

cf = 1
2

β·nf

|β·nf | . The results comply with the assertions of Theorem 3.1.

5.1. Experiment 1: Smooth solution

We set Ω = [0, 1]2, α = 2 and take

β(x, y) =
(

0.66(1 − x2)
0.2 + sin(πx)

)
.

We chose the data f and g such that the smooth vector field

u(x, y) =
(

sin(πx)
(1 − x2)(1 − y2)

)
becomes the solution of (1.3).

We first determine numerical convergence rates for stabilized schemes with stabilization cf = 1
2

β·nf

|β·nf | . Fig-
ures 1 and 2 give the error in the semi-norm

|u|2h :=
∑

f∈F◦

∥∥∥[u]f
∥∥∥2

f,cf β
+

∑
f∈F∂\F∂

−

‖u‖2
f, 1

2 β +
∑

f∈F∂
−

‖u‖2
f,− 1

2 β .

The observed rates of convergence confirm that the rates of convergence found in Theorems 3.1 and 4.2 are
sharp.

In the case of no stabilization, e.g. cf = 0, we have stability only in L2 (Ω) (see Rem. 2.6). For this reason the
standard analysis for the unstabilized Galerkin schemes yields only suboptimal convergence rates of order r, if r
is the polynomial degree of the approximation spaces. Our experiments (see Figs. 3 and 4) show, that this theory
is sharp for H(div R, Ω)-conforming approximation spaces of arbitrary polynomial degree and discontinuous
approximation spaces Vr

dis of odd polynomial degree.
Finally, Figures 5 and 6 show the error for the stabilized schemes in the L2 (Ω)-norm. The rates of con-

vergence improve by 1
2 compared to the theoretical results for L2 (Ω) in Theorems 3.1 and 4.2. This phe-

nomenon has also been observed for stabilized Galerkin methods for scalar advection. Only on certain very
special meshes, sometimes called Peterson-meshes, one could find that the theoretical results are also sharp for
the L2-norm [33,35, 37].
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Figure 2. Experiment 1: H(div R, Ω)-conforming approximation spaces Vh = Vr
cnf and sta-

bilization cf = 1
2

β·nf

|β·nf | . The results match the assertions of Theorem 4.2.
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Figure 3. Experiment 1: fully discontinuous approximation spaces Vh = Vr
dis and no stabi-

lization, i.e. cf = 0.

5.2. Experiment 2: Non-smooth data

We set in problem (1.3) Ω = [−1, 1]2, α = 0

β =
(

4(4 + y)
4 + x

)
,
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Figure 4. Experiment 1: H(div R, Ω)-conforming approximation spaces Vh = Vr
cnf and no

stabilization, i.e. cf = 0.
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Figure 5. Experiment 1: Fully discontinuous approximation spaces Vh = Vr
dis and stabiliza-

tion cf = 1
2

β·nf

|β·nf | . As for scalar problems, on “normal” meshes we observe faster convergence
of the L2-error.

f = 0 and

g =

(
1 + sin(0.5πx) sin(0.5πy)

−0.5 + cos(0.5πx) cos(0.5πy)

)
.

Since β is linear we can derive a closed form expression of the solution, which fails to be smooth along the
trajectory traced out by the corner point (−1,−1). Figures 7 and 8 show the numerical convergence rates
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Figure 6. Experiment 1: H(div R, Ω)-conforming approximation spaces Vh = Vr
cnf and sta-

bilization cf = 1
2

β·nf

|β·nf | . As for scalar problems we observe faster convergence of the L2-error on
“normal” meshes.
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Figure 7. Experiment 2: Fully discontinuous approximation spaces Vh = Vr
dis with (upwind)

stabilization cf = 1
2

β·nf

|β·nf | .

for stabilized schemes, where cf = 1
2

β·nf

|β·nf | . Since the analytic solution is in this case non-smooth along the
trajectory of the vertex (−1, 1) we observe reduced convergence rates. Figure 9 visualizes a characteristic error
distribution.
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Figure 8. Experiment 2: H(div R, Ω)-conforming approximation spaces Vh = Vr
cnf with

(upwind) stabilization cf = 1
2

β·nf

|β·nf | .
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Figure 9. Experiment 2: typical distribution of the error.

5.3. Experiment 3: Numerical diffusivity

We set in problem (1.3) Ω = [0, 1]2, α = 0, f = 0,

β =
(
−y − 1
x + 1

)
, and g =

(
1
1

)
if x < 0.7 and else g =

(
0
0

)
.

The lower and the right boundary of the unit square are the inflow part and the discontinuity in the boundary
data is advected along the circle (x + 1)2 + (y + 1)2 = 0.7. We use upwind stabilization in (2.8) and compute
numerical solutions for approximation spaces with degree r = 0, 1, 2. As it is to be expected for approximations
of linear advection problems with non-smooth solutions, we observe pronounced smearing of discontinuities
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Figure 10. Experiment 3: H(div R, Ω)-conforming approximation spaces Vh = Vr
cnf and

stabilization cf = 1
2

β·nf

|β·nf | . The magnitude of the numerical solution for polynomial degree
r = 0 (upper right), r = 1 (lower left) and r = 2 (lower right), calculated for the mesh shown
in the upper left and upwind stabilization cf = 1

2
β·nf

|β·nf | .

for the low order variants of (2.8), which subsides when we increase the polynomial degree (see Fig. 10). In
contrast, the solutions based on higher degree polynomials are tainted by localized oscillations in the vicinity
of the discontinuity. This, too, is a phenomenon observed with a wide range of methods.

6. Conclusion

We gave a comprehensive a priori convergence analysis of a family of stabilized Galerkin formulations of
the magnetic advection boundary value problem. Optimal algebraic rates convergence in discrete norms are
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established rigorously. The method appears to be promising as a foundation for Eulerian discretizations for
both magnetohydrodynamic equations and eddy current problems with moving conductors.
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[32] J.-C. Nédélec, A new family of mixed finite elements in R3. Numer. Math. 50 (1986) 57–81.

[33] T.E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM
J. Numer. Anal. 28 (1991) 133–140.

[34] W.H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR-73-479, Los
Alamos National Laboratory, Los Alamos, NM (1973).

[35] G.R. Richter, An optimal-order error estimate for the discontinuous Galerkin method. Math. Comput. 50 (1988) 75–88.

[36] H.-G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations, Convection-
diffusion-reaction and flow problems, volume 24 of Springer Series in Computational Mathematics. 2nd edition. Springer-
Verlag, Berlin (2008).

[37] G. Zhou, How accurate is the streamline diffusion finite element method? Math. Comput. 66 (1997) 31–44.


	Introduction
	Derivation of the method
	Convergence: discontinuous approximation spaces
	Convergence: -conforming approximation spaces
	Numerical experiments
	Experiment 1: Smooth solution
	Experiment 2: Non-smooth data
	Experiment 3: Numerical diffusivity

	Conclusion
	References

