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NEVANLINNA COUNTING FUNCTION AND PULL–BACK MEASURE

O. EL-FALLAH AND K. KELLAY

Abstract. We give an explicit relation between the Nevanlinna counting function of an
analytic self-map of the unit disk and its pull-back measure. This gives a simple proof of
the results of Lefévre, Li, Queffélec and Rodr̀ıguez–Piazza [3].

1. Introduction

In this note we study the relationship between the Laplacian of the Nevanlinna count-
ing function of an analytic self-map of the unit disk and its pull-back measure. Our
results allow us to refine asymptotic identities involving the Nevanlinna counting function
and the pull–back measure given recently by Lefèvre, Li, Queffélec and Rodr̀ıguez–Piazza
[3]. As consequences of their result, one easily recovers several previously known results
about composition operators on the Hardy space, including the characterization of com-
pact composition operators and composition operators belonging to Schatten classes (see
[3, 4, 5, 7, 8]).

In order to state our main result, we need some notation. Let ϕ be a non–constant
analytic map of the unit disk D of the complex plane into itself. The Nevanlinna counting
function is defined for every z ∈ D\{ϕ(0)} by

Nϕ(z) =





∑

w∈ϕ−1(z)

log
1

|w| if z ∈ ϕ(D),

0 if z /∈ ϕ(D).

Let ϕ∗(eit) = limr→1− ϕ(reit) be the radial limit of ϕ. The function ϕ∗ maps the unit
circle T into the unit disc D. The pull–back measure on D of the Lebesgue measure induced
by ϕ∗ is given by

mϕ(B) := |{ζ ∈ T : ϕ∗(ζ) ∈ B}|,
where B is a Borel subset of D and |E| denotes the normalized Lebesgue measure of a
Borel subset E of the unit circle T. For every ζ ∈ T and 0 < h < 1, the Carleson box
W (ζ, h) ⊂ D centered at ζ and of size h is the set

W (ζ, h) := {z ∈ D : 1− h ≤ |z| ≤ 1 and |arg(zζ)| ≤ πh}.
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We use, inside the Carleson box W (ζ, h), the set

S(ζ, h) := {z ∈ D : |z − ζ | ≤ h},

whose size is comparable to that of W (ζ, h). Denote by D(a, r) the disc of radius r centered
at a and as before S(ζ, h) := {z ∈ D : |z − ζ | ≤ h}, for ζ ∈ D.

Now we are able to state the main result. This is a generalization of a theorem that
was obtained by Lefèvre, Li, Queffélec and Rodr̀ıguez–Piazza in [3, Theorem 1.1] (see also
Remarks (4) below). In fact, our proof of this more general result is simpler than the origin
proof from [3].

Theorem 1.1. For every 0 < c < 1/8 and 0 < h < (1− |ϕ(0)|)/8, we have

mϕ[S(ζ, (1− c)h] ≤ 2

c2
sup

z∈S(ζ,h)∩D
Nϕ(z), ζ ∈ D (1.1)

and

sup
z∈W (ζ,h)∩D

Nϕ(z) ≤
100

c2
mϕ[W (ζ, (1 + c)h)], ζ ∈ T. (1.2)

2. Proof

Let H2 be the Hardy space of the disc,

H2 =
{
f =

∑

n≥0

f̂(n)zn ∈ Hol(D) :
∑

n≥0

|f̂(n)|2 < ∞
}
.

The normalized area measure on D will be denoted by dA and let ∆ = 4∂2/∂z∂z be the
usual Laplacian. For the proof of the above Theorem we need the following key Lemma
which gives a generalization of the classical Littlewood-Paley identity.

Lemma 2.1. For every analytic non–constant self–map ϕ : D → D and every g ∈ C2 on

C we have ∫

D

g(z)dmϕ(z) = g(ϕ(0)) +
1

2

∫

D

∆g(w)Nϕ(w)dA(w).

Proof. Since ∆g is bounded on D, by the change of variable formula, we have
∫

D

∆g(w)Nϕ(w)dA(w) =

∫

D

∆g(ϕ(w))|ϕ′(w)|2 log 1

|w|dA(w)

=

∫

D

∆(g ◦ ϕ)(w) log 1

|w|dA(w)

= lim
r→1−

∫

rD

∆(g ◦ ϕ)(w) log 1

|w|dA(w). (2.1)



NEVANLINNA COUNTING FUNCTION AND PULL–BACK MEASURE 3

Now by Green’s formula, for r < 1,

1

2

∫

rD

∆(g ◦ ϕ)(w) log r

r|w|dA(w) =

− g(ϕ(0)) +

∫

T

g(ϕ(rζ))
|dζ |
2π

+
1

2
log

1

r

∫

rD

∆(g ◦ ϕ)(w)dA(w). (2.2)

Note that for ρ < 1,

∣∣∣ log 1

ρ

∫

ρD

∆(g ◦ ϕ)(w)dA(w)
∣∣∣ =

∣∣∣ log 1

ρ

∫

ρD

∆g(ϕ(w))|ϕ′(w)|2dA(w)
∣∣∣

≤ ‖∆g‖∞ log
1

ρ

∫

ρD

|ϕ′(w)|2dA(w)

≤ ‖∆g‖∞
∫

D

|ϕ′(w)|2 log 1

|w|dA(w)

=
1

2
‖∆g‖∞(‖ϕ‖2H2 − |ϕ(0)|2).

Hence for 0 < ρ < r < 1, we get

∣∣∣ log 1

r

∫

rD

∆(g ◦ ϕ)(w)dA(w)
∣∣∣ =

log(1/r)

log(1/ρ)
log

1

ρ

∫

ρD

|∆(g ◦ ϕ)(w)|dA(w) + log
1

r

∫

rD\ρD
|∆(g ◦ ϕ)(w)|dA(w) ≤

log(1/r)

log(1/ρ)
‖∆g‖∞‖ϕ‖2H2 + ‖∆g‖∞

∫

D\ρD
|ϕ′(w)|2 log 1

|w|dA(w). (2.3)

Finally, if we choose ρ = e−(log 1/r)1/2 , by (2.1), (2.2) and (2.3) the result follows from
r → 1. �

Proof of Theorem 1.1. Let ζ ∈ D and consider the function g defined on C by

g(w) =

{
(h2 − |w − ζ |2)2 if |w − ζ | ≤ h,

0 if |w − ζ | ≥ h.

First note that for ǫ > 0, gǫ = g1+ǫ ∈ C2(C). Applying Lemma 2.1 with gǫ and letting ǫ go
to 0, we obtain

∫

D

g(z)dmϕ(z) = g(ϕ(0)) +
1

2

∫

D

∆g(w)Nϕ(w)dA(w). (2.4)

We have

∆g(w) = 8(2|w − ζ |2 − h2).
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Note that if z ∈ S(ζ, (1− c)h), then g(z) ≥ (72/24)c2h4. By (2.4), we get

mϕ[S(ζ, (1− c)h)] ≤ 24

72c2h4

∫

S(ζ,(1−c)h)

g(z)dmϕ(z)

≤ 23

72c2h4

∫

D

∆g(z)Nϕ(z)dA(z)

≤ 23

72c2h4

∫

h/
√
2≤|z−ζ|≤h

∆g(z)Nϕ(z)dA(z)

≤ 23

72c2h4
sup

z∈S(ζ,h)
Nϕ(z)

∫

h/
√
2≤|z−ζ|≤h

∆g(z)dA(z)

≤ 26

72c2
sup

z∈S(ζ,h)
Nϕ(z).

For the second estimate, let ζ = z/|z|, h = 1 − |z|, Z = (1 + ηh)ζ and ρ = 1 + 2c + η
where η = (1 + 2c)(1 +

√
2). Consider the function g defined by

g(w) =

{
(ρ2h2 − |w − Z|2)2 if |w − Z| < ρh,

0 if |w − Z| ≥ ρh.

As before for ǫ > 0, gǫ = g1+ǫ ∈ C2(C). Applying Lemma 2.1 with gǫ and letting ǫ go to 0
and we get (2.4). We have

∆g(w) = 8(2|w − Z|2 − ρ2h2).

If w ∈ D, then |w− Z| ≥ ηh = ρh/
√
2 and so ∆g(w) ≥ 0. Note that D(z, ch) ⊂ D(Z, ρh).

Also, if |w − z| ≤ ch then

|w − Z| ≥ |Z − z| − |w − z| ≥ (1− c+ η)h,

hence

∆g(w) ≥ 8(2(1− c + η)2 − (1 + 2c+ η)2)h2 ≥ 23(
√
2 + 2)h2, w ∈ D(Z, ρh).
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Note that ϕ(0) /∈ D(z, ch), by the sub-mean value property of Nϕ (see Remark 3 below)
and (2.4), we get

Nϕ(z) ≤ 2

c2h2

∫

D(z,ch)

Nϕ(w)dA(w)

≤ 2

23(
√
2 + 2)c2h4

∫

D(z,ch)

Nϕ(w)∆g(w)dA(w)

≤ 1

22(
√
2 + 2)c2h4

∫

D

Nϕ(w)∆g(w)dA(w)

≤ 2

22(
√
2 + 2)c2h4

∫

D(Z,ρh)∩D
g(w)dmϕ(w)

≤ 1

2(
√
2 + 2)c2h4

ρ4h4 mϕ(D(Z, ρh) ∩ D)

≤ 100

c2
mϕ(D(Z, ρh) ∩ D).

We claim that

D(Z, ρh) ∩ D ⊂ W (ζ, (1 + 2c)h).

Suppose that ζ = 1 and let eiθ ∈ ∂D(Z, ρh) ∩ T. We have

sin2 θ =
1

4(1 + ηh)2
[(1 + ρh)2 − (1 + ηh)2][(1 + ηh)2 − (1− ρh)2]

≤ (3 + 2
√
2)(1 + 2c)2h2.

Note that c < 1/8 and h < 1/8, so we get θ ≤ (1 + c)hπ. Now the proof is complete.

3. Remarks

1. The following corollary, first proved by Rudin [6], (see also Bishop [1] ), is an imme-
diate consequence of the Lemma 2.1

Corollary 3.1 ((Bishop & Rudin)). We have

∆Nϕ = −δϕ(0) +mϕ,

where ∆ is the distributional Laplacian and δz0 is the Dirac mass at z0. Furthermore Nϕ

is equal to a subharmonic function almost everywhere on D.

2. The formula from Lemma 2.1 was given by Stanton [2, Theorem 2] when g is a sub-
harmonic function instead of a smooth function. The proof of Stanton’s formula is based
on Jensen’s formula.

3. By Corollary 3.1, The Nevanlinna counting function Nϕ is equal to a subharmonic
function almost everywhere on D. In fact Nϕ fails to be subharmonic only on a set of
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logarithmic capacity zero [2]. The Nevanlinna counting function satisfies the sub-mean
value property

Nϕ(z) ≤
2

r2

∫

D(z,r)

Nϕ(w)dA(w),

for every disc D(z, r) of center z and radius r does not contain ϕ(0) see [7, 8].

4. In the proof in the first inequality (1.1), one can consider the following function
g(w) = (h2 − Re(w − ζ)2)2(h2 − Im(w − ζ)2)2 if Re(w − ζ) ≤ h and Im(w − ζ) ≤ πh and
g(w) = 0 otherwise. We obtain as before :

For every 0 < c < 1/8 and 0 < h < (1− |ϕ(0)|)/8, we have

mϕ[W (ζ, (1− c)h] ≤ A

c4
sup

z∈W (ζ,h)∩D
Nϕ(z) ζ ∈ T,

where A is an absolut constant.

5. The following result of Lefèvre, Li, Queffélec and Rodiguez–Piazza in [3] is based
on Stanton’s formula. Their proof is quite complicated. They showed that the classical
Nevanlinna counting function and the pull back measure are connected as follows :

For every ζ ∈ T and 0 < h < (1− |ϕ(0)|)/16, we have

1

64
mϕ[W̃ (ζ, h/64] ≤ sup

z∈W (ζ,h)

Nϕ(z) ≤ 196mϕ[W̃ (ζ, 24h)],

where W̃ (ζ, h) := {z ∈ D : 1− h ≤ |z| ≤ 1 and |arg(zζ)| ≤ h}.

6. There are several different conditions which characterize the compactness of the
composition operator Cϕ(f) = f ◦ϕ on the Hardy space H2. For the holomorphic self-map
ϕ of D the following conditions are equivalent :

(i) Nϕ(z) = o(log 1/|z|) as |z| → 1−,
(ii) mϕ[W (ζ, h)] = o(h) as h → 0,
(iii) Cϕ is compact on H2.

The condition (ii) means that mϕ is a vanishing Carleson measure for H2 [5]. For Hilbert-
Schmidt class membership see [4]. We refer the reader to the monograph by Shapiro for
an account of these problems [7].
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1014 Rabat, Morocco

E-mail address : elfallah@fsr.ac.ma
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