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Maximum likelihood estimation in a partially observed
stratified regression model with censored data

Detais A. · Dupuy J.-F.

Abstract The stratified proportional intensity model generalizes Cox’s pro-
portional intensity model by allowing different groups of the population under
study to have distinct baseline intensity functions. In this article, we consider
the problem of estimation in this model when the variable indicating the stra-
tum is unobserved for some individuals in the studied sample. In this setting,
we construct nonparametric maximum likelihood estimators for the parame-
ters of the stratified model and we establish their consistency and asymptotic
normality. Consistent estimators for the limiting variances are also obtained.

Keywords Censored data · Maximum likelihood estimation · Missing data ·
Stratified intensity model

1 Introduction

This paper considers the problem of estimation in the stratified proportional
intensity regression model for survival data, when the stratum information is
missing for some sample individuals.

The stratified proportional intensity model (see Andersen et al. (1993) or
Martinussen and Scheike (2006) for example) generalizes the usual Cox (1972)
proportional intensity regression model for survival data, by allowing different
groups -the strata- of the population under study to have distinct baseline
intensity functions. More precisely, in the stratified model, the strata divide

Detais Amélie
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France.
E-mail: dupuy@math.univ-toulouse.fr



2 Detais A., Dupuy J.-F.

the sample individuals into K disjoint groups, each having a distinct baseline
intensity function λk but a common value for the regression parameter.

The intensity function for the failure time T 0 of an individual in stratum
k thus takes the form

λk(t) exp(β′X), (1)

where X is a p-vector of covariates, β is a p-vector of unknown regression
parameters of interest, and {λk(t) : t ≥ 0, k = 1, . . . ,K} are K unknown
baseline intensity functions.

A consistent and asymptotically normal estimator of β can be obtained by
maximizing the partial likelihood function (Cox 1975). The partial likelihood
for the stratified model (1) is the product over strata of the within-stratum
partial likelihoods (we refer to Andersen et al. (1993) for a detailed treatment
of maximum partial likelihood estimation in model (1)). In some applications,
it can also be desirable to estimate the cumulative baseline intensity functions
Λk =

∫
λk. The so-called Breslow (1972) estimators are commonly used for

that purpose (see chapter 7 of Andersen et al. (1993) for further details on
the Breslow estimator and its asymptotic properties).

One major motivation for using the stratified model is that it allows to
accomodate in the analysis a predictive categorical covariate whose effect on
the intensity is not proportional. To this end, the individuals under study
are stratified with respect to the categories of this covariate. In many appli-
cations however, this covariate may be missing for some sample individuals
(for example, histological stage determination may require biopsy and due to
expensiveness, may not be performed on all the study subjects). In this case,
the usual statistical inference for model (1), based on the product of within-
stratum partial likelihoods, can not be directly applied.

In this work, we consider the problem of estimating β and the Λk, k =
1, . . . ,K in model (1), when the covariate defining the stratum is missing for
some (but not all) individuals. Equivalently said, we consider the problem of
estimating model (1) when the stratum information is only partially available.

The problem of estimation in the (unstratified) Cox model λ(t) exp(β′X)
with missing covariate X has been the subject of intense research over the
past decade: see for example Lin and Ying (1993), Paik (1997), Paik and
Tsai (1997), Chen and Little (1999), Martinussen (1999), Pons (2002),
and the references therein. But to the best of our knowledge and despite its
practical relevance, the problem of statistical inference in model (1) with par-
tially available stratum information has not been yet extensively investigated.
Recently, Dupuy and Leconte (2009) studied the asymptotic properties of a
regression calibration estimator of β in this setting (regression calibration is
a general method for handling missing data in regression models, see Carroll
et al. (1995) for example). The authors proved that this estimator is asymp-
totically biased, although nevertheless asymptotically normal. No estimators
of the cumulative baseline intensity functions were provided.

In this work, we aim at providing an estimator of β that is both consistent
and asymptotically normal. Moreover, although the cumulative intensity func-
tions Λk are usually not the primary parameters of interest, we also aim at



On a partially observed stratified regression model 3

providing consistent and asymptotically normal estimators of the values Λk(t),
k = 1, . . . ,K.

The regression calibration inferential procedure investigated by Dupuy and
Leconte (2009) is essentially based on a modified version of the partial like-
lihood for model (1). In this paper, we propose an alternative method which
may be viewed as a fully maximum likelihood approach. Besides assuming that
the failure intensity function for an individual in stratum k is given by model
(1), we assume that the probability of being in stratum k conditionally on a
set of observed covariates W (which may include some components of X) is of
the logistic form, depending on some unknown finite-dimensional parameter
γ.

A full likelihood for the collected parameter θ = (β, γ, Λk; k = 1, . . . ,K)
is constructed from a sample of incompletely observed data. Based on this,
we propose to estimate the finite and infinite-dimensional components of θ
by using the nonparametric maximum likelihood (NPML) estimation method.
We then provide asymptotic results for these estimators, including consistency,
asymptotic normality, semiparametric efficiency of the NPML estimator of β,
and consistent variance estimation.

Our proofs use some techniques developed by Murphy (1994, 1995) and
Parner (1998) to establish the asymptotic theory for the frailty model.

The paper is organized as follows. In Section 2, we describe in greater de-
tail the data structure and the model assumptions. In Section 3, we describe
the NPML estimation method for our setting and we establish existence of the
NPML estimator of θ. Section 4 establishes the consistency and asymptotic
normality of the proposed estimator. Consistent variance estimators are also
obtained for both the finite-dimensional parameter estimators and the non-
parametric cumulative baseline intensity estimators. We give some concluding
remarks in Section 5. Proofs are given in Appendix.

2 Data structure and model assumptions

We describe the notations and model assumptions that will be used throughout
the paper.

All the random variables are defined on a probability space (Ω, C,P). Let T 0

be a random failure time whose distribution depends on a vector of covariates
X ∈ Rp and on a stratum indicator S ∈ K = {1, . . . ,K}. We assume that
conditionally on X and S = k (k ∈ K), the intensity function of T 0 is given by
model (1). We suppose that T 0 may be right-censored by a positive random
variable C and that the analysis is restricted to the time interval [0, τ ], where
τ <∞ denotes the end of the study. Thus we actually observe the potentially
censored duration T = min{T 0,min(C, τ)} and a censoring indicator ∆ =
1{T 0 ≤ min(C, τ)}. If t ∈ [0, τ ], we denote by N(t) = 1{T ≤ t}∆ and Y (t) =
1{T ≥ t} the failure counting and at-risk processes respectively.

Let W ∈ Rm be a vector of surrogate covariates for S (W and X may
share some common components). That is, W brings a partial information



4 Detais A., Dupuy J.-F.

about S when S is missing, and it adds no information when S is observed
so that the distribution of T 0 conditionally on X,S, and W does not involve
the components of W that are not in X. We assume that the conditional
probability that an individual belongs to the k-th stratum given his covariate
vector W follows a multinomial logistic model:

P(S = k|W ) =
exp(γ′kW )∑K
j=1 exp(γ′jW )

,

where γk ∈ Rm (k ∈ K). Finally, we let R denote the indicator variable which
is 1 if S is observed and 0 otherwise. Then, the data consist of n i.i.d. replicates

Oi = (Ti, ∆i, Xi,Wi, Ri, RiSi), i = 1, . . . , n,

of O = (T,∆,X,W,R,RS). The data available for the i-th individual are
therefore (Ti, ∆i, Xi,Wi, Si) if Ri = 1 and (Ti, ∆i, Xi,Wi) if Ri = 0.

In the sequel, we set γK = 0 for model identifiability purpose and we note
γ = (γ′1, . . . , γ

′
K−1)′ ∈ (Rm)K−1 ≡ Rq. We also note πk,γ(W ) = P(S = k|W ),

k ∈ K. Now, let θ = (β, γ, Λk; k ∈ K) be the collected parameter and θ0 =
(β0, γ0, Λk,0; k ∈ K) denote the true parameter value. Under the true value θ0,
the expectation of random variables will be denoted Pθ0 . Pn will denote the
empirical probability measure. In the sequel, the stochastic convergences will
be in terms of outer measure.

We now make the following additional assumptions:

(a) The censoring time C is independent of T 0 given (S,X,W ), of S given
(X,W ), and is non-informative. With probability 1, P(C ≥ T 0 ≥ τ |S,X,W ) >
c0 for some positive constant c0.

(b) The parameter values β0 and γ0 lie in the interior of known compact
sets B ⊂ Rp and G ⊂ Rq respectively. For every k ∈ K, the cumulative
baseline intensity function Λk,0 is a strictly increasing function on [0, τ ]
with Λk,0(0) = 0 and Λk,0(τ) < ∞. Moreover, for every k ∈ K, Λk,0
is continuously differentiable in [0, τ ], with λk,0(t) = ∂Λk,0(t)/∂t. Let A
denote the set of functions satisfying these properties.

(c) The covariate vectors X and W are bounded (i.e. ‖X‖ < c1 and ‖W‖ < c1,
for some finite positive constant c1, where ‖·‖ denotes the Euclidean norm).
Moreover, the covariance matrices of X and W are positive definite. Let
c2 = minβ∈B,‖X‖<c1 e

β′X and c3 = maxβ∈B,‖X‖<c1 e
β′X .

(d) There is a constant c4 > 0 such that for every k ∈ K, Pθ0 [1{S = k}Y (τ)R] >
c4, and the sample size n is large enough to ensure that

∑n
i=1 1{Si =

k}Yi(τ)Ri > 0 for every k ∈ K.
(e) With probability 1, there exists a positive constant c5 such that for every

k ∈ K, Pθ0 [∆R1{S = k}|T,X,W ] > c5.
(f) R is independent of S given W , of (T,∆) given (X,S). The distribution of

S conditionally on X and W does not involve the components of X that
are not in W . The distributions of R and of the covariate vectors X and
W do not depend on the parameter θ.
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Remark. Conditions (b), (c), (d), and (e) are used for identifiability of the
parameters and consistency of the proposed estimators. Condition (d) essen-
tially requires that for every stratum k, some subjects are known to belong to
k and are still at risk when the study ends. The first assumption in condition
(f) states that S is missing at random, which is a fairly general missing data
situation (we refer to chapters 6 and 7 in Tsiatis (2006) for a recent exposition
of missing data mechanisms).

Remark. We are now in position to describe our proposed approach to the
problem of estimation in model (1) from a sample of incomplete data Oi,
i = 1, . . . , n.

Let S denote the set of subjects with unknown stratum in this sample.
The regression calibration method investigated by Dupuy and Leconte (2009)
essentially allocates every subject of S to each of the strata, and estimates β0
by maximizing a modified version of the partial likelihood for the stratified
model, where the contribution of any individual i in S to the within-k-th-
stratum partial likelihood is weighted by an estimate of πk,γ(Wi) (for every
k ∈ K). The asymptotic bias of the resulting estimator arises from the failure
of this method to fully exploit the information carried by (Ti, ∆i, Xi,Wi) on
the unobserved stratum indicator Si.

Therefore in this paper, we rather suggest to weight each subject i in S by
an estimate of the conditional probability that subject i belongs to the k-th
stratum given the whole observed data (Ti, ∆i, Xi,Wi). This suggestion raises
two main problems, as is described below.

Remark. First, we should note that the suggested alternative weights de-
pend on the unknown baseline intensity functions. Therefore, the modified
partial likelihood approach considered by Dupuy and Leconte (2009) can not
be used to derive an estimator for β0. Next, the statistics to be involved in the
score function for β will depend on the conditional weights and thus, this score
will not be expressible as a stochastic integral of some predictable process, as
is often the case in models for failure time data. This, in turn, will prevent us
from using the counting process martingale theory usually associated with the
theoretical developments in failure time models.

To overcome the first problem, we define our estimators from a full likeli-
hood for the whole parameter, that is, for both the finite-dimensional -β (and
γ)- and infinite-dimensional -Λk, k ∈ K- components of θ. Empirical process
theory (van der Vaart and Wellner 1996) is used to establish asymptotics for
the proposed estimators.

3 Maximum likelihood estimation

In the sequel, we assume that there are no ties among the observed death
times (this hypothesis is made to simplify notations, but the results below can
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be adapted to accomodate ties). The likelihood function for observed data Oi,
i = 1, . . . , n is given by

Ln(θ) =

n∏
i=1

[
K∏
k=1

{
λk(Ti)

∆i exp
(
∆iβ

′Xi − eβ
′XiΛk(Ti)

)
πk,γ(Wi)

}1{Si=k}
]Ri

×

[
K∑
k=1

λk(Ti)
∆i exp

(
∆iβ

′Xi − eβ
′XiΛk(Ti)

)
πk,γ(Wi)

]1−Ri
(2)

It would seem natural to derive a maximum likelihood estimator of θ0 by
maximizing the likelihood (2). However, the maximum of this function over
the parameter space Θ = B × G × A⊗K does not exist. To see this, consider
functions Λk with fixed values at the Ti, and let (∂Λk(t)/∂t)|t=Ti = λk(Ti) go
to infinity for some Ti with ∆iRi1{Si = k} = 1 or ∆i(1−Ri) = 1.

To overcome this problem, we introduce a modified maximization space for
(2), by relaxing each Λk(·) to be an increasing right-continuous step-function
on [0, τ ], with jumps at the Ti’s such that ∆iRi1{Si = k} = 1 or ∆i(1−Ri) =
1. Estimators of (β0, γ0, Λk,0; k ∈ K) will thus be derived by maximizing a
modified version of (2), obtained by replacing λk(Ti) in (2) with the jump size
Λk{Ti} of Λk at Ti.

If they exist, these estimators will be referred to as nonparametric max-
imum likelihood estimators - NPMLEs - (we refer to Zeng and Lin (2007)
for a review of the general principle of NPML estimation, with application
to various semiparametric regression models for censored data. See also the
numerous references therein). In our setting, existence of such estimators is
ensured by the following theorem (proof is given in Appendix):

Theorem 1 Under conditions (a)-(f), the NPMLE θ̂n = (β̂n, γ̂n, Λ̂k,n; k ∈ K)
of θ0 exists and is achieved.

The problem of maximizing Ln over the approximating space described above
reduces to a finite dimensional problem, and the expectation-maximization
(EM) algorithm (Dempster et al., 1977) can be used to calculate the NPMLEs.
For 1 ≤ i ≤ n and k ∈ K, let wi(k, θ) be the conditional probability that
the i-th individual belongs to the k-th stratum given (Ti, ∆i, Xi,Wi) and the
parameter value θ, and let Q(Oi, k, θ) denote the conditional expectation of
1{Si = k} given Oi and the parameter value θ. Then Q(Oi, k, θ) has the form

Q(Oi, k, θ) = Ri1{Si = k}+ (1−Ri)wi(k, θ).

In the M-step of the EM-algorithm, we solve the complete-data score equation
conditional on the observed data. In particular, the following expression for
the NPMLE of Λk(·) can be obtained by: (a) taking the derivative with respect
to the jump sizes of Λk(·), of the conditional expectation of the complete-data
log-likelihood given the observed data and the NPML estimator, (b) setting
this derivative equal to 0:
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Lemma 1 The NPMLE θ̂n satisfies the following equation for every k ∈ K:

Λ̂k,n(t) =

∫ t

0

n∑
i=1

Q(Oi, k, θ̂n)∑n
j=1Q(Oj , k, θ̂n) exp(β̂′nXj)Yj(s)

dNi(s), 0 ≤ t ≤ τ.

The details of the calculations are omitted (note how the suggested weights
wi(k, θ) naturally arise from the M-step of the EM algorithm). We refer the
interested reader to Zeng and Cai (2005) and Sugimoto and Hamasaki (2006),
who recently described EM algorithms for computing NPMLEs in various
other semiparametric models with censored data.

In the sequel, we shall denote the conditional expectation of the complete-
data log-likelihood given the observed data and the NPML estimator by En[l̃n(θ)].

4 Asymptotic properties

This section states the asymptotic properties of the proposed estimators. We
first obtain the following theorem, which states the strong consistency of the
proposed NPMLE. The proof is given in Appendix.

Theorem 2 Under conditions (a)-(f), ‖β̂n−β0‖, ‖γ̂n−γ0‖, and supt∈[0,τ ] |Λ̂k,n(t)−
Λk,0(t)| (for every k ∈ K) converge to 0 almost surely as n tends to infinity.

To derive the asymptotic normality of the proposed estimators, we adapt
the function analytic approach developed by Murphy (1995) for the frailty
model (see also Chang et al. (2005), Kosorok and Song (2007), and Lu (2008),
for recent examples of this approach in various other models).

Instead of calculating score equations by differentiating En[l̃n(θ)] with re-
spect to β, γ, and the jump sizes of Λk(·), we consider one-dimensional submod-

els θ̂n,η passing through θ̂n and we differentiate with respect to η. Precisely,
we consider submodels of the form

η 7→ θ̂n,η =

(
β̂n + ηhβ , γ̂n + ηhγ ,

∫ ·
0

{1 + ηhΛk(s)}dΛ̂k,n(s); k ∈ K
)
,

where hβ and hγ = (h′γ1 , . . . , h
′
γK−1

)′ are p- and q-dimensional vectors respec-
tively (hγj ∈ Rm, j = 1, . . . ,K − 1), and the hΛk (k ∈ K) are functions on
[0, τ ]. Let h = (hβ , hγ , hΛk ; k ∈ K). To obtain the score equations, we differ-

entiate En[l̃n(θ̂n,η)] with respect to η and we evaluate at η = 0. θ̂n maximizes

En[l̃n(θ)] and therefore satisfies (∂En[l̃n(θ̂n,η)]/∂η) |η=0 = 0 for every h, which

leads to the score equation Sn(θ̂n)(h) = 0 where Sn(θ̂n)(h) takes the form

Sn(θ̂n)(h) = Pn

[
h′βSβ(θ̂n) + h′γSγ(θ̂n) +

K∑
k=1

SΛk(θ̂n)(hΛk)

]
, (3)
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where

Sβ(θ) = ∆X −
K∑
k=1

Q(O, k, θ)X exp(β′X)Λk(T ),

Sγ(θ) = (Sγ1(θ)′, . . . , SγK−1
(θ)′)′ with Sγk(θ) = W [Q(O, k, θ)− πk,γ(W )] ,

SΛk(θ)(hΛk) = Q(O, k, θ)

[
hΛk(T )∆− exp(β′X)

∫ T

0

hΛk(s) dΛk(s)

]
.

We take the space of elements h = (hβ , hγ , hΛk ; k ∈ K) to be

H = {(hβ , hγ , hΛk ; k ∈ K) : hβ ∈ Rp, ‖hβ‖ <∞;hγ ∈ Rq, ‖hγ‖ <∞;

hΛk is a function defined on [0, τ ], ‖hΛk‖v <∞, k ∈ K},
where ‖hΛk‖v denotes the total variation of hΛk on [0, τ ]. We further take the
functions hΛk to be continuous from the right at 0.

Define θ(h) = h′ββ + h′γγ +
∑K
k=1

∫ τ
0
hΛk(s) dΛk(s), where h ∈ H. From

this, the parameter θ can be considered as a linear functional on H, and the
parameter space Θ can be viewed as a subset of the space l∞(H) of bounded
real-valued functions on H, which we provide with the uniform norm. More-
over, the score operator Sn appears to be a random map from Θ to the space
l∞(H). Note that appropriate choices of h allow to extract all components of
the original parameter θ. For example, letting hγ = 0, hΛk(·) = 0 for every
k ∈ K, and hβ be the p-dimensional vector with a one at the i-th location
and zeros elsewhere yields the i-th component of β. Letting hβ = 0, hγ = 0,
hΛk(·) = 0 for every k ∈ K except hΛj (s) = 1{s ≤ t} (for some t ∈ (0, τ))
yields Λj(t).

We need some further notations to state the asymptotic normality of the
NPMLE of β0. Let us first define the linear operator σ = (σβ , σγ , σΛk ; k ∈ K) :
H → H by

σβ(h) = Pθ0 [2X∆ψ(O, θ0)

K∑
k=1

Q(O, k, θ0)hΛk(T )]

+Pθ0 [ψ(O, θ0)X {ψ(O, θ0)X ′hβ + Sγ(θ0)′hγ}] ,

σγ(h) = Pθ0 [2Sγ(θ0)∆

K∑
k=1

Q(O, k, θ0)hΛk(T )] + Pθ0 [Sγ(θ0)Sγ(θ0)′]hγ

+Pθ0 [ψ(O, θ0)Sγ(θ0)X ′]hβ ,

σΛk(h)(u) = hΛk(u)Pθ0 [Q(O, k, θ0)φ(u,O, k, θ0)]

+Pθ0 [2φ(u,O, k, θ0)
∑
j>k

Q(O, j, θ0){hΛj (u)− eβ
′
0X

∫ u

0

hΛj dΛj,0

−∆hΛj (T ) + eβ
′
0X

∫ T

0

hΛj dΛj,0}]

−h′βPθ0 [2Xψ(O, θ0)Q(O, k, θ0)eβ
′
0XY (u)]

−h′γPθ0 [2Sγ(θ0)Q(O, k, θ0)eβ
′
0XY (u)],
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where

φ(u,O, k, θ0) = Y (u)Q(O, k, θ0)eβ
′
0X

and

ψ(O, θ0) = ∆−
K∑
k=1

Q(O, k, θ0)eβ
′
0XΛk,0(T ).

This operator is continuously invertible (Lemma 3 in Appendix). We shall
denote its inverse by σ−1 = (σ−1β , σ−1γ , σ−1Λk ; k ∈ K).

Next, for every r ∈ N\{0}, the r-dimensional column vector having all its
components equal to 0 will be noted by 0r (or by 0 when no confusion may
occur). Let h = (hβ , hγ , hΛk ; k ∈ K) ∈ H. If hγ = 0 and hΛk is identically
equal to 0 for every k ∈ K, we note h = (hβ , 0, 0; k ∈ K). Let σ̃−1β : Rp → Rp

be the linear map defined by σ̃−1β (u) = σ−1β ((u, 0, 0; k ∈ K)), for u ∈ Rp. Let
{e1, . . . , ep} be the canonical basis of Rp.

Then the following result holds, its proof is given in Appendix.

Theorem 3 Under conditions (a)-(f),
√
n(β̂n−β0) has an asymptotic normal

distribution N(0, Σβ), where

Σβ = (σ̃−1β (e1), . . . , σ̃−1β (ep))

is the efficient variance in estimating β0.

Remark. Although γ0 and the cumulative baseline intensity functions Λk,0
(k ∈ K) are not the primary parameters of interest, we may also state an
asymptotic normality result for their NMPLEs. This requires some further
notations.

Define σ̃−1γ : Rq → Rq by σ̃−1γ (u) = σ−1γ ((0, u, 0; k ∈ K)), let {f1, . . . , fq}
be the canonical basis of Rq, and define Σγ = (σ̃−1γ (f1), . . . , σ̃−1γ (fq)). Finally,
let h(j,t) = (hβ , hγ , hΛk ; k ∈ K) be such that hβ = 0, hγ = 0, hΛj (·) = 1{· ≤ t}
for some t ∈ (0, τ) and j ∈ K, and hΛk = 0 for every k ∈ K, k 6= j. Then the
following holds (a brief sketch of the proof is given in Appendix):

Theorem 4 Assume that conditions (a)-(f) hold. Then
√
n(γ̂n − γ0) has an

asymptotic normal distribution N(0, Σγ). Furthermore, for any t ∈ (0, τ) and

j ∈ K,
√
n(Λ̂j,n(t) − Λj,0(t)) is asymptotically distributed as a N(0, v2j (t)),

where

v2j (t) =

∫ t

0

σ−1Λj (h(j,t))(u) dΛj,0(u).

We now turn to the issue of estimating the asymptotic variances of the
estimators β̂n, γ̂n, and Λ̂j,n(t) (t ∈ (0, τ), j ∈ K). It turns out that the asymp-
totic variances Σβ , Σγ , and v2j (t) are not expressible in explicit forms, since
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the inverse σ−1 has no closed form. However, this is not a problem if we can
provide consistent estimators for them. Such estimators are defined below.

For i = 1, . . . , n, let Xir denote the r-th (r = 1, . . . , p) component of Xi,
Sγ,i(θ) be defined as in (3) with O and W replaced by Oi and Wi respectively,
and Sγ,i,s(θ) be the s-th (s = 1, . . . , q) component of Sγ,i(θ). Using these
notations, we define the following block matrix

An =

Aββ Aβγ AβΛ

Aγβ Aγγ AγΛ

AΛβ AΛγ AΛΛ

 (4)

where the sub-matrices Aββ , Aγγ , Aβγ , and Aγβ are defined as follows by their
(r, s)-th component:

Aββrs =
1

n

n∑
i=1

{ψ(Oi, θ̂n)}2XirXis, r, s = 1, . . . , p,

Aγγrs =
1

n

n∑
i=1

Sγ,i,r(θ̂n)Sγ,i,s(θ̂n), r, s = 1, . . . , q,

Aβγrs =
1

n

n∑
i=1

ψ(Oi, θ̂n)XirSγ,i,s(θ̂n), r = 1, . . . , p, s = 1, . . . , q,

Aγβrs = Aβγsr , r = 1, . . . , q, s = 1, . . . , p.

Define the block matricesAβΛ = (AβΛ1 , . . . , AβΛK ) andAγΛ = (AγΛ1 , . . . , AγΛK ),
where for every k ∈ K, the sub-matrices AβΛk and AγΛk are defined by

AβΛkrs =
2

n
Xsr∆sψ(Os, θ̂n)Q(Os, k, θ̂n), r = 1, . . . , p, s = 1, . . . , n,

AγΛkrs =
2

n
Sγ,s,r(θ̂n)∆sQ(Os, k, θ̂n), r = 1, . . . , q, s = 1, . . . , n.

Define also the block matrices

AΛβ =

 AΛ1β

...
AΛKβ

 AΛγ =

 AΛ1γ

...
AΛKγ

 AΛΛ =

 AΛ1Λ1 . . . AΛ1ΛK

...
...

AΛKΛ1 . . . AΛKΛK


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where for every j, k ∈ K,

AΛkβrs = − 1

n

n∑
i=1

2Xisψ(Oi, θ̂n)Q(Oi, k, θ̂n)eβ̂
′
nXiYi(Tr), r = 1, . . . , n, s = 1, . . . , p,

AΛkγrs = − 1

n

n∑
i=1

2Sγ,i,s(θ̂n)Q(Oi, k, θ̂n)eβ̂
′
nXiYi(Tr), r = 1, . . . , n, s = 1, . . . , q,

AΛkΛjrs = 1{j = k}1{r = s} 1

n

n∑
i=1

Q(Oi, k, θ̂n)φ(Tr,Oi, k, θ̂n)

+1{j > k}(1{r = s} 1

n

n∑
i=1

2φ(Ts,Oi, k, θ̂n)Q(Oi, j, θ̂n)

+
2

n

n∑
i=1

φ(Tr,Oi, k, θ̂n)Q(Oi, j, θ̂n)eβ̂
′
nXi∆̂Λj,n(Ts){1{Ts ≤ Ti} − 1{Ts ≤ Tr}}

− 2

n
φ(Tr,Os, k, θ̂n)Q(Os, j, θ̂n)∆s), r, s = 1, . . . , n,

and ∆̂Λj,n(Ts) is the jump size of Λ̂j,n at Ts that is, ∆̂Λj,n(Ts) = Λ̂j,n(Ts)−
Λ̂j,n(Ts−) (j ∈ K, s = 1, . . . , n). Note that for notational simplicity, the lower
(sample size) indice n has been omitted in the notations for the sub-matrices
of An.

Now, define

Σ̂β,n =
{
Aββ −Aβγ(Aγγ)−1Aγβ − (AβΛ −Aβγ(Aγγ)−1AγΛ)

×(AΛΛ −AΛγ(Aγγ)−1AγΛ)−1(AΛβ −AΛγ(Aγγ)−1Aγβ)
}−1

,

Σ̂γ,n =
{
Aγγ −Aγβ(Aββ)−1Aβγ − (AγΛ −Aγβ(Aββ)−1AβΛ)

×(AΛΛ −AΛβ(Aββ)−1AβΛ)−1(AΛγ −AΛβ(Aββ)−1Aβγ)
}−1

,

and

Σ̂Λ,n =
{
AΛΛ −AΛβ(Aββ)−1AβΛ − (AΛγ −AΛβ(Aββ)−1Aβγ)

×(Aγγ −Aγβ(Aββ)−1Aβγ)−1(AγΛ −Aγβ(Aββ)−1AβΛ)
}−1

.

Then the following holds:

Theorem 5 Under conditions (a)-(f), Σ̂β,n and Σ̂γ,n converge in probability
to Σβ and Σγ respectively as n tends to∞. Moreover, for t ∈ (0, τ) and j ∈ K,
let

v̂2j,n(t) = Ξ̂n
′

(j,t)Σ̂Λ,nU
n
(j,t),

where

Ξ̂n(j,t) =
(

0′(j−1)n, ∆̂Λj,n(T1)1{T1 ≤ t}, . . . , ∆̂Λj,n(Tn)1{Tn ≤ t}, 0′(K−j)n
)′

and
Un(j,t) = (0′(j−1)n, 1{T1 ≤ t}, . . . , 1{Tn ≤ t}, 0

′
(K−j)n)′.

Then v̂2j,n(t) converges in probability to v2j (t) as n tends to ∞.
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5 Discussion

In this paper, we have constructed consistent and asymptotically normal es-
timators for the stratified proportional intensity regression model when the
sample stratum information is only partially available. The proposed estima-
tor for the regression parameter of interest in this model has been shown to
be semiparametrically efficient. Although computationally more challenging,
these estimators improve the ones previously investigated in the literature,
such as the regression calibration estimators (Dupuy and Leconte 2009).

We have obtained explicit (and computationally fairly simple) formulas
for consistent estimators of the asymptotic variances. These formulas may
however require the inversion of potentially large matrices. For a large sample,
this inversion may be unstable. An alternative solution relies on numerical
differentiation of the profile log-likelihood (see Murphy et al. (1997) and Chen
and Little (1999) for example). Note that in this latter method however, no
estimator is available for the asymptotic variance of the cumulative baseline
intensity estimator. Some further work is needed to evaluate the numerical
performance of the proposed estimators. This is the subject for future research,
and requires some extensive simulation work which falls beyond the scope of
this paper.

In this paper, a multinomial logistic model (Jobson 1992) is used for mod-
eling the conditional stratum probabilities given covariates. This choice was
mainly motivated by the fact that this model is commonly used in medical
research for modeling the relationship between a categorical response and co-
variates. The theoretical results developed here can be extended to the case of
other link functions. In addition, the covariate X in model (1) is assumed to be
time independent, for convenience. This assumption can be relaxed to accomo-
date time varying covariates, provided that appropriate regularity conditions
are made.

Appendix A. Proofs of Theorems

A.1 Proof of Theorem 1

For every k ∈ K, define Ink = {i ∈ {1, . . . , n}|∆iRi1{Si = k} = 1 or ∆i(1 −
Ri) = 1}, and let ink denote the cardinality of Ink . Let in• =

∑K
k=1 i

n
k . Consider

the set of times {Ti, i ∈ Ink }. Let t(k,1) < . . . < t(k,ink ) denote the ordered
failure times in this set. For any given sample size n, the NPML estimation
method consists in maximizing Ln in (2) over the approximating parameter
space

Θn =
{

(β, γ, Λk{t(k,j)}) : β ∈ B; γ ∈ G;Λk{t(k,j)} ∈ [0,∞), j = 1, . . . , ink , k ∈ K
}
.

Suppose first that Λk{t(k,j)} ≤ M < ∞, for j = 1, . . . , ink and k ∈ K. Since
Ln is a continuous function of β, γ, and the Λk{t(k,j)}’s on the compact set

B × G × [0,M ]i
n
• , Ln achieves its maximum on this set.
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To show that a maximum of Ln exists on B × G × [0,∞)i
n
• , we show that

there exists a finite M such that for all θM = (βM , γM , (ΛMk {t(k,j)})j,k) ∈
(B×G× [0,∞)i

n
• )\(B×G× [0,M ]i

n
• ), there exists a θ = (β, γ, (Λk{t(k,j)})j,k) ∈

B×G×[0,M ]i
n
• such that Ln(θ) > Ln(θM ). A proof by contradiction is adopted

for that purpose.
Assume that for all M < ∞, there exists θM ∈ (B × G × [0,∞)i

n
• )\(B ×

G × [0,M ]i
n
• ) such that for all θ ∈ B × G × [0,M ]i

n
• , Ln(θ) ≤ Ln(θM ). It can

be seen that Ln is bounded above by

Kn
n∏
i=1

 K∏
k=1

{c3Λk{Ti}}∆iRi1{Si=k} exp

−c2Ri1{Si = k}
ink∑
j=1

Λk{t(k,j)}1{t(k,j) ≤ Ti}

 .
If θM ∈ (B × G × [0,∞)i

n
• )\(B × G × [0,M ]i

n
• ), then there exists l ∈ K and

p ∈ {1, . . . , inl } such that ΛMl {t(l,p)} > M . By assumption (d), there exists at
least one individual with indice iM (iM ∈ {1, . . . , n}) such that 1{SiM = l} =
1, YiM (τ) = 1 (and therefore t(l,p) ≤ TiM = τ), and RiM = 1. Hence

RiM 1{SiM = l}
inl∑
j=1

ΛMl {t(l,j)}1{t(l,j) ≤ TiM } → ∞ as M →∞.

It follows that the upper bound of Ln(θM ) (and therefore Ln(θM ) itself) can be
made as close to 0 as desired by increasing M . This is the desired contradiction.

�

A.2 Proof of Theorem 2

We adapt the techniques developed by Murphy (1994), in order to prove

consistency of our proposed estimator θ̂n. The proof essentially consists of
three steps: (i) for every k ∈ K, we show that the sequence Λ̂k,n(τ) is almost
surely bounded as n goes to infinity, (ii) we show that every subsequence of n

contains a further subsequence along which the NPMLE θ̂n converges, (iii) we

show that the limit of every convergent subsequence of θ̂n is θ0.

Proof of (i). Note first that for all s ∈ [0, τ ] and k ∈ K, 1
n

∑n
i=1Q(Oi, k, θ̂n)eβ̂

′
nXiYi(s) ≥

c2
1
n

∑n
i=1Ri1{Si = k}Yi(τ). Moreover, Q(Oi, k, θ̂n) is bounded by 1. It follows

that for all k ∈ K,

0 ≤ Λ̂k,n(τ) ≤ 1

c2

∫ τ

0

dN̄n(s)
1
n

∑n
i=1Ri1{Si = k}Yi(τ)

=
1
n

∑n
i=1∆i

c2
1
n

∑n
i=1Ri1{Si = k}Yi(τ)

,

where N̄n(s) = n−1
∑n
i=1Ni(s). Next, 1

n

∑n
i=1Ri1{Si = k}Yi(τ) converges

almost surely to Pθ0 [R1{S = k}Y (τ)] > c4 > 0 therefore, for each k ∈ K, as n

goes to infinity, Λ̂k,n(τ) is bounded above almost surely by 1
c2c4

.
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Proof of (ii). If (i) holds, by Helly’s theorem (see Loève (1963), p179), ev-

ery subsequence of n has a further subsequence along which Λ̂1,n converges
weakly to some nondecreasing right-continuous function Λ∗1, with probability
1. By successive extractions of sub-subsequences, we can further find a sub-
sequence (say nj) such that Λ̂k,nj converges weakly to some nondecreasing
right-continuous function Λ∗k, for every k ∈ K, with probability 1. By the com-
pactness of B×G, we can further find a subsequence of nj (we shall still denote

it by nj for simplicity of notations) such that Λ̂k,nj converges weakly to Λ∗k
(for every k ∈ K) and (β̂nj , γ̂nj ) converges to some (β∗, γ∗), with probability
1. We now show that the Λ∗k’s must be continuous on [0, τ ].

Let ψ be any nonnegative, bounded, continuous function. Then, for any
given k ∈ K,∫ τ

0

ψ(s) dΛ∗k(s) =

∫ τ

0

ψ(s) d{Λ∗k(s)− Λ̂k,nj (s)}

+

∫ τ

0

ψ(s)

[
1

nj

nj∑
l=1

Q(Ol, k, θ̂nj )e
β̂′nj

XlYl(s)

]−1
1

nj

nj∑
i=1

Q(Oi, k, θ̂nj ) dNi(s)

≤
∫ τ

0

ψ(s) d{Λ∗k(s)− Λ̂k,nj (s)}+

∫ τ

0

ψ(s)

[
c2
nj

nj∑
l=1

Rl1{Sl = k}Yl(s)

]−1
dN̄nj (s).

By the Helly-Bray Lemma (see Loève (1963), p180),
∫ τ
0
ψ(s) d{Λ∗k(s)−Λ̂k,nj (s)} →

0 as j →∞. Moreover, N̄nj (·) and 1
nj

∑nj
l=1Rl1{Sl = k}Yl(·) converge almost

surely in supremum norm to

K∑
k=1

∫ ·
0

Pθ0

[
1{S = k}eβ

′
0XY (s)

]
dΛk,0(s) and Pθ0 [R1{S = k}Y (·)]

respectively, where the latter term is bounded away from 0 on s ∈ [0, τ ] by
assumption (d). Thus, by applying the extended version of the Helly-Bray
Lemma (stated by Korsholm (1998) for example) to the second term on the
right-hand side of the previous inequality, we get that∫ τ

0

ψ(s) dΛ∗k(s) (5)

≤ c2
∫ τ

0

ψ(s) {Pθ0 [R1{S = k}Y (s)]}−1
K∑
k=1

Pθ0 [1{S = k}eβ
′
0XY (s)]λk,0(s) ds.

≤ c2c3
c4

K∑
k=1

∫ τ

0

ψ(s)λk,0(s) ds.

Suppose that Λ∗k has discontinuities, and let ψ be close to 0 except at the
jump points of Λ∗k, where it is allowed to have high and thin peaks. While
the right-hand side of inequality (5) should be close to 0 (λk,0 is continuous
by assumption (b)), its left-hand side can be made arbitrarily large, yielding
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a contradiction. Thus Λ∗k must be continuous (k ∈ K). A second conclusion,

arising from Dini’s theorem, is that Λ̂k,nj uniformly converges to Λ∗k (k ∈ K),
with probability 1. To summarize: for any given subsequence of n, we have
found a further subsequence nj and an element (β∗, γ∗, Λ∗k, k ∈ K) such that

‖β̂nj − β∗‖, ‖γ̂nj − γ∗‖, and supt∈[0,τ ] |Λ̂k,nj (t)−Λ∗k(t)| (for every k ∈ K) con-
verge to 0 almost surely.

Proof of (iii). To prove (iii), we first define random step functions

Λk,n(t) =

∫ t

0

n∑
i=1

Q(Oi, k, θ0)∑n
j=1Q(Oj , k, θ0) exp(β′0Xj)Yj(s)

dNi(s), 0 ≤ t ≤ τ, k ∈ K,

and we show that for every k ∈ K, Λk,n almost surely uniformly converges to
Λk,0 on [0, τ ]. First, note that

sup
t∈[0,τ ]

∣∣∣∣∣Λk,n(t)− Pθ0

[
∆1{T ≤ t}Q(O, k, θ0)

Pθ0
[
1{S = k}eβ′0XY (s)

]
|s=T

]∣∣∣∣∣
≤ sup
t∈[0,τ ]

∣∣∣∣∣ 1n
n∑
i=1

∆i1{Ti ≤ t}Q(Oi, k, θ0)

×

{
1

Pn
[
Q(O, k, θ0)eβ

′
0XY (s)

] − 1

Pθ0
[
1{S = k}eβ′0XY (s)

]}
|s=Ti

∣∣∣∣∣∣
+ sup
t∈[0,τ ]

∣∣∣∣∣(Pn − Pθ0)

[
∆1{T ≤ t}Q(O, k, θ0)

Pθ0
[
1{S = k}eβ′0XY (s)

]
|s=T

]∣∣∣∣∣
≤ sup
s∈[0,τ ]

∣∣∣∣∣ 1

Pn
[
Q(O, k, θ0)eβ

′
0XY (s)

] − 1

Pθ0
[
1{S = k}eβ′0XY (s)

] ∣∣∣∣∣
+ sup
t∈[0,τ ]

∣∣∣∣∣(Pn − Pθ0)

[
∆1{T ≤ t}Q(O, k, θ0)

Pθ0
[
1{S = k}eβ′0XY (s)

]
|s=T

]∣∣∣∣∣ (6)

The class {Y (s) : s ∈ [0, τ ]} is Donsker and Q(O, k, θ0)eβ
′
0X is a bounded

measurable function, hence {Q(O, k, θ0)eβ
′
0XY (s) : s ∈ [0, τ ]} is Donsker

(Corollary 9.31, Kosorok (2008)), and therefore Glivenko-Cantelli. More-
over, Pθ0 [Q(O, k, θ0)eβ

′
0XY (s)] = Pθ0 [Pθ0 [1{S = k}|O]eβ

′
0XY (s)] = Pθ0 [1{S =

k}eβ′0XY (s)]. Thus

sup
s∈[0,τ ]

∣∣∣Pn [Q(O, k, θ0)eβ
′
0XY (s)

]
− Pθ0

[
1{S = k}eβ

′
0XY (s)

]∣∣∣
converges to 0 a.e. Next, Pθ0 [1{S = k}eβ′0XY (s)] is larger than c2.Pθ0 [1{S =
k}Y (τ)] and thus, by assumption (d), Pθ0 [1{S = k}eβ′0XY (s)] > 0. It follows
that the first term on the right-hand side of inequality (6) converges to 0
a.e.. Similar aguments show that the class {∆1{T ≤ t}Q(O, k, θ0)/Pθ0 [1{S =
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k}eβ′0XY (s)] |s=T : t ∈ [0, τ ]} is also a Glivenko-Cantelli class, and therefore
Λk,n almost surely uniformly converges to

Pθ0

[
∆1{T ≤ t}Q(O, k, θ0)

Pθ0
[
1{S = k}eβ′0XY (s)

]
|s=T

]
.

Now, note that Λk,0(t) =
∫ t
0

Pθ0 [1{S=k} dN(s)]

Pθ0 [1{S=k}e
β′0XY (s)]

, which can be reexpressed as

Λk,0(t) =
Pθ0 [1{S = k}∆1{T ≤ t}]

Pθ0
[
1{S = k}eβ′0XY (s)

]
|s=T

= Pθ0

[
∆1{T ≤ t}Q(O, k, θ0)

Pθ0
[
1{S = k}eβ′0XY (s)

]
|s=T

]
.

Thus Λk,n almost surely uniformly converges to Λk,0 on [0, τ ].

Next, using somewhat standard arguments (see Parner (1998) for exam-

ple), we can show that 0 ≤ n−1j {logLnj (θ̂nj ) − logLnj (θnj )} converges to
the negative Kullback-Leibler information Pθ0 [log(L1(θ∗)/L1(θ0))]. Thus, the
Kullback-Leibler information must be zero, and it follows that with probability
1, L1(θ∗) = L1(θ0). The proof of consistency is completed if we show that this
equality implies θ∗ = θ0. For that purpose, consider L1(θ∗) = L1(θ0) under
∆ = 1, R = 1, and 1{S = k} = 1 (for each k ∈ K in turn). Note that this is
possible by assumption (e). This yields the following equation for almost all
t ∈ [0, τ ], ‖x‖ < c1, ‖w‖ < c1:

log
λ∗k(t)

λk,0(t)
+ (β∗ − β0)

′
x− Λ∗k(t)eβ

∗′x + Λk,0(t)eβ
′
0x + log

π∗k(w)

πk,0(w)
= 0.

This equation is analogous to equation (A.2) in Chen and Little (1999). The
rest of the proof of identifiability thus proceeds along the same lines as the
proof of Lemma A.1.1 in Chen and Little (1999), and is omitted.

Hence, for any given subsequence of n, we have found a further subse-
quence nj such that ‖β̂nj − β0‖, ‖γ̂nj − γ0‖, and supt∈[0,τ ] |Λ̂k,nj (t)− Λk,0(t)|
(for every k ∈ K) converge to 0 almost surely, which implies that the sequence

of NPMLE θ̂n converges almost surely to θ0.

�

A.3 Proof of Theorem 3

The proof of Theorem 3 uses similar arguments as the proof of Theorem 3
of Fang et al. (2005), so we only highlight the parts that are different. We
need a few lemmas before presenting the proof.

Lemma 2 Let h ∈ H. Then the following holds: Pθ0 [S1(θ0)(h)] = Pθ0 [h′βSβ(θ0)+

h′γSγ(θ0) +
∑K
k=1 SΛk(θ0)(hΛk)] = 0.
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Proof. From the properties of the conditional expectation, we first note that

Pθ0 [Sβ(θ0)] = Pθ0

[
∆X −

K∑
k=1

Q(O, k, θ0)X exp(β′0X)Λk,0(T )

]

= Pθ0

[
∆X −

K∑
k=1

1{S = k}X exp(β′0X)Λk,0(T )

]
= Pθ0 [XM(τ)] ,

where M(t) = N(t) −
∫ t
0

∑K
k=1 1{S = k}eβ′0XY (u) dΛk,0(u) is the count-

ing process martingale with respect to the filtration Ft = σ{N(u), 1{C ≤
u}, X, S,W : 0 ≤ u ≤ t}. X is bounded and Ft-measurable, hence it follows
that Pθ0 [Sβ(θ0)] = 0. Using similar arguments, we can verify that Pθ0 [SΛk(θ0)(hΛk)] =
0, k ∈ K. Finally, for k = 1, . . . ,K − 1,

Pθ0 [Sγk(θ0)] = Pθ0 [W [Q(O, k, θ0)− πk,γ0(W )]]

= Pθ0 [WPθ0 [1{S = k} − πk,γ0(W )|W ]]

= 0.

Combining these results yields that Pθ0 [S1(θ0)(h)] = 0.

�

We now come to the continuous invertibility of the continuous linear oper-
ator σ defined in Section 4.

Lemma 3 The operator σ is continuously invertible.

Proof. Since H is a Banach space, to prove that σ is continuously invertible, it
is sufficient to prove that σ is one-to-one and that it can be written as the sum
of a bounded linear operator with a bounded inverse and a compact operator
(Lemma 25.93 of van der Vaart (1998)).

Define the linear operatorA(h) = (hβ , hγ , Pθ0 [1{S = k}φ(·,O, k, θ0)]hΛk(·); k ∈
K), this is a bounded operator due to the boundedness of X. Moreover, for all
u ∈ [0, τ ] and k ∈ K, Pθ0 [1{S = k}φ(u,O, k, θ0)] ≥ c2c4 > 0 by assump-
tions (c) and (d). This implies that A is invertible with bounded inverse

A−1(h) = (hβ , hγ , Pθ0 [1{S = k}φ(·,O, k, θ0)]
−1
hΛk(·); k ∈ K). The operator

σ − A can be shown to be compact by using the same techniques as in Lu
(2008) for example.

To prove that σ is one-to-one, let h ∈ H such that σ(h) = 0. If σ(h) = 0,
Pθ0

[
S1(θ0)(h)2

]
= 0, and therefore S1(θ0)(h) = 0 almost surely. Let j ∈ K.

By assumption (e), for almost every t ∈ [0, τ ], ‖x‖ ≤ c1, and ‖w‖ ≤ c1, there is
a non-negligible set Ωt,x,w ⊆ Ω such that ∆(ω) = 1, R(ω) = 1, and 1{S(ω) =
j} = 1 when ω ∈ Ωt,x,w. If S1(θ0)(h) = 0 almost surely, then in particular,
for almost every t ∈ [0, τ ], ‖x‖ ≤ c1, and ‖w‖ ≤ c1, S1(θ0)(h) = 0 when
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ω ∈ Ωt,x,w, which yields the following equation:

hΛj (t) + h′βx+ w′hγj −
K−1∑
k=1

w′hγkπk,γ0(w)

−eβ
′
0x

[∫ t

0

hΛj (s) dΛj,0(s) + h′βxΛj,0(t)

]
= 0, (7)

with hγj = 0 when j = K. Then, by choosing t arbitrarily close to 0, and since
Λj,0 is continuous, Λj,0(0) = 0, and hΛj is continuous from the right at 0, we
get that

hΛj (0) + h′βx+ w′hγj −
K−1∑
k=1

w′hγkπk,γ0(w) = 0. (8)

Taking the difference (7)-(8) yields that

hΛj (t)− hΛj (0) = eβ
′
0x

[∫ t

0

hΛj (s) dΛj,0(s) + h′βxΛj,0(t)

]
(9)

for almost every t ∈ [0, τ ] and ‖x‖ ≤ c1. Since Λj,0 is increasing (by assumption
(b)), for every t > 0, Λj,0(t) > Λj,0(0) = 0 and therefore (9) can be rewritten
as

hΛj (t)− hΛj (0)

Λj,0(t)
= eβ

′
0x
[
r(t) + h′βx

]
, (10)

where r(t) =
∫ t
0
hΛj (s) dΛj,0(s)/Λj,0(t). Consider first the case where β0 = 0.

Since the left-hand side of (10) does not depend on x, hβ must equal 0. Next,

consider the case where β0 6= 0. Let t1, t2 > 0. Then eβ
′
0x[r(t1) − r(t2)] does

not depend on x. Since the covariance matrix of X is positive definite, we
can find two distinct values x1 and x2 of X such that eβ

′
0x1 [r(t1) − r(t2)] =

eβ
′
0x2 [r(t1)−r(t2)]. This implies that r(t1) = r(t2), from which we deduce that

hΛj (t) has to be constant (say, equal to α) for almost every t ∈ (0, τ ]. From
(10), we then deduce that hΛj (0) = α, which further implies that hβ = 0,
α = 0, and thus hΛj (t) = 0 for almost every t ∈ [0, τ ] (j ∈ K). This, together
with (8) implies that hγj = 0, j ∈ K.

Let k = K. Then σΛK (h)(u) = Pθ0 [1{S = K}φ(u,O,K, θ0)]hΛK (u) = 0
for all u ∈ [0, τ ] since hβ = 0 and hγ = 0. By assumptions (c) and (d), for
every u ∈ [0, τ ] and k ∈ K,

Pθ0 [1{S = k}φ(u,O, k, θ0)] = Pθ0

[
1{S = k}Y (u)Q(O, k, θ0)eβ

′
0X
]

≥ Pθ0

[
1{S = k}Y (τ)Reβ

′
0X
]
> 0,

hence we conclude that hΛK is identically equal to 0 on [0, τ ]. Next, consider-
ing σΛK−1

(h)(u) = 0 with hβ = 0, hγ = 0 and hΛK = 0, we conclude similarly
that hΛK−1

(u) = 0 for every u ∈ [0, τ ]. It follows that hΛj is identically equal
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to 0 on [0, τ ] for every j ∈ K. Therefore, σ is one-to-one.

�

We now turn to the proof of Theorem 3 itself. Similar to Fang et al. (2005),
we get that

√
n

(
h′β(β̂n − β0) + h′γ(γ̂n − γ0) +

K∑
k=1

∫ τ

0

hΛk(s) d(Λ̂k,n − Λk,0)(s)

)
=
√
n
(
Sn(θ0)(σ−1(h))− Pθ0

[
S1(θ0)(σ−1(h))

])
+ op(1),

where Sn is given by (3). Consider the subset {(hβ , 0, 0; k ∈ K)|hβ ∈ Rp} ⊂ H
and let h̃ be an element of this subset. Setting h = h̃ in the above equation
yields

√
nh′β(β̂n − β0) =

√
n
(
Sn(θ0)(σ−1(h̃))− Pθ0

[
S1(θ0)(σ−1(h̃))

])
+ op(1). (11)

By Lemma 2, the central limit theorem, and Slutsky’s theorem,
√
nh′β(β̂n−β0)

is asymptotically normal with mean 0 and variance Pθ0 [S1(θ0)(σ−1(h̃))2]. If
h ∈ H, direct calculation yields

S1(θ0)(h)2 = h′βSβ(θ0)Sβ(θ0)′hβ + h′γSγ(θ0)Sγ(θ0)′hγ + 2h′βSβ(θ0)Sγ(θ0)′hγ

+2h′βSβ(θ0)

(
K∑
k=1

SΛk(θ0)(hΛk)

)
+ 2h′γSγ(θ0)

(
K∑
k=1

SΛk(θ0)(hΛk)

)

+

K∑
k=1

(
Q(O, k, θ0)

[
hΛk(T )∆− exp(β′0X)

∫ T

0

hΛk(s) dΛk,0(s)

])2

+2

K∑
k=1

∑
j>k

Q(O, k, θ0)

[
hΛk(T )∆− exp(β′0X)

∫ T

0

hΛk(s) dΛk,0(s)

]

×Q(O, j, θ0)

[
hΛj (T )∆− exp(β′0X)

∫ T

0

hΛj (s) dΛj,0(s)

]
.

Taking expectation followed by some tedious algebraic manipulations and re-
arrangement of terms yield that

Pθ0
[
S1(θ0)(h)2

]
=

h′βσβ(h) + h′γσγ(h) +

K∑
k=1

∫ τ

0

σΛk(h)(u)hΛk(u) dΛk,0(u). (12)
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Therefore

Pθ0

[
S1(θ0)(σ−1(h̃))2

]
= σ−1β (h̃)′σβ(σ−1(h̃)) + σ−1γ (h̃)′σγ(σ−1(h̃))

+

K∑
k=1

∫ τ

0

σ−1Λk (h̃)(u)σΛk(σ−1(h̃))(u) dΛk,0(u)

= h′βσ
−1
β (h̃),

where the last equality comes from the fact that

σ(σ−1(h̃)) = (σβ(σ−1(h̃)), σγ(σ−1(h̃)), σΛk(σ−1(h̃)); k ∈ K) = h̃.

Now, recall that the linear map σ̃−1β : Rp → Rp was defined in Section 4

as a restricted version of σ−1β , by setting σ̃−1β (hβ) = σ−1β (h̃) for any h̃ of
the form (hβ , 0, 0; k ∈ K). Let {e1, . . . , ep} be the canonical basis of Rp and
Σβ = (σ̃−1β (e1), . . . , σ̃−1β (ep)). Then for any hβ ∈ Rp, we have σ̃−1β (hβ) =

Σβhβ and thus Pθ0 [S1(θ0)(σ−1(h̃))2] = h′βΣβhβ . Hence, for every hβ ∈ Rp,
√
nh′β(β̂n − β0) converges in distribution to N (0, h′βΣβhβ). By the Cramér-

Wold device,
√
n(β̂n − β0) converges in distribution to N (0, Σβ).

We now turn to semiparametric efficiency of β̂n. Our proof relies on some
geometric arguments. A detailed exposition of such arguments can be found
in Bickel et al. (1993) and Tsiatis (2006) for example. Note that similar
arguments have recently been used to derive efficiency in various other semi-
parametric hazard regression models (see Chang et al. (2005) and Zeng et al.

(2005) for example). For j = 1 . . . , p, denote h̃j = (ej , 0, 0; k ∈ K). Letting

h = h̃j for each j = 1 . . . , p in turn in (11) yields

√
n(β̂n − β0) =

1√
n

n∑
i=1

lβ(Oi, θ0) + op(1),

where

lβ(O, θ0) = ΣβSβ(θ0) +ΞSγ(θ0) +

K∑
k=1

SΛk(θ0)(Ξ∗),

Ξ and Ξ∗ are (p× q) and (p× 1) matrices respectively defined by

Ξ =

σ−1γ (h̃1)′

...

σ−1γ (h̃p)
′

 and Ξ∗ =

σ−1Λk (h̃1)
...

σ−1Λk (h̃p)

 ,

and SΛk(θ0) is applied componentwise to Ξ∗. Thus β̂n is an asymptotically
linear estimator for β0, and its influence function lβ(O, θ0) belongs to the
tangent space spanned by the score functions. It follows that lβ(O, θ0) is the

efficient influence function for β0, and that β̂n is semiparametrically efficient
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(see Bickel et al. (1993) or Tsiatis (2006)).

Remark. Note that lβ(O, θ0) is orthogonal to the space generated by the
score functions for γ and the Λk, k ∈ K. This can be ascertained as follows.
Let i ∈ {1, . . . , p}. The following hold: e′iΣβ = [σ−1β ((ei, 0, 0; k ∈ K))]′, e′iΞ =

[σ−1γ ((ei, 0, 0; k ∈ K))]′, and e′iSΛk(θ0)(Ξ∗) = SΛk(θ0)(σ−1Λk ((ei, 0, 0; k ∈ K))).
Now,

Pθ0

e′ilβ(O, θ0)

K∑
j=1

SΛj (θ0)(hΛj )


= Pθ0

e′i
(
ΣβSβ(θ0) +ΞSγ(θ0) +

K∑
k=1

SΛk(θ0)(Ξ∗)

) K∑
j=1

SΛj (θ0)(hΛj )


= Pθ0 [{[σ−1β ((ei, 0, 0; k ∈ K))]′Sβ(θ0) + [σ−1γ ((ei, 0, 0; k ∈ K))]′Sγ(θ0)

+

K∑
k=1

SΛk(θ0)(σ−1Λk ((ei, 0, 0; k ∈ K)))}(
K∑
j=1

SΛj (θ0)(hΛj ))]

= Pθ0
[
S1(θ0)(σ−1((ei, 0, 0; k ∈ K))) · S1(θ0)((0, 0, hΛj ; j ∈ K))

]
,

where the last equality follows from equation (3). Now, similar calculations as
the ones leading to (12) yield that

Pθ0

e′ilβ(O, θ0)

K∑
j=1

SΛj (θ0)(hΛj )

 =

K∑
k=1

∫ τ

0

hΛk(u)σΛk(σ−1((ei, 0, 0; k ∈ K)))(u) dΛk,0(u) = 0.

Thus, lβ(O, θ0) is orthogonal to the score
∑K
j=1 SΛj (θ0)(hΛj ). Similarly, lβ(O, θ0)

is orthogonal to Sγ(θ0).

A.4 Proof of Theorem 4

The proof of asymptotic normality of
√
n(γ̂n−γ0) proceeds along the same

line as for
√
n(β̂n − β0), and is therefore omitted.

Next, for any t ∈ (0, τ) and j ∈ K, the asymptotic normality of
√
n(Λ̂j,n(t)−

Λj,0(t)) can be proved by using a similar argument with h̃ replaced by h(j,t) =
(hβ , hγ , hΛk ; k ∈ K), where hβ = 0, hγ = 0, hΛj (·) = 1{· ≤ t} (t ∈ (0, τ) and
j ∈ K), and hΛk = 0 for every k ∈ K, k 6= j. Details are omitted.

�

A.5 Proof of Theorem 5
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The proof of Theorem 5 parallels the proof of Theorem 3 in Parner (1998)
and thus, will be kept brief. Let σ̂n = (σ̂β,n, σ̂γ,n, σ̂Λk,n; k ∈ K) be defined

as σ with all of the θ0 and Pθ0 replaced by θ̂n and Pn respectively. Simi-
lar to the proof of Theorem 3 in Parner (1998), it can be shown that σ̂n
converges in probability to σ uniformly over H and that its inverse σ̂−1n =
(σ̂−1β,n, σ̂

−1
γ,n, σ̂

−1
Λk,n

; k ∈ K) is such that σ̂−1n (h) converges to σ−1(h) in probabil-
ity.

For every hβ , the asymptotic variance of
√
nh′β(β̂n−β0) is h′βσ

−1
β ((hβ , 0, 0; k ∈

K)), which is consistently estimated by h′β σ̂
−1
β,n((hβ , 0, 0; k ∈ K)). Let hn =

(hβ,n, hγ,n, hΛk,n; k ∈ K) = σ̂−1n ((hβ , 0, 0; k ∈ K)). Then σ̂n(hn) = (hβ , 0, 0; k ∈
K), or  σ̂β,n(hn) = hβ

σ̂γ,n(hn) = 0
σ̂Λk,n(hn)(u) = 0, k ∈ K, u ∈ [0, τ ].

(13)

In particular, letting u = T1, . . . , Tn in (13) yields the following system of
equations:

An

 hβ,n
hγ,n
hΛ,n

 =

hβ
0q
0Kn

 , (14)

where hΛ,n = (hΛ1,n(T1), . . . , hΛ1,n(Tn), . . . , hΛK ,n(T1), . . . , hΛK ,n(Tn))′, and

An is defined by (4). Some simple algebra on (14) yields that hβ,n = Σ̂β,nhβ
where Σ̂β,n is defined in Section 4, and therefore h′βΣ̂β,nhβ is a consistent esti-

mator of the asymptotic variance of
√
nh′β(β̂n−β0) for every hβ . We conclude

that Σ̂β,n converges in probability to Σβ . The consistency of Σ̂γ,n proceeds
along the same lines and is therefore omitted.

We now turn to the estimation of the asymptotic variance of Λ̂j,n(t), for t ∈
(0, τ) and j ∈ K. By the dominated convergence theorem and the consistency
of σ̂−1n , ∫ t

0

σ̂−1Λj ,n(h(j,t))(u) dΛ̂j,n(u)

converges to v2j (t) =
∫ t
0
σ−1Λj (h(j,t))(u) dΛj,0(u), where we recall that h(j,t) is

the element (hβ , hγ , hΛk ; k ∈ K) such that hβ = 0, hγ = 0, hΛj (·) = 1{· ≤ t}
for some t ∈ (0, τ) and j ∈ K, and hΛk = 0 for every k ∈ K, k 6= j. Letting

h̃n = (h̃β,n, h̃γ,n, h̃Λk,n; k ∈ K) = σ̂−1n (h(j,t)), we get that σ̂n(h̃n) = h(j,t) or:
σ̂β,n(h̃n) = 0

σ̂γ,n(h̃n) = 0

σ̂Λj ,n(h̃n)(u) = 1{u ≤ t}, u ∈ [0, τ ]

σ̂Λk,n(h̃n)(u) = 0, k ∈ K, k 6= j, u ∈ [0, τ ].

(15)
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In particular, letting u = T1, . . . , Tn in (15) yields the system of equations

An

 h̃β,n
h̃γ,n
h̃Λ,n

 =

 0p
0q
Un(j,t)

 ,

with the notations h̃Λ,n = (h̃Λ1,n(T1), . . . , h̃Λ1,n(Tn), . . . , h̃ΛK ,n(T1), . . . , h̃ΛK ,n(Tn))′

and Un(j,t) = (0′(j−1)n, 1{T1 ≤ t}, . . . , 1{Tn ≤ t}, 0′(K−j)n)′. Similar algebra as
above yields

h̃Λ,n = Σ̂Λ,nU
n
(j,t),

where Σ̂Λ,n is defined in Section 4. Now,
∫ t
0
σ̂−1Λj ,n(h(j,t))(u) dΛ̂j,n(u) verifies∫ t

0

σ̂−1Λj ,n(h(j,t))(u) dΛ̂j,n(u) =

n∑
i=1

σ̂−1Λj ,n(h(j,t))(Ti)∆̂Λj,n(Ti)1{Ti ≤ t}

= Ξ̂n
′

(j,t)h̃Λ,n,

where Ξ̂n(j,t) =
(

0′(j−1)n, ∆̂Λj,n(T1)1{T1 ≤ t}, . . . , ∆̂Λj,n(Tn)1{Tn ≤ t}, 0′(K−j)n
)′

.

It follows that Ξ̂n
′

(j,t)Σ̂Λ,nU
n
(j,t) is a consistent estimator of v2j (t), which con-

cludes the proof.

�
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