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Abstract. Hidden Markov Models (HMMs) are learning methods for pattern

recognition. The probabilistic HMMs have been one of the most used techniques

based on the Bayesian model. First-order probabilistic HMMs were adapted to

the theory of belief functions such that Bayesian probabilities were replaced with

mass functions. In this paper, we present a second-order Hidden Markov Model

using belief functions. Previous works in belief HMMs have been focused on the

first-order HMMs. We extend them to the second-order model.

Keywords: Belief functions, Dempster-Shafer theory, first-order belief HMM,

second-order belief HMM, probabilistic HMM

1 Introduction

A Hidden Markov Model (HMM) is one of the most important statistical models in ma-

chine learning [1]. A HMM is a classifier or labeler that can assign label or class to each

unit in a sequence [2]. It has been successfully utilized over several decades in many

applications for processing text and speech such as Part-of-Speech (POS) tagging [3],

named entity recognition [4] and speech recognition [5]. However, such works in the

early part of the period are mainly based on first-order HMMs. As a matter of fact, the

assumption in the first-order HMM, where the state transition and output observation

depend only on one previous state, does not exactly match with the real applications

[6]. Therefore, they require a number of sophistications. For example, even though the

first-order HMM for POS tagging in early 1990s performs reasonably well, it captures

a more limited amount of the contextual information than is available [7]. As conse-

quence, most modern statistical POS taggers use a second-order model [8].

Uncertainty theories can be integrated in statistical models such as HMMs: The

probability theory has been used to classify units in a sequence with the Bayesian

model. Then, the theory of belief functions is employed to this statistical model because

the fusion proposed in this theory simplifies computations of a posteriori distributions

of hidden data in Markov models. This theory can provide rules to combine evidences

from different sources to reach a certain level of belief [9–13]. Belief HMMs intro-

duced in [14–22], use combination rules proposed in the framework of the theory of

belief functions. This paper is an extension of previous ideas for second-order belief

HMMs. For the current work, we focus on explaining a second-order model. However,

the proposed method can be easily extended to higher-order models.
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This paper is organized as follows: In Sections 2 and 3, we detail probabilistic

HMMs for the problem of POS tagging where HMMs have been widely used. Then,

we describe the first-order belief HMM in Section 4. Finally, before concluding, we

propose the second-order belief HMM.

2 First-order probabilistic HMMs

POS tagging is a task of finding the most probable estimated sequence of n tags given

the observation sequence of v words. According to [1], a first-order probabilistic HMM

can be characterized as follows:

N The number of states in a model St = {st
1,s

t
2, · · ·s

t
N} at the time t.

M The number of distinct observation symbols. V = {v1,v2, · · · ,vM}.

A = {ai j} The set of N transition probability distributions.

B = {b j(ot)} The observation probability distributions in state j.

π = {πi} The initial probability distribution.

Figure 1 illustrates the first-order probabilistic HMM allowing to estimate the prob-

ability of the sequence st−1
i and st

j where ai j is the transition probability from st−1
i to

st
j and b j(ot) is the observation probability on the state st

j. Regarding POS tagging, the

number of possible POS tags that are hidden states St of the HMM is N. The number

of words in the lexicons V is M. The transition probability ai j is the probability that the

model moves from one tag st−1
i to another tag st

j. This probability can be estimated us-

ing a training data set in supervised learning for the HMM. The probability of a current

POS tag appearing in the first-order HMM depends only on the previous tag. In general,

first-order probabilistic HMMs should be characterized by three fundamental problems

as follows [1]:

– Likelihood: Given a set of transition probability distributions A, an observation se-

quence O = o1,o2, · · · ,oT and its observation probability distribution B, how do we

determine the likelihood P(O|A,B)? The first-order model relies on only one obser-

vation where b j(ot) = P(o j|s
t
j) and the transition probability based on one previous

tag where ai j = P(st
j|s

t−1
i ). Using the forward path probability, the likelihood αt( j)

of a given state st
j can be computed by using the likelihood αt−1(i) of the previous

state st−1
i as described below:

αt( j) = ∑
i

αt−1(i)ai jb j(ot) (1)

– Decoding: Given a set of transition probability distributions A, an observation se-

quence O = o1,o2, · · · ,oT and its observation probability distribution B, how do

we discover the best hidden state sequence? The Viterbi algorithm is widely used

for calculating the most likely tag sequence for the decoding problem. The Viterbi

algorithm can calculate the most probable path δt( j) which contains the sequence

of ψt( j). It can select the path that maximizes the likelihood of the sequence as

described below:
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δt( j) = maxδt−1(i)ai jb j(ot)
ψt( j) = argmaxψt−1(i)ai j

(2)

– Learning: Given an observation sequence O = o1,o2, · · · ,oT and a set of states S =
{st

1,s
t
2, · · · ,s

t
N}, how do we learn the HMM parameters for A and B? The parameter

learning task usually uses the Baum-Welch algorithm which is a special case of the

Expectation-Maximization (EM) algorithm.

In this paper, we focus on the likelihood and decoding problems by assuming a

supervised learning paradigm where labeled training data are already available.

3 Second-order probabilistic HMMs

Now, we explain the extension of the first-order model to a trigram3 in the second-order

model. Figure 2 illustrates the second-order probabilistic HMM allowing to estimate the

probability of the sequence of three states st−2
i , st−1

j and st
k where ai jk is the transition

probability from st−2
i and st−1

j to st
k, and bk(ot) is the observation probability on the

state st
k. Therefore, the second-order probabilistic HMM is characterized by three fun-

damental problems as follows:

– Likelihood: The second-order model relies on one observation bk(ot). Unlike the

first-order model, the transition probability is based on two previous tags where ai jk

= P(st
k|s

t−2
i , st−1

j ) as described below:

αt(k) = ∑
j

αt−1( j)ai jkbk(ot) (3)

However, it will be more difficult to find a sequence of three tags than a sequence

of two tags. Any particular sequence of tags st−2
i , st−1

j , st
k that occurs in the test

set may simply never have occurred in the training set because of data sparsity

[2]. Therefore, a method for estimating P(st
k|s

t−2
i ,st−1

j ), even if the sequence st−2
i ,

st−1
j , st

k never occurs, is required. The simplest method to solve this problem is to

combine the trigram P̂(st
k|s

t−2
i ,st−1

j ), the bigram P̂(st
k|s

t−1
j ), and even the unigram

P̂(st
k) probabilities [8]:

P(st
k|s

t−2
i ,st−1

j ) = λ1P̂(st
k|s

t−2
i ,st−1

j )+λ2P̂(st
k|s

t−1
j )+λ3P̂(st

k) (4)

Note that P̂ is the maximum likelihood probabilities which are derived from the

relative frequencies of the sequence of tags. Values of λ are such that λ1+λ2+λ3 =
1 and they can be estimated by the deleted interpolation algorithm [8]. Otherwise,

[7] describes a different method for values of λ as below:

λ1 = k3

λ2 = (1− k3) · k2

λ3 = (1− k3) · (1− k2)
(5)

3 The trigram is the sequence of three elements, i.e. three states in our case.
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where k2 =
log(C(st−1

j ,st
k
)+1)+1

log(C(st−1
j ,st

k
)+1)+2

, k3 =
log(C(st−2

i ,st−1
j ,st

k
)+1)+1

log(C(st−2
i ,st−1

j ,st
k
)+1)+2

, and C(st−2
i ,st−1

j ,st
k) is the

frequency of a sequence st−2
i ,st−1

j ,st
k in the training data. Note that λ1 +λ2 +λ3 is

not always equal to one in [7]. The likelihood of the observation probability for the

second-order model uses B where bk(ot) = P(ok|s
t
k,s

t−1
j ).

– Decoding: For second-order model we require a different Viterbi algorithm. For a

given state s at the time t, it would be redefined as follows [7]:

δt(k) = maxδt−1( j)ai jkbk(ot)
where δt( j) = maxP(s1,s2, · · · ,st−1 = si,s

t = s j,o1,o2, · · · ,ot)
ψt(k) = argmaxψt−1( j)ai jk

where ψt(k) = argmaxP(s1,s2, · · · ,st−1 = si,s
t = s j,o1,o2, · · · ,ot)

(6)

– Learning: The problem of learning would be similar to the first-order model except

that parameters A and B are different.

With respect to performance measures, different transition probability distributions

in [8] and [7] obtain 97.0% and 97.09% tagging accuracy for known words, respec-

tively for the same data (the Penn Treebank corpus). Even though probabilistic HMMs

perform reasonably well, belief HMMs can learn better under certain conditions on

observations [21].

4 First-order Belief HMMs

In probabilistic HMMs, A and B are probabilities estimated from the training data. How-

ever, A and B in belief HMMs are mass functions (bbas) [17, 21].According to previous

works on belief HMMs, a first-order HMM using belief functions can be characterized

as follows4:

N The number of states in a model Ωt = {St
1,S

t
2, · · · ,S

t
N}.

M The number of distinct observation symbols V .

A = {mΩt
a [St−1

i ](St
j)} The set of conditional bbas to all possible subsets of states.

B = {m
Ωt

b [ot ](S
t
j)} The set of bbas according to all possible observations Ot .

π = {m
Ω1
π (SΩ1

i )} The bba defined for the the initial state.

Difference between the first-order probabilistic and belief HMMs is presented in

Figure 1, the transition and observation probabilities in belief HMMs are described as

mass functions. Therefore, we can replace ai j by mΩt
a [St−1

i ](St
j) and b j(ot) by m

Ωt

b [ot ](S
t
j).

The set Ωt has been used to denote states for HMMs using belief functions [17, 21].

Note that st
i is the single state for probabilistic HMMs and St

i is the multi-valued state

for belief HMMs. First-order belief HMMs should also be characterized by three fun-

damental problems as follows:

– Likelihood: The likelihood problem in belief HMMs is not solved by likelihood,

but by using the combination. The first-order belief model relies on (i) only one

observation m
Ωt

b [ot ](S
t
j) and (ii) a transition conditional mass function based on

4 In the model Ωt , St are focal elements
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one previous tag mΩt
a [St−1

i ](St
j). Mass functions of sets A and B are combined using

the Disjunctive Rule of Combination (DRC) for the forward propagation and the

Generalized Bayesian Theorem (GBT) for the backward propagation [23]. Using

the forward path propagation, the mass function of a given state St
j can be com-

puted as the combination of mass functions on the observation and the transition as

described below:

qΩt
α (St

j) = ∑m
Ωt−1
α (St−1

i ) ·qΩt
a [St−1

i ](St
j) ·q

Ωt

b (St
j) (7)

Note that the mass function of the given state St
j is derived from the commonality

function q
Ωt
α .

– Decoding: Several solutions have been proposed to extend the Viterbi algorithm to

the theory of belief functions [17, 24, 25]. Such solutions maximize the plausibil-

ity of the state sequence. In fact, the credal Viterbi algorithm starts from the first

observation and estimates the commonality distribution of each observation until

reaching the last state. For each state St
j, the estimated commonality distribution

(q
Ωt

δ
(St

j)) is converted back to a mass function that is conditioned on the previous

state. Then, we apply the pignistic transform to make a decision about the current

state (ψt(s
t
j)):

q
Ωt

δ
(St

j) = ∑St−1
i ⊆At−1 m

Ωt−1

δ
(St−1

i ) ·qΩt
a [St−1

i ](St
j) ·q

Ωt

b (St
j)

ψt(s
t
j) = argmax

St−1
i ∈Ωt−1

(1−m
Ωt

δ
[St−1

i ]( /0)) ·Pt [S
t−1
i ](St

j)
(8)

where At = ∪
St−1

j ∈Ωt
ψt(S

t
j) [17].

– Learning: Instead of the traditional EM algorithm, we can use the E2M algorithm

for the belief HMM [22].

To build belief functions from what we learned using probabilities in the previous

section, we can employ the least commitment principle by using the inverse pignistic

transform [26, 27].

5 Second-order Belief HMMs

Like the first-order belief HMM, N, M, B and π are similarly defined in the second-order

HMM. The set A is quite different and is defined as follows:

A = {mΩt
a [St−2

i ,St−1
j ](St

k)} (9)

where A is the set of conditional bbas to all possible subsets of states based on the

two previous states. Second-order belief HMMs should also be characterized by three

fundamental problems as follows:

– Likelihood: The second-order belief model relies on one observation m
Ωt

b [ot ](S
t
k)

in a state Sk at time t and the transition conditional mass function based on two pre-

vious states St−2
i and St−1

j , defined by mΩt
a [St−2

i ,St−1
j ](St

k). Using the forward path
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propagation, the mass function of a given state St
k can be computed as the disjunc-

tive combination (DRC) of mass functions on the transition mΩt
a [St−2

i ,St−1
j ](St

k) and

the observation m
Ωt

b (St
k) as described below:

qΩt
α (St

k) = ∑m
Ωt−1
α (St−1

j ) ·qΩt
a [St−2

i ,St−1
j ](St

k) ·q
Ωt

b (St
k) (10)

where qΩt
a [St−2

i ,St−1
j ](St

k) is the commonality function derived from the conjunctive

combination of mass functions of two previous transitions. The conjunctive combi-

nation is used to have the conjunction of observations on previous two states St−2
i

and St−1
j .

The combined mass function mΩt
a [St−2

i ,St−1
j ](St

k) of two transitions m
Ωt−1
a [St−2

i ](St−1
j )

and mΩt
a [St−1

j ](St
k) is defined as follows:

mΩt
a [St−2

i ,St−1
j ](St

k) = m
Ωt−1
a [St−2

i ](St−1
j ) ∪© mΩt

a [St−1
j ](St

k) (11)

The conjunctive combination is required to obtain the conjunction of both transi-

tions. Note that the mass function of the given state St
k is derived from the com-

monality function q
Ωt
α . We use DRC with commonality functions like in [17]. Note

that the observation only on one previous state is taken into account in the first-

order belief HMM, but the conjunction of observations on two previous states is

considered in the second-order belief HMM.

– Decoding: We accept our assumption of the first-order belief HMM for the second-

order model. Similarly to the first-order belief HMM, we propose a solution that

maximizes the plausibility of the state sequence. The credal Viterbi algorithm es-

timates the commonality distribution of each observation from the first observa-

tion till the final state. For each state St
k, the estimated commonality distribution

(q
Ωt

δ
(St

k)) is converted back to a mass function that is conditioned on a mass func-

tion of the two previous states. This mass function is the conjunctive combination

of mass functions of the two previous states. Then, we apply the pignistic transform

to make a decision about the current state (ψt(s
t
j)) as before:

q
Ωt

δ
(St

k) = ∑St−1
j ⊆At−1 m

Ωt−1

δ
(St−1

j ) ·qΩt
a [St−2

i ,St−1
j ](St

k) ·q
Ωt

b (St
k)

ψt(s
t
k) = argmax

St−1
j ∈Ωt−1

(1−m
Ωt

δ
[St−1

j ]( /0)) ·Pt [S
t−2
i ,St−1

j ](St
k)

(12)

– Learning: Like the first-order belief model, we can still use the E2M algorithm for

the belief HMM [22].

Since the combination of mass functions in the belief HMM is required where the

previous observation is already considered in the set of conditional bbas mΩt
a [St−2

i ,St−1
j ],

we do not need to refine the observation probability for the second-order model as in

the second-order probabilistic model.

6 Conclusion and future perspectives

The problem of POS tagging has been considered as one of the most important tasks

for natural language processing systems. We described such a problem based on HMMs
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st−1

i
stj

bj(ot)

aij
St−1

i
St
j

mΩt

b [ot]

mΩt

a [St−1

i ]

Fig. 1. First-order probabilistic and belief HMMs

st−2

i
st−1

j stk

bk(ot)

aij ajk

aijk

St−2

i
St−1

j St
k

mΩt

b [ot]

mΩt

a [St−1

j ]m
Ωt−1

a [St−2

i ]

mΩt

a [St−2

i , St−1

j ]

Fig. 2. Second-order probabilistic and belief HMMs

and tried to apply our idea to the theory of belief functions. We extended previous works

on belief HMMs to the second-order model. Using the proposed method, we will be able

to easily extend the higher-order model for belief HMMs. Some technical aspects still

remain to be considered. Robust implementation for belief HMMs are required where

in general we can find over one million observations in the training data to deal with the

problem of POS tagging. As described before, the choice of inverse pignistic transforms

would be empirically verified.5 We are planning to implement these technical aspects

in near future.

The current work is described to rely on a supervised learning paradigm from la-

beled training data. Actually, the forward-backward algorithm in HMMs can do com-

pletely unsupervised learning. However, it is well known that EM performs poorly in

unsupervised induction of linguistic structure because it tends to assign relatively equal

numbers of tokens to each hidden state [29].6 Therefore, the initial conditions can be

very important. Since the theory of belief functions can take into consideration of uncer-

tainty and imprecision, especially for the lack of data, we might obtain a better model

using belief functions on an unsupervised learning paradigm.
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5 For example, [28] used the inverse pignistic transform in [26] to calculate belief functions

from Bayesian probability functions. As matter of fact, the problem of POS tagging can be
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6 The actual distribution of POS tags would be highly skewed as in heavy-tail distributions.


