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We give an explicit relation between the Nevanlinna counting function of an analytic self-map of the unit disk and its pull-back measure. This gives a simple proof of the results of Lefévre, Li, Queffélec and Rodrìguez-Piazza [3].

Introduction

In this note we study the relationship between the Laplacian of the Nevanlinna counting function of an analytic self-map of the unit disk and its pull-back measure. Our results allow us to refine asymptotic identities involving the Nevanlinna counting function and the pull-back measure given recently by Lefèvre, Li, Queffélec and Rodrìguez-Piazza [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF]. As consequences of their result, one easily recovers several previously known results about composition operators on the Hardy space, including the characterization of compact composition operators and composition operators belonging to Schatten classes (see [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF][START_REF] Lefèvre | Some examples of compact composition operators on H 2[END_REF][START_REF] Maccluer | Compact composition operators on H p (B N )[END_REF][START_REF] Shapiro | Composition operators and classical function theory[END_REF][START_REF] Shapiro | The essential norm of a composition operator[END_REF]).

In order to state our main result, we need some notation. Let ϕ be a non-constant analytic map of the unit disk D of the complex plane into itself. The Nevanlinna counting function is defined for every z ∈ D\{ϕ(0)} by

N ϕ (z) =        w∈ϕ -1 (z) log 1 |w| if z ∈ ϕ(D), 0 if z / ∈ ϕ(D).
Let ϕ * (e it ) = lim r→1-ϕ(re it ) be the radial limit of ϕ. Now we are able to state the main result. This is a generalization of a theorem that was obtained by Lefèvre, Li, Queffélec and Rodrìguez-Piazza in [3, Theorem 1.1] (see also Remarks (4) below). In fact, our proof of this more general result is simpler than the origin proof from [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF].

Theorem 1.1. For every 0 < c < 1/8 and 0 < h < (1 -|ϕ(0)|)/8, we have m ϕ [S(ζ, (1 -c)h] ≤ 2 c 2 sup z∈S(ζ,h)∩D N ϕ (z), ζ ∈ D (1.1)
and

sup z∈W (ζ,h)∩D N ϕ (z) ≤ 100 c 2 m ϕ [W (ζ, (1 + c)h)], ζ ∈ T. (1.2)

Proof

Let H 2 be the Hardy space of the disc,

H 2 = f = n≥0 f (n)z n ∈ Hol(D) : n≥0 | f (n)| 2 < ∞ .
The normalized area measure on D will be denoted by dA and let ∆ = 4∂ 2 /∂z∂z be the usual Laplacian. For the proof of the above Theorem we need the following key Lemma which gives a generalization of the classical Littlewood-Paley identity.

Lemma 2.1. For every analytic non-constant self-map ϕ : D → D and every g ∈ C 2 on C we have

D g(z)dm ϕ (z) = g(ϕ(0)) + 1 2 D ∆g(w)N ϕ (w)dA(w).
Proof. Since ∆g is bounded on D, by the change of variable formula, we have

D ∆g(w)N ϕ (w)dA(w) = D ∆g(ϕ(w))|ϕ ′ (w)| 2 log 1 |w| dA(w) = D ∆(g • ϕ)(w) log 1 |w| dA(w) = lim r→1-rD ∆(g • ϕ)(w) log 1 |w| dA(w). (2.1)
Now by Green's formula, for r < 1,

1 2 rD ∆(g • ϕ)(w) log r r|w| dA(w) = -g(ϕ(0)) + T g(ϕ(rζ)) |dζ| 2π + 1 2 log 1 r rD ∆(g • ϕ)(w)dA(w). (2.2) Note that for ρ < 1, log 1 ρ ρD ∆(g • ϕ)(w)dA(w) = log 1 ρ ρD ∆g(ϕ(w))|ϕ ′ (w)| 2 dA(w) ≤ ∆g ∞ log 1 ρ ρD |ϕ ′ (w)| 2 dA(w) ≤ ∆g ∞ D |ϕ ′ (w)| 2 log 1 |w| dA(w) = 1 2 ∆g ∞ ( ϕ 2 H 2 -|ϕ(0)| 2 ).
Hence for 0 < ρ < r < 1, we get

log 1 r rD ∆(g • ϕ)(w)dA(w) = log(1/r) log(1/ρ) log 1 ρ ρD |∆(g • ϕ)(w)|dA(w) + log 1 r rD\ρD |∆(g • ϕ)(w)|dA(w) ≤ log(1/r) log(1/ρ) ∆g ∞ ϕ 2 H 2 + ∆g ∞ D\ρD |ϕ ′ (w)| 2 log 1 |w| dA(w). (2.3) 
Finally, if we choose ρ = e -(log 1/r) 

g(w) = (h 2 -|w -ζ| 2 ) 2 if |w -ζ| ≤ h, 0 if |w -ζ| ≥ h.
First note that for ǫ > 0, g ǫ = g 1+ǫ ∈ C 2 (C). Applying Lemma 2.1 with g ǫ and letting ǫ go to 0, we obtain

D g(z)dm ϕ (z) = g(ϕ(0)) + 1 2 D ∆g(w)N ϕ (w)dA(w). (2.4)
We have

∆g(w) = 8(2|w -ζ| 2 -h 2 ).
Note that if z ∈ S(ζ, (1 -c)h), then g(z) ≥ (7 2 /2 4 )c 2 h 4 . By (2.4), we get

m ϕ [S(ζ, (1 -c)h)] ≤ 2 4 7 2 c 2 h 4 S(ζ,(1-c)h) g(z)dm ϕ (z) ≤ 2 3 7 2 c 2 h 4 D ∆g(z)N ϕ (z)dA(z) ≤ 2 3 7 2 c 2 h 4 h/ √ 2≤|z-ζ|≤h ∆g(z)N ϕ (z)dA(z) ≤ 2 3 7 2 c 2 h 4 sup z∈S(ζ,h) N ϕ (z) h/ √ 2≤|z-ζ|≤h ∆g(z)dA(z) ≤ 2 6 7 2 c 2 sup z∈S(ζ,h) N ϕ (z).
For the second estimate, let

ζ = z/|z|, h = 1 -|z|, Z = (1 + ηh)ζ and ρ = 1 + 2c + η where η = (1 + 2c)(1 + √ 2)
. Consider the function g defined by

g(w) = (ρ 2 h 2 -|w -Z| 2 ) 2 if |w -Z| < ρh, 0 if |w -Z| ≥ ρh.
As before for ǫ > 0, g ǫ = g 1+ǫ ∈ C 2 (C). Applying Lemma 2.1 with g ǫ and letting ǫ go to 0 and we get (2.4). We have

∆g(w) = 8(2|w -Z| 2 -ρ 2 h 2 ). If w ∈ D, then |w -Z| ≥ ηh = ρh/ √ 2 and so ∆g(w) ≥ 0. Note that D(z, ch) ⊂ D(Z, ρh). Also, if |w -z| ≤ ch then |w -Z| ≥ |Z -z| -|w -z| ≥ (1 -c + η)h, hence ∆g(w) ≥ 8(2(1 -c + η) 2 -(1 + 2c + η) 2 )h 2 ≥ 2 3 ( √ 2 + 2)h 2 , w ∈ D(Z, ρh).
Note that ϕ(0) / ∈ D(z, ch), by the sub-mean value property of N ϕ (see Remark 3 below) and (2.4), we get

N ϕ (z) ≤ 2 c 2 h 2 D(z,ch) N ϕ (w)dA(w) ≤ 2 2 3 ( √ 2 + 2)c 2 h 4 D(z,ch) N ϕ (w)∆g(w)dA(w) ≤ 1 2 2 ( √ 2 + 2)c 2 h 4 D N ϕ (w)∆g(w)dA(w) ≤ 2 2 2 ( √ 2 + 2)c 2 h 4 D(Z,ρh)∩D g(w)dm ϕ (w) ≤ 1 2( √ 2 + 2)c 2 h 4 ρ 4 h 4 m ϕ (D(Z, ρh) ∩ D) ≤ 100 c 2 m ϕ (D(Z, ρh) ∩ D). We claim that D(Z, ρh) ∩ D ⊂ W (ζ, (1 + 2c)h).
Suppose that ζ = 1 and let e iθ ∈ ∂D(Z, ρh) ∩ T. We have

sin 2 θ = 1 4(1 + ηh) 2 [(1 + ρh) 2 -(1 + ηh) 2 ][(1 + ηh) 2 -(1 -ρh) 2 ] ≤ (3 + 2 √ 2)(1 + 2c) 2 h 2 .
Note that c < 1/8 and h < 1/8, so we get θ ≤ (1 + c)hπ. Now the proof is complete.

3. Remarks

1.

The following corollary, first proved by Rudin [START_REF] Rudin | A generalization of a theorem of Frostman[END_REF], (see also Bishop [START_REF] Bishop | Orthogonal functions in H ∞[END_REF] ), is an immediate consequence of the Lemma 2.1 Corollary 3.1 ((Bishop & Rudin)). We have

∆N ϕ = -δ ϕ(0) + m ϕ ,
where ∆ is the distributional Laplacian and δ z 0 is the Dirac mass at z 0 . Furthermore N ϕ is equal to a subharmonic function almost everywhere on D.

2. The formula from Lemma 2.1 was given by Stanton [2, Theorem 2] when g is a subharmonic function instead of a smooth function. The proof of Stanton's formula is based on Jensen's formula.

3. By Corollary 3.1, The Nevanlinna counting function N ϕ is equal to a subharmonic function almost everywhere on D. In fact N ϕ fails to be subharmonic only on a set of logarithmic capacity zero [START_REF] Essén | A value-distribution criterion for the class L log L and some retated questions[END_REF]. The Nevanlinna counting function satisfies the sub-mean value property

N ϕ (z) ≤ 2 r 2 D(z,r)
N ϕ (w)dA(w), for every disc D(z, r) of center z and radius r does not contain ϕ(0) see [START_REF] Shapiro | Composition operators and classical function theory[END_REF][START_REF] Shapiro | The essential norm of a composition operator[END_REF].

4.

In the proof in the first inequality (1.1), one can consider the following function g

(w) = (h 2 -Re(w -ζ) 2 ) 2 (h 2 -Im(w -ζ) 2 ) 2 if Re(w -ζ) ≤ h
and Im(w -ζ) ≤ πh and g(w) = 0 otherwise. We obtain as before :

For every 0 < c < 1/8 and 0 < h < (1 -|ϕ(0)|)/8, we have

m ϕ [W (ζ, (1 -c)h] ≤ A c 4 sup z∈W (ζ,h)∩D N ϕ (z) ζ ∈ T,
where A is an absolut constant.

5.

The following result of Lefèvre, Li, Queffélec and Rodiguez-Piazza in [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF] is based on Stanton's formula. Their proof is quite complicated. They showed that the classical Nevanlinna counting function and the pull back measure are connected as follows :

For every ζ ∈ T and 0 < h < = o(h) as h → 0, (iii) C ϕ is compact on H 2 . The condition (ii) means that m ϕ is a vanishing Carleson measure for H 2 [START_REF] Maccluer | Compact composition operators on H p (B N )[END_REF]. For Hilbert-Schmidt class membership see [START_REF] Lefèvre | Some examples of compact composition operators on H 2[END_REF]. We refer the reader to the monograph by Shapiro for an account of these problems [START_REF] Shapiro | Composition operators and classical function theory[END_REF].

  The function ϕ * maps the unit circle T into the unit disc D. The pull-back measure on D of the Lebesgue measure induced by ϕ * is given by m ϕ (B) := |{ζ ∈ T : ϕ * (ζ) ∈ B}|, where B is a Borel subset of D and |E| denotes the normalized Lebesgue measure of a Borel subset E of the unit circle T. For every ζ ∈ T and 0 < h < 1, the Carleson box W (ζ, h) ⊂ D centered at ζ and of size h is the set W (ζ, h) := {z ∈ D : 1 -h ≤ |z| ≤ 1 and |arg(zζ)| ≤ πh}. We use, inside the Carleson box W (ζ, h), the set S(ζ, h) := {z ∈ D : |z -ζ| ≤ h}, whose size is comparable to that of W (ζ, h). Denote by D(a, r) the disc of radius r centered at a and as before S(ζ, h) := {z ∈ D : |z -ζ| ≤ h}, for ζ ∈ D.

6 .

 6 (1 -|ϕ(0)|)/16, we have 1 64 m ϕ [ W (ζ, h/64] ≤ sup z∈W (ζ,h) N ϕ (z) ≤ 196 m ϕ [ W (ζ, 24h)],whereW (ζ, h) := {z ∈ D : 1 -h ≤ |z| ≤1 and |arg(zζ)| ≤ h}. There are several different conditions which characterize the compactness of the composition operator C ϕ (f ) = f • ϕ on the Hardy space H 2 . For the holomorphic self-map ϕ of D the following conditions are equivalent : (i) N ϕ (z) = o(log 1/|z|) as |z| → 1-, (ii) m ϕ [W (ζ, h)]