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Abstract—This paper is dedicated to the study of HARQ proto-
cols under a secrecy constraint. An encoder sends information to
a legitimate decoder while keeping it secret from the eavesdrop-
per. Our objective is to provide a coding scheme that satisfies both
reliability and confidentiality conditions. This problem has been
investigated in the literature using a coding scheme that involves
a unique secrecy parameter. The uniqueness of this parameter is
sub-optimal for the throughput criteria and we propose a new
coding scheme that introduces additional degrees of freedom.
Our code involves Secrecy Adaptation and Rate Adaptation and
we called it SARA-code. The first contribution is to prove that
the SARA-code has small error probability and small information
leakage rate. The second contribution is to show, over a numerical
example, that the SARA-code improves the secrecy throughput.

Index Terms—Hybrid Automatic Retransmission Request,
Physical Layer Security, State Dependent Wiretap Channel.

I. INTRODUCTION

Reliability is a fundamental challenge for wireless commu-

nication that can be took up by the so-called Hybrid Auto-

matic Retransmission reQuest (HARQ) protocol. A single-

bit acknowledgement feedback ACK/NACK indicates to the

encoder whether the decoding was successful or not. Multiple

retransmissions enhance the reliability of the communication

by adapting the rate of transmitted information to the channel

capacity. An information theoretical analysis of HARQ proto-

cols can be found in [1] and improvements of HARQ protocols

using a rate allocation and codewords-length adaptation can be

found in [2], [3], [4] and [5].

Confidentiality arises as a natural question in wireless

communication because all other wireless devices can listen to

the traffic and extract some confidential information. Instead of

using a secret key, Wyner [6] shows that the statistics of the

channel can be exploited in order to secure the transmitted

information. Csiszar and Körner [7] extended the result of

Wyner [6] and characterize the secrecy capacity of the general

wiretap channel. In [8], the authors proposed to adapt the

HARQ protocols in order to guarantee simultaneously the

reliability and the confidentiality. The coding scheme proposed

in [8] is based on a mother code that involves a unique secrecy

parameter. The uniqueness of this secrecy parameter is a strong

drawback for this secure HARQ protocol because it must be

adapted to all possible retransmissions even if they don’t occur.

This work was supported by the government of Quebec under grant #PSR-
SIIRI-435.

We investigate the secure HARQ protocol by introducing

additional degrees of freedom in terms of secrecy parameters.

We deepen the information theoretical analysis of [8] by

considering state dependent wiretap channels represented by

Fig. 1. One objective of our work is called "secrecy adaptation"

and consists in splitting the secrecy constraints of each trans-

mission over different parameters. A second objective, called

"rate adaptation" and treated in [9], is to reduce the duration

of the retransmission in order to increase the information rate.

The first contribution of our work is to guarantee the existence

of a coding scheme that involves Secrecy Adaptation and Rate

Adaptation, called a SARA-code, with small error probability

and small information leakage rate. The second contribution

of our work is to show a numerical example for which the

SARA-code improves the secrecy throughput.
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Fig. 1. State dependent wiretap channels, for the first T1(y1, z1|x1, k1) and
for the second T2(y2, z2|x2, k2) transmissions. After the end of the first
transmission, the decoder D sends a ACK/NACK feedback to the encoder C.
The second transmission starts if the encoder C receives a NACK feedback
from the legitimate decoder. The state parameters k1 ∈ K1 and k2 ∈ K2 are
chosen arbitrarily, stay constant during the transmission and are available only
at the legitimate decoder D and at the eavesdropper E . The duration α·n ∈ N

of the second transmission is not necessarily equal to duration n ∈ N of the
first transmission.

Section II presents the channel model under investigation

and the concept of HARQ-code. The existence of a SARA-

code is stated in Section III. The performance of this code is

measured by the throughput defined in Section IV. A simple

example with two transmissions is investigated in Section V.

Section VI provides a sketch of the proof for the existence of

a SARA-code and Section VII concludes the article.
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II. SYSTEM MODEL

We consider a scenario with two transmissions described

by Fig. 1. During the first transmission, encoder C uses the

sequence of input symbols xn
1 ∈ Xn

1 in order to transmit

the message m ∈ M to the legitimate decoder D. Decoder

D (resp. Eavesdropper E) observes the sequence of channel

outputs yn1 ∈ Yn
1 (resp. zn1 ∈ Zn

1 ) and tries to decode

(resp. to infer) the transmitted message m ∈ M. Decoder

D sends a ACK/NACK feedback over a perfect channel that

indicates to the encoder, whether it has decoded correctly or

not. If the encoder receives a NACK feedback, the second

transmission starts over the wiretap channel T2 with input

sequence xαn
2 ∈ Xαn

2 of length α · n ∈ N. Decoder D
(resp. Eavesdropper E) tries to decode (resp. to infer) the

transmitted message m ∈ M from both sequences of channel

outputs yn1 ∈ Yn
1 and yαn2 ∈ Yαn

2 (resp. zn1 ∈ Zn
1 and

zαn2 ∈ Zαn
2 ). The random variable are denoted by m, m̂,

xn
1 , xαn

2 , yn1 , yαn2 , zn1 , zαn2 and the message m ∈ M is

uniformly distributed. The notation ∆(X ) stands for the set

of the probability distributions P(x) over the set X .

The channels are memoryless i.e. the n-times transition

probability and the αn-times transition probability are given

by equations (1) and (2). The state parameters (k1, k2) ∈ K1×
K2 are chosen arbitrarily, stay constant during the transmission

and are observed by the decoder and the eavesdropper.

T ⊗n
1 (yn1 , z

n
1 |x

n
1 , k1) =

n
∏

i=1

T1(y1(i), z1(i)|x1(i), k1), (1)

T ⊗αn
2 (yαn2 , zαn2 |xαn

2 , k2) =

αn
∏

i=1

T2(y2(i), z2(i)|x2(i), k2). (2)

Definition 1 A HARQ-code cn ∈ C(n, α,R) with stochastic

encoder is a tuple of functions cn = (f1, g1, f2, g2) defined by

equations (3), (4), (5) and (6).

f1 : M −→ ∆(Xn
1 ), (3)

g1 : K1 × Yn
1 −→ {ACK,NACK} ×M, (4)

f2 : M×Xn
1 × {ACK,NACK} −→ ∆(Xαn

2 ), (5)

g2 : Yn
1 × Yαn

2 ×K1 ×K2 −→ M. (6)

Denote by C(n, α,R), the set of HARQ-code with stochastic

encoder. The rate R defines the cardinality |M| = 2nR of the

set of messages M.

Definition 2 For each pair of state parameters (k1, k2) ∈
K1×K2, the error probability Pe and the information leakage

rate Le of the HARQ-code cn ∈ C(n, α,R) are defined by

equations (7) and (8).

Pe

(

cn

∣

∣

∣

∣

k1, k2

)

= P

(

m 6= m̂

∣

∣

∣

∣

cn, k1, k2

)

, (7)

Le

(

cn

∣

∣

∣

∣

k1, k2

)

=

I

(

m; zn1 , zn2

∣

∣

∣

∣

cn, k1, k2

)

n
. (8)

The random variable m̂ denote the output message of the

decoder. Depending on the number of transmissions, it is given

by m̂ = g1(y
n
1 , k1) or by m̂ = g2(y

n
1 , yn2 , k1, k2).

III. MAIN RESULT

The objective of this section is to prove the existence

of a HARQ-code that has small error probability and small

information leakage rate for a whole range of channel states.

We introduce the probability distributions P⋆
x1

∈ ∆(X1) and

P⋆
x2

∈ ∆(X2) over the channel inputs that will define all the

following mutual informations. The rates RW1
and RW2

denote

the amount of secrecy that are introduced implicitly into the

HARQ-code in order to confuse the eavesdropper.

Definition 3 (Channel States) For fixed parameters ε, α,
R, RW1

, RW2
and a fixed probability distributions P⋆

x1
∈

∆(X1) and P⋆
x2

∈ ∆(X2), the set of secure channel states
L(ε, α,R,RW1

,RW2
,P⋆

x1
,P⋆

x2
) is the union of channel states

(k1, k2) ∈ K1×K2 that satisfy equations (9) and (10) or that
satisfy equations (11), (12) and (13).

R+ RW1
≤ I(x1; y

1
|k1)− ε, (9)

RW1
≥ I(x1; z1|k1)− ε, (10)

R+ RW1
+ RW2

≤ I(x1; y
1
|k1) + α · I(x2; y

2
|k2)− ε, (11)

RW1
+ RW2

≥ I(x1; z1|k1) + α · I(x2; z2|k2)− ε, (12)

RW1
≥ I(x1; z1|k1)− ε. (13)

Equation (9) (resp. (11)) guarantees that the decoding of

the first (resp. of the second) transmission is successful and

equation (10) (resp. (12) and (13)) guarantees that the first

(resp. that the second) transmission is secured.

Theorem 4 (Code existence) Fix the parameters α, R, RW1
,

RW2
and the input probability distributions P⋆

x1
and P⋆

x2
.

For all ε > 0, there exists a length n̄ ∈ N such that

for all n ≥ n̄, there exists a HARQ-code c⋆n ∈ C(n, α,R)
that satisfies equations (14) and (15) for all channel states

(k1, k2) ∈ L(ε, α,R,RW1
,RW2

,P⋆
x1
,P⋆

x2
).

Pe

(

c⋆n

∣

∣

∣

∣

k1, k2

)

≤ ε, (14)

Le

(

c⋆n

∣

∣

∣

∣

k1, k2

)

≤ ε. (15)

A sketch of the proof of Theorem 4 is provided in section

VI and the full version is available in [10]. For every tuple

of parameters (α,R,RW1
,RW2

), Theorem 4 guarantees the

existence of a sequence of HARQ-code c⋆ = (c⋆n)n≥1 with

c⋆n ∈ C(n, α,R), such that the error probability and the

information leakage rate converge to zero for a whole range

of channel states. In the rest of this article, the sequence

of optimal HARQ-code c⋆ = (c⋆n)n≥1 is called "Secrecy-

Adaptation-Rate-Adaptation-code" (SARA-code) with param-

eters (α,R,RW1
,RW2

). Note that the SARA-code is one of

the possible realization of the random HARQ-code stated

in section VI-A. The performances of the SARA-code are

evaluated by the secure throughput, defined in section IV.

Remark 5 The result stated in Theorem 4 can be easily

extended to the case of I ∈ N transmissions. To illustrate

this, we provide here a short analysis for the case of I = 3
transmissions. We introduce the parameters RW3

∈ R, β ∈ R,

P⋆
x3
∈ ∆(X3) and k3 ∈ K3. The set of secure channel states for
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3 transmissions L3(ε, α, β,R,RW1
,RW2

,RW3
,P⋆

x1
,P⋆

x2
,P⋆

x3
) is

the union of channel states (k1, k2, k3) ∈ K1 ×K2 × K3 that

satisfy equations (9) and (10) or that satisfy equations (11),

(12) and (13) or that satisfy equations (16), (17), (18) and

(19).

R+ RW1
+ RW2

+ RW3
≤ I(x1; y1|k1)

+ α · I(x2; y2|k2) + β · I(x3; y3|k3)− ε, (16)

RW1
+ RW2

+ RW3
≥ I(x1; z1|k1)

+ α · I(x2; z2|k2) + β · I(x3; z3|k3)− ε, (17)

RW1
+ RW2

≥ I(x1; z1|k1) + α · I(x2; z2|k2)− ε, (18)

RW1
≥ I(x1; z1|k1)− ε. (19)

The proof of Theorem 4 can be adapted to the case of I = 3
transmission using a binning scheme with three levels for the

inputs xn3 ∈ Xn
3 of the third channel. The same arguments

apply for the case of I ∈ N transmissions.

Remark 6 The result stated in Theorem 4 is a generalization

of the result of Theorem 1 stated in [8]. Indeed, fixing the

parameters RW2
= 0 and α = 1 the system of equations stated

in definition 3 reduces to the equations (20) and (21) or (22)

and (23) where the rates parameters are defined differently

RW1
= 2Ro − 2Rs and R = 2Rs.

2Ro ≤ I(x1; y1|k1)− ε, (20)

2Ro − 2Rs ≥ I(x1; z1|k1)− ε, (21)

2Ro ≤ I(x1; y1|k1) + I(x2; y2|k2)− ε, (22)

2Ro − 2Rs ≥ I(x1; z1|k1) + I(x2; z2|k2)− ε. (23)

The result stated in Theorem 4 introduces two additional

degree of freedom (RW2
, α) that will be exploited to increase

the maximal secrecy throughput.

IV. SECRECY THROUGHPUT OF A SARA-CODE

In order to define the secrecy throughput of the SARA-code
with parameters (α,R,RW1

,RW2
), we introduce the informa-

tion events A, B, C and D given by equations (24), (25), (26),
and (27).

A =

{

R+ RW1
≤ I(x1; y

1
|k1)

}

, (24)

B =

{

RW1
≥ I(x1; z1|k1)

}

, (25)

C =

{

R+ RW1
+ RW2

≤ I(x1; y
1
|k1) + α · I(x2; y

2
|k2)

}

, (26)

D =

{

RW1
+ RW2

≥ I(x1; z1|k1) + α · I(x2; z2|k2)

}

. (27)

Events A and C are decoding events and events B and D are

secrecy leakage events.

Definition 7 The connection outage probability Pco and se-

crecy outage probability Pso are defined by equations (28) and

(29).

Pco = P

(

Ac ∩ Cc

)

, (28)

Pso = P

(

Bc ∪

(

Ac ∩ Dc

))

. (29)

Remark 8 Letting the parameters RW2
= 0 and α = 1, this

implies that A ⊂ C, D ⊂ B and the definitions of Pco and Pso

reduce to equations (21) and (22) in [8].

Definition 9 The maximal secrecy throughput is defined by

equation (30) and it measures the expected number of bits

decoded by the legitimate decoder per channel use.

η = max
R,RW1

,RW2
,α

(

R · (1− Pco)

1 + α · (1− P(A))

)

, (30)

s.c.

{

Pco ≤ ξc,

Pso ≤ ξs.

The maximum is taken over the parameters R, RW1
, RW2

, α
such that the connection outage probability and the secrecy

outage probability are lower than ξc and ξs.

V. NUMERICAL RESULTS

We consider an example represented by Fig. 2 where the

connection and the secrecy outage probability must be lower

than ξc = 1/4 = 0.25 and ξs = 1/8 = 0.125. These values are

rather large and this is due to the small cardinality of the set

of channel states. We investigate the optimal performances of

the SARA-code whose existence is stated in Theorem 4 and

we compare it to the coding scheme introduced in [8] where

the parameters RW2
= 0 and α = 1 are fixed.

First Transmission

I(x1; z1|k1) = 2

I(x1; z1|k1) = 3

C

C

E

E

Proba. Eavesdropper = (1/2, 1/2)

I(x1; y
1
|k1) = 4

I(x1; y
1
|k1) = 5

C

C

D

D

Proba. Legitimate = (1/2, 1/2)

Second Transmission

I(x2; z2|k2) = 2

I(x2; z2|k2) = 3

C

C

E

E

Proba. Eavesdropper = (1/2, 1/2)

I(x2; y
2
|k2) = 4

I(x2; y
2
|k2) = 5

C

C

D

D

Proba. Legitimate = (1/2, 1/2)

Fig. 2. In both transmissions, the channel of the legitimate decoder takes two
possible values I(x1; y

1
|k1) ∈ {4, 5} with probability (1/2, 1/2) and the

channel of the eavesdropper takes two possible values I(x1; z1|k1) ∈ {2, 3}
with probability (1/2, 1/2).

A. Coding Scheme with parameters (RW2
, α) = (0, 1) [8]

Fig. 3 and 4 show that the optimal parameters are

(R,RW1
) = (3, 6) and the secrecy throughput is equal to

ηp =
3 · (1 − 0.25)

1 + 1 · (1− 0)
=

9

8
= 1.125. (31)

The parameters are directly adapted to the case of two trans-

missions. The secrecy rate is very large RW1
= 6, hence the

secrecy outage has probability Pso = 0. The remaining rate is

used to transmit information R = 3 and it induces a connection

outage probability of Pco = 0.25.
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Fig. 3. Throughput ηp optimized
over RW1

depending on the rate pa-
rameter R for (RW2

, α) = (0, 1).
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Fig. 4. Throughput ηp optimized
over R depending on the rate param-
eter RW1

for (RW2
, α) = (0, 1).

B. SARA-code with parameters α,R,RW1
,RW2

The SARA-code introduces two additional degrees of free-

dom (RW2
, α) that are optimized in order to increase the

maximal secrecy throughput.

1) Impact of parameter RW2
for a fixed α = 1:

• Fig. 5 shows that the maximal secrecy throughput is equal

to η = 4/3 ≃ 1.333 for a range of parameter RW2
∈

{2, 3} and for a fixed parameter α = 1.

• Fig. 6 shows that the corresponding optimal parameters

are (R,RW1
) = (2, 3).

The secrecy outage probability is equal to Pso = 1/8 = 0.125
and the connection outage probability is equal to Pco = 0.

The SARA-code allows to split the secrecy constraints over

two parameters (R,RW1
) = (2, 3) instead of only one RW1

=
6. It induces a positive probability of decoding in the first

transmission that increase the secrecy throughput.
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Fig. 5. Maximal secrecy throughput
η optimized over (R,RW1

) depend-
ing on RW2

for a fixed α = 1.
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R: Optimal Information Rate
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Fig. 6. Optimal (R,RW1
) depending

on RW2
for a fixed α = 1.

2) Impact of both additional parameters (RW2
, α):

• Fig. 7 shows that the maximal secrecy throughput is equal

to η = 1.6 for optimal parameters α = 0.5 and RW2
= 1.

• Fig. 8 shows that the optimal parameters (R,RW1
) =

(2, 3) correspond to the secrecy throughput η = 1.6.

The secrecy outage probability is equal to Pso = 1/8 = 0.125
and the connection outage probability is equal to Pco = 0.

The secrecy rate RW1
= 3 of the SARA-code is adapted

only for the first transmission. With probability P(A) = 1/2,

the transmitted message is correctly decoded after the first

transmission. If the second transmission occurs, the parameter

α = 0.5 reduces appropriately the duration of the second

transmission such that the decoder can decode correctly. Hence

the secrecy rate for the second transmission can also be
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Fig. 7. Maximal secrecy throughput
η optimized over (R,RW1

) depend-
ing on RW2

for a fixed α = 0.5.
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Fig. 8. Optimal (R,RW1
) depending

on RW2
for a fixed α = 0.5.

reduced to RW2
= 1 and the maximal secrecy throughput is

given by equation (32).

η =
2 · 1

1 + 0.5 · (1− 0.5)
=

8

5
= 1.6. (32)

For this example described by Fig. 2, the SARA-code provides

more than 42% of increase compared to the coding scheme

presented in [8].

VI. SKETCH OF THE PROOF OF THEOREM 4
Fix the parameters ε > 0, α ≥ 0, R ≥ 0, RW1

≥ 0,
RW2

≥ 0 and the probability distributions P⋆
x1

∈ ∆(X1) and
P⋆
x2

∈ ∆(X1). Denote L′(ε, α,R,RW1
,RW2

,P⋆
x1
,P⋆

x2
) the set

of channel states (k1, k2) ∈ K1 × K2 corresponding to two
transmissions, that satisfy the equations (33), (34), (35) and
(36).

R + RW1
+ RW2

≤ I(x1; y
1
|k1) + α · I(x2; y

2
|k2) − 8ε(1 + α), (33)

R + RW1
> I(x1; y

1
|k1) − 4ε(1 + α), (34)

RW1
+ RW2

≥ I(x1; z1|k1) + α · I(x2; z2|k2) − 4ε(1 + α), (35)

RW1
≥ I(x1; z1|k1) − 4ε(1 + α). (36)

A. Random HARQ-Code

We introduce the concept of random HARQ-code c ∈
C(n, α,R) with stochastic encoder, defined as follows:

• Random codebook xn
1 . Generate |M × MW1

| =
2n(R+RW1

) sequences xn1 ∈ X1 drawn from the probability

distribution P⋆⊗n
x1

. Randomly bin them into |M| = 2nR

bins denoted by m ∈ M, each of them containing

|MW1
| = 2nRW1 sequences xn

1 ∈ Xn
1 indexed by the

parameter w1 ∈ MW1
.

• Random codebook xαn2 . Generate |M×MW1
×MW2

| =

2αn(R
′+R′

W1
+R′

W2
)

sequences xαn
2 ∈ Xαn

2 drawn from the

probability distribution P⋆⊗αn
x2

. Randomly bin them into

|M| = 2αnR
′

bins denoted by m ∈ M, each of them

containing |MW1
× MW2

| = 2αn(R
′

W1
+R′

W2
)

sequences

xαn2 ∈ Xαn
2 indexed by a pair of parameters (w1, w2) ∈

MW1
×MW2

. Each bin m ∈ M is divided into |MW2
| =

2αnR
′

W2 sub-bins containing |MW1
| = 2αnR

′

W1 sequences

xαn2 ∈ Xαn
2 . Denote by w2 ∈ MW2

the index of the

sub-bins and by w1 ∈ MW1
the index of the sequence of

symboles xαn
2 (m,w1, w2) ∈ Xαn

2 .

Remark 10 The parameters R
′, R′

W1
, R′

W2
satisfy nR =

αnR′, nRW1
= αnR′

W1
and nRW2

= αnR′
W2

.
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• Encoding function over the first channel. The encoder

observes the realization of the message m ∈ M. It

chooses at random the parameter w1 ∈ MW1
using

the uniform probability distribution and sends through

the first channel T1 the sequence of channel inputs

xn
1 (m,w1).

• Feedback from the decoder. The decoder observes the

realization of the channel state k1 ∈ K1 and send to

the encoder the feedback ACK if it can decode after the

first transmission (i.e. equation (34) is not satisfied) and

it sends the feedback NACK if it can not decode after

the first transmission (i.e. equation (34) is satisfied) the

transmitted message.

• Decoding fonction for ACK. The decoder observes the

state parameter k1 ∈ K1 and finds the pair of indexes

(m,w1) ∈ M×MW1
such that xn

1 (m,w1) ∈ A⋆n
ε (yn1 |k1)

is jointly typical with the sequence of outputs of the

first channel T1. Its returns the index m ∈ M of the

transmitted message.

• Encoding function for NACK. If the encoder receives

a NACK feedback, it chooses at random the parameter

w2 ∈ MW2
using the uniform probability distribution

and sends through the second channel T2 the sequence

of channel inputs xαn
2 (m,w1, w2).

• Decoding fonction for NACK. The decoder observes the

state parameters (k1, k2) ∈ K1 × K2 and finds the triple

of indexes (m,w1, w2) ∈ M × MW1
× MW2

such

that xn
1 (m,w1) ∈ A⋆n

ε (yn1 |k1) is jointly typical with the

sequence of outputs of the first channel T1 and such that

xαn
2 (m,w1, w2) ∈ A⋆αn

ε (yαn2 |k2) is jointly typical with

the sequence of outputs of the second channel T2. Its

returns the index m ∈ M of the transmitted message.

• An error is declared when the sequences (xn
1 , y

n
1 , z

n
1 ) /∈

A⋆n
ε (Q1|k1) or (xαn

2 , yαn2 , zαn2 ) /∈ A⋆αn
ε (Q2|k2) are not

jointly typical for the probability distributions Q1 =
P⋆
x1
⊗ T1 ∈ ∆(X1 × Y1 × Z1) and Q2 = P⋆

x2
⊗ T2 ∈

∆(X2 × Y2 ×Z2).

B. Expected error probability

Equations (33) and (34) guarantee that the expected er-

ror probability of the random HARQ-code c ∈ C(n, α,R)
is bounded by ε for all channel states (k1, k2) ∈
L′(ε, α,R,RW1

,RW2
,P⋆

x1
,P⋆

x2
).

Ec

[

Pe

(

c

∣

∣

∣

∣

k1, k2

)]

≤ 4ε. (37)

C. Expected information leakage rate

Equations (35) and (36) guarantee that the expected er-
ror probability of the random HARQ-code c ∈ C(n, α,R)
is bounded by ε for all channel states (k1, k2) ∈
L′(ε, α,R,RW1

,RW2
,P⋆

x1
,P⋆

x2
).

Ec

[

Le

(

c

∣

∣

∣

∣

k1, k2

)]

≤ ε ·

(

9 + 8α + 10 log
2
|X1|+ 15α · log

2
|X2|

)

. (38)

D. Conclusion

The above result can be extended for all channel states

(k1, k2) ∈ L(ε, α,R,RW1
,RW2

,P⋆
x1
,P⋆

x2
). Define ε′ in terms

of ε in the following manner:

ε′ = 4ε+ ε ·

(

9 + 8α+ 10 log2 |X1|+ 15α · log2 |X2|

)

The random HARQ-code with stochastic encoder c ∈
C(n, α,R) satisfies the following equations for all channel
states (k1, k2) ∈ L(ε, α,R,RW1

,RW2
,P⋆

x1
,P⋆

x2
).

Ec

[

Pe

(

c

∣

∣

∣

∣

k1, k2

)]

+ Ec

[

Le

(

c

∣

∣

∣

∣

k1, k2

)]

≤ ε′

=⇒ ∃c⋆ ∈ C(n,α,R),

[

Pe

(

c⋆
∣

∣

∣

∣

k1, k2

)

+ Le

(

c⋆
∣

∣

∣

∣

k1, k2

)]

≤ ε′.

This proves the existence of a HARQ-code c⋆ ∈ C(n, α,R)
such that equations Pe(c

⋆|k1, k2) ≤ ε′ and Le(c
⋆|k1, k2) ≤ ε′.

The full version of the proof is available in [10].

VII. CONCLUSION

This paper is devoted to the problem of HARQ protocols

under a secrecy constraint. The objective is to provide a

coding scheme that satisfies both reliability and confidentiality

conditions. We provide a new coding scheme that involves

Secrecy Adaptation and Rate Adaptation and we called it

SARA-code. The first contribution is to prove that the SARA-

code has small error probability and small information leakage

rate. The second contribution is to show that the secrecy

throughput of the SARA-code is greater than those stated in

the related literature. Block fading Gaussian channels will be

considered in a future extension of this work.
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