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Abstract—Correlation between channel state and source sym-
bol is under investigation for a joint source-channel coding
problem. We investigate simultaneously the lossless transmission
of information and the empirical coordination of channel inputs
with the symbols of source and states. Empirical coordination is
achievable if the sequences of source symbols, channel states,
channel inputs and channel outputs are jointly typical for a
target joint probability distribution. We characterize the joint
distributions that are achievable under lossless decoding con-
straint. The performance of the coordination is evaluated by
an objective function. For example, we determine the minimal
distortion between symbols of source and channel inputs for
lossless decoding. We show that the correlation source/channel
state improves the feasibility of the transmission.

Index Terms—Shannon Theory, State-dependent Channels,
Joint Source-Channel Coding Problem, Empirical Coordina-
tion, Empirical Distribution of Symbols, Non-Causal Encod-
ing/Decoding.

I. INTRODUCTION

State-dependent channels with state information at the

encoder have been widely studied since the publication of

Gel’fand Pinsker’s article [1]. The authors characterize the

channel capacity in the general case and Costa evaluates

it for channels with additive white Gaussian noise in [2].

Interestingly, additional noise does not lower the channel

capacity while it is observed by the encoder. In this setting, the

encoder has non-causal state information, i.e. it observes the

whole sequence of channel states. This hypothesis is relevant

for problems such as computer memory with defect [3] in

which the encoder observes the sequence of defects or digital

watermarking [4] since the sequence of states is a watermarked

image/data. Non-causal state information is also appropriate

for the problem of empirical coordination [5], since the se-

quence of source symbol acts as channel states. More recently,

the notion of "state amplification" was introduced in [6]. In

this framework, the decoder is also interested in acquiring

some information about the channel state. The amount of such

information is measured by the "uncertainty reduction rate".

The authors characterize the optimal trade-off region between

reliable data rate and uncertainty reduction rate. As a special

case, they consider that the encoder only transmit the sequence

of channel-states.

In this paper, we investigate the problem of correlation

between channel state and source symbol with a constraint

of empirical coordination. Although the problem of corre-

lation state/source is different from the problem of state

amplification, both problems coincide when considering the

transmission of channel states only. The reliability criteria we

consider is based on empirical coordination [7], [8], [9], also

referred as empirical correlation. An error occurs if sequences

of source symbols, channel states, channel inputs and channel

outputs are not jointly typical for a target joint probability, or if

the decoding is not lossless. This result applies to coordination

games [5], in which the encoder aims at maximizing an

objective function that depends on symbols of source and

channel while transmitting lossless information to the decoder.
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Fig. 1. Channel state S is correlated with information source U . Encoder
C and decoder D implement a coding scheme such that sequences of

symbols (Un, Sn, Xn, Y n, Ûn) ∈ A⋆n
ε (Q) are jointly typical for the target

probability distribution Q(u, s, x, y, û) and the decoding is lossless.

Channel model and definitions are presented in Sec. II. In

Sec. III, we characterize the set of achievable empirical distri-

bution. In Sec. IV, we compare this result to previous works

and to the case of non-correlated channel state/information

source. Sec.V provides numerical results that illustrate the

benefit of taking into account the correlation between channel

state and information source. The conclusion is stated in Sec.

VI and sketches of proof of the main result are presented in

App. A and B.

II. SYSTEM MODEL

The problem under investigation is depicted in Fig. 1. Cap-

ital letter U denotes the random variable and lowercase letter

u ∈ U denotes the realization. We denote by Un, Sn, Xn, Y n,

Ûn, the sequences of random variables of the source symbols

un = (u1, . . . , un) ∈ Un, of channel state sn ∈ Sn, of channel

inputs xn ∈ Xn, of channel outputs yn ∈ Yn and of outputs



of the decoder ûn ∈ Un. We assume the sets U , S, X , Y are

discrete and Un denotes the n-time cartesian product of set U .

Notation ∆(X ) stands for the set of probability distributions

P(X) over X . The variational distance between probabilities

Q and P is denoted by ||Q−P||v = 1/2·
∑

x∈X |Q(x)−P(x)|.
Notation 1(û|u) denotes the indicator function that equals

1 if û = u and 0 otherwise. The Markov chain property is

denoted by Y −
−X−
−U and holds if for all (u, x, y) we have

P(y|x, u) = P(y|x). The information source and channel states

are i.i.d. distributed with Pus and the channel is memoryless

with transition probability Ty|xs. The statistics of Pus and Ty|xs
are known by both encoder C and decoder D.

Coding Process: A sequence of source symbols un ∈ Un

and channel states sn ∈ Sn are drawn from the i.i.d. probabil-

ity distribution defined by equation (1). Encoder C observes

un ∈ Un, sn ∈ Sn non-causally and sends a sequence of

channel inputs xn ∈ Xn. The sequence of channel outputs

yn ∈ Yn is drawn according to the discrete and memoryless

transition probability defined by equation (2).

P⊗n

us (un, sn) =

n
∏

i=1

Pus(ui, si), (1)

T ⊗n(yn|xn, sn) =

n
∏

i=1

T (yi|xi, si). (2)

The decoder observes the sequence of channel outputs yn ∈
Yn and returns a sequence ûn ∈ Un. We consider lossless

decoding: the sequence of output of the decoder ûn ∈ Un

should be equal to the source sequence ûn = un ∈ Un.

The objective of this work is to characterize the set of

empirical distributions Q ∈ ∆(U × S × X × Y × U) that

are achievable, i.e. for which the decoding is lossless and

the encoder and decoder implement sequences of symbols

(Un, Sn, Xn, Y n, Ûn) ∈ A⋆n

ε
(Q) that are jointly typical for

probability distribution Q with high probability. The definition

of typical sequence is stated pp. 27 in [10]. In this setting,

the sequence of channel inputs Xn must be coordinated

(i.e. jointly typical) with (Un, Sn). The performance of the

coordination is evaluated by an objective function ν : U ×S×
X × Y 7→ R, as stated in [5]. For example, we characterize

the minimal distortion level d(u, x) between the source symbol

u ∈ U and channel input x ∈ X under lossless decoding con-

straint. Error probability evaluates simultaneously the lossless

transmission of information and the empirical coordination of

symbols of source, state, channel input, channel output and

decoder output. Since the decoding is lossless, a joint distri-

bution Q ∈ ∆(U×S×X×Y×U) is achievable if the marginal

probability distribution Q(û|u) = 1(û|u) is equal to the

indicator function. However, the lossless decoding condition

is more restrictive than marginal condition Q(û|u) = 1(û|u),
since sequences Ûn = Un should be strictly equal.

Definition II.1 A code c ∈ C(n) with non-causal encoder is

a pair of functions c = (f, g) defined by equations (3)-(4).

f : Un × Sn −→ Xn, (3)

g : Yn −→ Un. (4)

The empirical distribution Qn ∈ ∆(U × S × X × Y × U) of

sequences (un, sn, xn, yn, ûn) ∈ Un × Sn × Xn × Yn × Un

is defined by equation (5) where N(u|un) denotes the number

of occurrence of symbol u ∈ U in sequence un ∈ Un.

Qn(u, s, x, y, û) =
N(u, s, x, y, û|un, sn, xn, yn, ûn)

n
,

∀(u, s, x, y, û) ∈ U × S × X × Y × U . (5)

Fix a target probability distribution Q ∈ ∆(U ×S ×X ×Y ×
U), the error probability of the code c ∈ C(n) is defined by

equation (6).

Pe(c) = Pc

(

∣

∣

∣

∣

∣

∣
Qn −Q

∣

∣

∣

∣

∣

∣

v
≥ ε

)

+ Pc

(

Un 6= Ûn

)

, (6)

where Qn ∈ ∆(U × S × X ×Y × U) is the random variable

of the empirical distribution of the sequences of symbols

(Un, Sn, Xn, Y n, Ûn) ∈ Un × Sn ×Xn ×Yn ×Un induced

by the code c ∈ C(n) and probability distributions Pus, Ty|xs.

Definition II.2 A probability distribution Q ∈ ∆(U×S×X×
Y×U) is achievable if for all ε > 0, there exists a n̄ ∈ N such

that for all n ≥ n̄ there exists a code c ∈ C(n) that satisfies:

Pe(c) = Pc

(

∣

∣

∣

∣

∣

∣
Qn −Q

∣

∣

∣

∣

∣

∣

v
≥ ε

)

+ Pc

(

Un 6= Ûn

)

≤ ε. (7)

If the error probability Pe(c) is small, the empirical frequency

of symbols (u, s, x, y, û) ∈ U × S × X × Y × U is close to

the probability distribution Q(u, s, x, y, û), i.e. the sequence of

symbols (Un, Sn, Xn, Y n, Ûn) ∈ A⋆n

ε
(Q) are jointly typical

for target distribution Q(u, s, x, y, û), with large probability.

In that case, sequences of symbols are coordinated empirically.

III. CHANNEL STATE CORRELATED WITH THE SOURCE

We consider probability distributions Pus for the source and

Ty|xs for the channel. We characterize the set of probability

distribution Q(u, s, x, y, û) ∈ ∆(U ×S ×X ×Y ×U) that are

achievable.

Theorem III.1 (Source Correlated with Channel State)

1) The joint probability distribution Q(u, s, x, y, û) is

achievable if and only if it decomposes as follows:






























Q(u, s) = Pus(u, s),

Q(y|x, s) = T (y|x, s),

Q(û|u) = 1(û|u),

Y −
− (X,S)−
− U,

Pus(u, s)⊗Q(x|u, s)⊗ T (y|x, s) ⊗ 1(û|u) is achievable.

2) The probability distribution Pus(u, s) ⊗ Q(x|u, s) ⊗
T (y|x, s)⊗ 1(û|u) is achievable if:

max
Q̃∈Q

(

I(U,W ;Y )− I(W ;S|U)−H(U)

)

> 0, (8)

3) The probability distribution Pus(u, s) ⊗ Q(x|u, s) ⊗
T (y|x, s)⊗ 1(û|u) is not achievable if:

max
Q̃∈Q

(

I(U,W ;Y )− I(W ;S|U)−H(U)

)

< 0, (9)



where Q is the set of distributions Q̃ ∈ ∆(U ×S ×W ×X ×
Y × U) with auxiliary random variable W that satisfies:











∑

w∈W
Q̃(u, s, x, w, y, û)

= Pus(u, s)⊗Q(x|u, s)⊗ T (y|x, s)⊗1(û|u),

Y −
− (X,S)−
− (U,W ).

Since Pus(u, s), Q(x|u, s), T (y|x, s), 1(û|u) are fixed, the

set Q corresponds to the set of transition probability Q̃w|usx.

Sketchs of proof of Theorem III.1 are stated in Appendices

A and B. We refer to equation (8) as "information constraint".

Transition probability Q(x|u, s) is the unique degree

of freedom for the joint distribution Q(u, s, x, y, û) since

Pus(u, s), T (y|x, s) and 1(û|u) are the data of the problem.

Q(x|u, s) characterizes the empirical coordination of the chan-

nel inputs Xn with sequences of source/state (Un, Sn). This

result applies to optimization problems of objective functions

ν : U × S × X × Y 7→ R that depend simultaneously on

symbols (U, S,X, Y ) of source and channel.

Example III.2 (Minimal Distortion Source/Input Symbols)

Consider distortion function d : U ×X 7→ R for source/input

symbols. The minimal distortion level D⋆ is given by:

D⋆ = min
Qx|us∈A⋆

E

[

d(U,X)

]

, (10)

where A⋆ is the convex closure of the set of achievable Qx|us:

A
⋆

= Conv

{

Qx|us s.t. max
Q̃w|usx

(

I(U, W ; Y ) − I(W ;S|U) − H(U)
)

≥ 0

}

. (11)

Equation (10) is a direct consequence of Theorem III.1, see

also [5]. Consider a smaller distortion level D◦ < D⋆. The

corresponding transition probability Q◦
x|us /∈ A⋆ is not achiev-

able. There is no code c(n) such that Xn is coordinated, i.e.

jointly typical, with (Un, Sn) for target probability distribution

Pus ⊗Q◦
x|us. Hence, distortion level D◦ is not achievable.

For any objective function ν, Theorem III.1 characterizes the

coordination Qx|us ∈ A⋆ that is achievable and optimal [5]:

max
Qx|us∈A⋆

E
[

ν(U, S,X, Y )
]

. (12)
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Fig. 2. Decoder observes a side information Z correlated with (U, S).

Consider decoder observes a side information Z correlated

with (U, S), drawn i.i.d. with Pusz, as stated in Fig. 2.

Corollary III.3 (Side Information at the Decoder)

Probability distribution Pusz(u, s, z)⊗Q(x|u, s)⊗T (y|x, s)⊗
1(û|u) is achievable if:

max
Q̃∈Q

(

I(U,W ;Y, Z)− I(W ;S|U)−H(U)

)

> 0, (13)

where Q is the set of distributions Q̃ ∈ ∆(U ×S ×Z ×W ×
X ×Y×U) with auxiliary random variable W that satisfies:



















∑

w∈W
Q̃(u, s, z, x, w, y, û)

= Pusz(u, s, z)⊗Q(x|u, s)⊗ T (y|x, s)⊗1(û|u),

Y −
− (X,S)−
− (U,Z,W ),

Z −
− (U, S)−
− (X,Y,W ).

Only achievability result is stated in Corollary III.3 but the

converse holds. Proofs are obtained by replacing the channel

output Y by (Y, Z) in App. A and B.

Corollary III.4 (Removing Coordination of Channel Input)

Lossless decoding is achievable if:

max
Q̃xw|us

(

I(U,W ;Y )− I(W ;S|U)−H(U)

)

> 0. (14)

Converse of Corollary III.4 also holds. As no coordination is

required between X and (U, S), transition probability Qx|us

is a degree of freedom for maximizing (14). Proof is a direct

consequence of Theorem III.1 since the maximum in (14) is

taken over transitions Qx|us and Q̃w|usx instead of Q̃w|usx only.
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Fig. 3. Channel T (y|x, s) with states S ∈ {0, 1} depending on error
probability ε ∈ [0, 0.5]. Probabilities (p0, p1, p2, p3, p4, p5) characterize
the transition probability Q(x|s). The unique difference between states
S ∈ {0, 1} holds for the channel input X = 2. Exploitation of the correlation
between channel state S and source symbol U improves the transmission.

IV. COMPARISON WITH PREVIOUS WORK

In this section, we consider the result stated in Corollary

III.4 for lossless decoding, removing the coordination between

X and (U, S). We compare our result to the case of "State

Amplification" [6] and independent source/state (U, S) [11].

Corollary IV.1 (Comparison with Previous Work)

• When the source is the state S = U , information constraint

(14) reduces to eq. (2) in [6] for "state amplification":

max
Q̃x|s

I(S,X ;Y )−H(S) > 0. (15)



• When source U is independent of state S, information
constraint (14) reduces to the one stated in [11], [1]:

max
Q̃xw|us

(

I(U,W ;Y )− I(W ;S|U) −H(U)

)

> 0

⇐⇒ max
Q̃xw|s

(

I(W ;Y )− I(W ;S)−H(U)

)

> 0. (16)

Proof of equation (16) in Corollary IV.1 is stated in [12]. As

mentioned in [11], separation holds when random variables of

the channel (S,X, Y ) are independent of the source U .

Proposition IV.2 The benefit of exploiting the correlation
between source U and channel state S is greater than:

max
Q̃xw|us

(

I(U,W ;Y )− I(W ;S|U)−H(U)

)

− max
Q̃xw|s

(

I(W ;Y )− I(W ;S)−H(U)

)

≥ min
Q̃x|s

I(U ;Y ). (17)

Proof of Proposition IV.2 is stated in [12].

V. NUMERICAL RESULTS WITHOUT COORDINATION

We consider the channel with state T (y|x, s) depicted in
figure 3 depending on parameter ε ∈ [0, 0.5] and the joint
probability distribution Pus(u, s) defined by figure 4. The

1+α

4

1−α

4

1−α

4

1+α

4

U = 0

U = 1

S = 0 S = 1

Fig. 4. Joint probability distribution Pus(u, s). If α = 0, the random
variables U and S are independent. If α = 1, both random variables are
equal: U = S. The marginal probability distributions on U and S are always
equal to the uniform probability distribution (0.5, 0.5).

correlation between the information source U and the channel
state S depends on parameter α ∈ [0, 1]. We evaluate the
benefit of exploiting the correlation between source U and
channel state S for different values of parameters α ∈ [0, 1]
and ε ∈ [0, 0.5]. Since the information constraint with auxil-
iary random variable W is difficult to characterize, we consider
the following upper (18) and lower (19) bounds:

(16) ≤ max
(p3,p4,p5)

(

I(X; Y |S)−H(U)

)

, (18)

(14) ≥ max
(p3,p4,p5)

(

I(X; Y |U)− I(X;S|U)−H(U |Y )

)

. (19)

• (18) is an upper bound on (16) that does not take into

account the correlation between U and S.

• (19) is a lower bound on (14) of Corollary III.4 that takes

into account the correlation between U and S.

Only parameters (p3, p4, p5) are chosen in order to maximize

the lower bound (19) on the information constraint. Regarding

upper bound (18), since parameters (p0, p1, p2) = (1
3
, 1

3
, 1

3
)

maximize the mutual information I(X ;Y |S = 0), we only

consider the maximization over parameters (p3, p4, p5).

• For α = 0.99 in Fig. 5, the upper bound (18) on (16) is

always smaller than the lower bound (19) on our information
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Fig. 5. Upper bound (18) on (16) is smaller than the lower bound (19) on
information constraint (14) of Corollary III.4.

constraint (14). For some values of ε, the decoder can recover

the source. Exploitation of the correlation between channel

state S and source symbol U improves the transmission.

• For ε = 0.101 in Fig. 6, upper bound (18) on (16)

is negative and does not depend on correlation parameter

α. For large values of α, the (19) lower bound on (14)

is positive. Hence, the decoder can recover the information

source exploiting the correlation between U and S.
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Fig. 6. Upper bound (18) on (16) does not depend on α since the correlation
between U and S is not taken into account.

VI. CONCLUSION

We consider a state dependent channel in which the channel

state is correlated with the source symbol. We investigate

simultaneously the lossless transmission of information and

the empirical coordination of channel inputs with the symbols

of source and states. We characterize the set of achievable

empirical distributions with or without side information at

the decoder. Based on this result, we determine the minimal

distortion between symbols of source and channel inputs under



lossless decoding constraint. Correlation between information

source and channel state improves the feasibility of the lossless

transmission.

APPENDIX A

SKETCH OF ACHIEVABILITY OF THEOREM III.1

There exists δ > 0, rates RM ≥ 0 and RL ≥ 0 such that :

RM ≥ H(U) + δ, (20)

RL ≥ I(W ;S|U) + δ, (21)

RM + RL ≤ I(U,W ;Y )− δ. (22)

• Random codebook. Generate |M| = 2nRM sequence

Un(m) with index m ∈ M drawn from the i.i.d.

marginale probability distribution P⊗n

u . For each

index m ∈ M, generate |ML| = 2nRL sequences

Wn(m, l) ∈ Wn with index l ∈ ML, drawn from the

i.i.d. marginal probability distribution Q⊗n

w|u depending

on Un(m).

• Encoding function. The encoder observes the sequence

of source symbols Un ∈ Un and finds the index m ∈ M
such that Un = un(m). It finds the index l ∈ ML such

that the sequence wn(m, l) ∈ A⋆n

ε
(Un, Sn) is jointly

typical with the source sequences (Un, Sn). Encoder

sends the sequence Xn drawn from the probability

Q⊗n

x|wus depending on sequences (wn(m, l), un(m), Sn).

• Decoding function. The decoder observes the sequence

Y n and finds the indexes (m, l) ∈ M × ML such that

(un(m), wn(m, l)) ∈ A⋆n

ε
(Y n). It returns sequence

ûn = un(m).

From Packing and Covering Lemmas stated in [10] pp.
46 and 208, equations (20), (21), (22) imply the expected
probability of error events are bounded by ε for all n ≥ n̄:

Ec

[

P

(

∀m ∈ M, U
n
(m) 6= U

n
)]

≤ ε, (23)

Ec

[

P

(

∀l ∈ ML, W
n
(m, l) /∈ A

⋆n
ε (U

n
(m), S

n
)

)]

≤ ε, (24)

Ec

[

P

(

∃(m
′
, l

′
) 6= (m, l), s.t. (U

n
(m

′
), W

n
(m

′
, l

′
)) ∈ A

⋆n
ε (Y

n
)

)]

≤ ε,(25)

Ec

[

P

(

∃m′ 6= m, s.t. (Un(m′),Wn(m′, l)) ∈ A⋆n
ε (Y n)

)]

≤ ε. (26)

There exists a code c⋆ ∈ C(n) with Pe(c
⋆) ≤ 8ε for

all n ≥ n̄. Lossless decoding condition is satisfied since

Pc⋆(U
n 6= Ûn) ≤ 4ε. Sequences (Un, Sn, Xn, Y n, Ûn) ∈

A⋆n

ε
(Q) are jointly typical with high probability, hence em-

pirical coordination requirement is satisfied.

APPENDIX B

SKETCH OF CONVERSE OF THEOREM III.1

Define error event E = 1 if (Un, Sn, Xn, Y n, Ûn) /∈ A⋆n

ε

and E = 0 otherwise.

n · H(U)

= H(U
n

) (27)

≤ H(U
n

|E = 0) + n · ε (28)

= I(U
n

;Y
n
|E = 0) + H(U

n
|Y

n
,E = 0) + n · ε (29)

≤ I(U
n

;Y
n
|E = 0) + n · 2ε (30)

=
n
∑

i=1

I(Un; Yi|Y
i−1, E = 0) + n · 2ε (31)

≤
n
∑

i=1

I(Un, Y i−1; Yi, E = 0) + n · 2ε (32)

=

n
∑

i=1

I(U
n
, Y

i−1
, S

n
i+1; Yi|E = 0)

−

n
∑

i=1

I(S
n
i+1; Yi|U

n
, Y

i−1
, E = 0) + n · 2ε (33)

=

n
∑

i=1

I(U
n
, Y

i−1
, S

n
i+1; Yi|E = 0)

−

n
∑

i=1

I(Si; Y
i−1

|U
n
, S

n
i+1, E = 0) + n · 2ε (34)

=

n
∑

i=1

I(Ui, U
−i

, Y
i−1

, S
n
i+1;Yi|E = 0)

−

n
∑

i=1

I(Si;U
−i

, Y
i−1

, S
n
i+1|Ui, E = 0) + n · 3ε (35)

=

n
∑

i=1

I(Ui,Wi; Yi|E = 0) −

n
∑

i=1

I(Wi;Si|Ui, E = 0) + n · 3ε (36)

≤ n · max
Q̃∈Q

(

I(U, W ; Y ) − I(W ;S|U)

)

+ n · 4ε. (37)

Eq. (27) comes from the i.i.d. property of the source.

Eq. (28) is due to Fano for coordination: P(E = 1) ≤ ε, [12].

Eq. (30) is due to Fano’s inequality for lossless decoding [12].

Eq. (29), (31), (32) and (33) come from properties of MI.

Eq. (34) comes from the Csiszar sum identity.

Eq. (35) is due to (Ui, Si) independent of (U−i, Sn

i+1), [12].

Eq. (36) is due to auxiliary RV, Wi = (U−i, Y i−1, Sn

i+1) .

Eq. (37) is due to continuity of MI and maximum over

auxiliary random variables W s.t. Y −
− (X,S)−
−W , [12].
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