
HAL Id: hal-01107904
https://hal.science/hal-01107904v1

Preprint submitted on 21 Jan 2015 (v1), last revised 8 Apr 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nevanlinna counting function and pull back measure
Omar El-Fallah, Karim Kellay

To cite this version:
Omar El-Fallah, Karim Kellay. Nevanlinna counting function and pull back measure. 2015. �hal-
01107904v1�

https://hal.science/hal-01107904v1
https://hal.archives-ouvertes.fr


NEVANLINNA COUNTING FUNCTION AND PULL BACK MEASURE

O. EL-FALLAH & K. KELLAY

Abstract. We give an explicit relation between Nevanlinna counting function of analytic
self-map and its pull-back measure. This gives a simple proof of the results of Lefévre, Li,
Queffélec and Rodr̀ıguez–Piazza [3].

1. Introduction

In this note we study the relationship between the Laplacian of Nevanlinna counting func-
tion of analytic self-map and its pull-back measure. This allows us to refine asymptotic
identities involving the Nevanlinna counting function and pull back measure given recently
by Lefèvre, Li, Queffélec and Rodr̀ıguez–Piazza [3]. As consequences of their result, one easily
recovers several previously known results about composition operators on the Hardy space,
including the characterization of compact composition operators and composition operators
belonging to Schatten classes (see [3, 4, 5, 7, 8]).

In order to state our main result, we need some notation. Let ϕ be an analytic map of the
unit disk D of the complex plane into itself. The Nevanlinna counting function is defined for
every z ∈ D\{ϕ(0)} by

Nϕ(z) =





∑

w∈ϕ−1(z)

log
1

|w| if z ∈ ϕ(D),

0 if z /∈ ϕ(D).

Let ϕ∗(eit) = limr→1− ϕ(reit) the radial limit of ϕ. The function ϕ∗ maps the unit circle
T on the unit disc D. The pull back measure on D of the Lebesgue measure induced by ϕ∗ is
given by

mϕ(B) := |{ζ ∈ T : ϕ∗(ζ) ∈ B a.e}|,
where B is a Borel subset for D and |E| denotes the normalized Lebesgue measure of a
Borelian subset E of the unit circle T = ∂D. For every ζ ∈ ∂T and 0 < h < 1, the Carleson
box W (ζ, h) centered at ζ and of size h is the set

W (ζ, h) := {z ∈ D : 1− h ≤ |z| ≤ 1 and |arg(zζ)| ≤ πh}.
We use, inside the Carleson box W (ζ, h), the set

S(ζ, h) := {z ∈ D : |z − ζ| ≤ h}.
which whose size is equivalent to that of W (ζ, h) .
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Now we are able to state the main result. This is a generalization of a theorem which
was obtained by Lefèvre, Li, Queffélec and Rodr̀ıguez–Piazza in [3, Theorem 1.1] (see also
Remarks (4) below). In fact, our proof the more general result is simpler than the origin
proof from [3].

Theorem 1.1. For every 0 < c < 1/8 and 0 < h < 1/8, we have

mϕ[S(ζ, (1 − c)h] ≤ 2

c2
sup

z∈S(ζ,h)∩D
Nϕ(z), (ζ ∈ D, ϕ(0) 6∈ S(ζ, h)) (1.1)

and

sup
z∈W (ζ,h)∩D

Nϕ(z) ≤
100

c2
mϕ[W (ζ, (1 + c)h)], (ζ ∈ T, ϕ(0) 6∈ W (ζ, h)). (1.2)

2. proof

Let H2 be the Hardy space of the disc,

H2 =
{
f =

∑

n≥0

f̂(n)zn ∈ Hol(D) :
∑

n≥0

|f̂(n)|2 < ∞
}
.

The normalized area measure on D will be denoted by dA and let ∆ = 4∂2/∂z∂z the usual
Laplacian. For the proof of the above Theorem we need the following key Lemma which gives
a generalization of the classical Littlewood-Paley identity.

Lemma 2.1. For every analytic self map–map ϕ : D → D and every g ∈ C2 on C we have

∫

D

g(z)dmϕ(z) = g(ϕ(0)) +
1

2

∫

D

∆g(w)Nϕ(w)dA(w).

Proof. Since ∆g is bounded, by the change of variable formula, we have

∫

D

∆g(w)Nϕ(w)dA(w) =

∫

D

∆g(ϕ(w))|ϕ′(w)|2 log 1

|w|dA(w)

=

∫

D

∆(g ◦ ϕ)(w) log 1

|w|dA(w)

= lim
r→1−

∫

rD
∆(g ◦ ϕ)(rw) log 1

|rw|dA(w). (2.1)

Now by Green’s formula, for r < 1,

1

2

∫

rD
∆(g ◦ ϕ)(w) log r

r|w|dA(w) =

− g(ϕ(0)) +

∫

T

g(ϕ(rζ))
|dζ|
2π

+
1

2
log

1

r

∫

rD
∆(g ◦ ϕ)(w)dA(w). (2.2)
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Note that for ρ < 1,
∣∣∣ log 1

ρ

∫

ρD
∆(g ◦ ϕ)(w)dA(w)

∣∣∣ =
∣∣∣ log 1

ρ

∫

ρD
∆g(ϕ(w))|ϕ′(w)|2dA(w)

∣∣∣

≤ ‖∆g‖∞ log
1

ρ

∫

D

|ϕ′(w)|2dA(w)

≤ ‖∆g‖∞
∫

D

|ϕ′(w)|2 log 1

|w|dA(w)

= ‖∆g‖∞(‖ϕ‖2H2 − |ϕ(0)|2).

Hence for 0 < ρ < r < 1, we get
∣∣∣ log 1

r

∫

rD
∆(g ◦ ϕ)(w)dA(w)

∣∣∣ =

log(1/r)

log(1/ρ)
log

1

ρ

∫

ρD
|∆(g ◦ ϕ)(w)|dA(w) + log

1

r

∫

rD\ρD
|∆(g ◦ ϕ)(w)|dA(w) ≤

log(1/r)

log(1/ρ)
‖∆g‖∞‖ϕ‖2H2 +

∫

D\ρD
|ϕ′(w)|2 log 1

|w|dA(w). (2.3)

Finally, if we choose ρ = e(log 1/r)
1/2

, by (2.1), (2.2) and (2.3) the result follows from r → 1. �

Proof of Theorem 1.1. Let ζ ∈ D and consider the function g defined on C by

g(w) =

{
(h2 − |w − ζ|2)2 if |w − ζ| ≤ h,

0 if |w − ζ| ≥ h.

First note that for ǫ > 0, gǫ = g1+ǫ ∈ C2(C). Applying Lemma 2.1 with gǫ and letting ǫ go to
0, we obtain ∫

D

g(z)dmϕ(z) = g(ϕ(0)) +
1

2

∫

D

∆g(w)Nϕ(w)dA(w). (2.4)

We have

∆g(w) = 8(2|w − ζ|2 − h2).

Note that if z ∈ S(ζ, (1 − c)h), then g(z) ≥ (72/24)c2h4. By (2.4), we get

mϕ[S(ζ, (1− c)h)] ≤ 24

72c2h4

∫

S(ζ,(1−c)h)
g(z)dmϕ(z)

≤ 23

72c2h4

∫

D

∆g(z)Nϕ(z)dA(z)

≤ 23

72c2h4

∫

h/
√
2≤|z−ζ|≤h

∆g(z)Nϕ(z)dA(z)

≤ 23

72c2h4
sup

z∈S(ζ,h)
Nϕ(z)

∫

h/
√
2≤|z−ζ|≤h

∆g(z)dA(z)

≤ 26

72c2
sup

z∈S(ζ,h)
Nϕ(z).
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For the second estimate, let ζ = z/|z|, h = 1− |z|, Z = (1+ ηh)ζ and ρ = 1+2c+ η where
η = (1 + 2c)(1 +

√
2). Consider the function g defined by

g(w) =

{
(ρ2h2 − |w − Z|2)2 if |w − Z| < ρh,

0 if |w − Z| ≥ ρh.

As before for ǫ > 0, gǫ = g1+ǫ ∈ C2(C). Applying Lemma 2.1 with gǫ and letting ǫ go to 0
and we get (2.4). We have

∆g(w) = 8(2|w − Z|2 − ρ2h2).

If w ∈ D, then |w − Z| ≥ ηh = ρh/
√
2 and so ∆g(w) ≥ 0. Denote by D(a, r) the disc of

radius r centered at a. Note that D(z, ch) ⊂ D(Z, ρh). Also, if |w − z| ≤ ch then

|w − Z| ≥ |Z − z| − |w − z| ≥ (1− c+ η)h,

hence
∆g(w) ≥ 8(2(1 − c+ η)2 − (1 + 2c+ η)2)h2 ≥ 23(

√
2 + 2)h2.

By the sub-mean value property of Nϕ (see Remark 3 bellow) and (2.4), we get

Nϕ(z) ≤ 2

c2h2

∫

D(z,ch)
Nϕ(w)dA(w)

≤ 2

23(
√
2 + 2)c2h4

∫

D(z,ch)
Nϕ(w)∆g(w)dA(w)

≤ 1

22(
√
2 + 2)c2h4

∫

D

Nϕ(w)∆g(w)dA(w)

=
2

22(
√
2 + 2)c2h4

∫

D(Z,ρh)∩D
g(w)dmϕ(w)

≤ 1

2(
√
2 + 2)c2h4

ρ4h4 mϕ(D(Z, ρh) ∩ D)

≤ 100

c2
mϕ(D(Z, ρh) ∩ D).

We claim that
D(Z, ρh) ∩ D ⊂ W (ζ, (1 + 2ch)).

Suppose that ζ = 1 and let eiθ ∈ D(Z, ρh) ∩ T. We have

sin2 θ =
1

4(1 + ηh)2
[(1 + ρh)2 − (1 + ηh)2][(1 + ηh)2 − (1− ρh)2]

≤ (3 + 2
√
2)(1 + 2c)2h2.

Note that c < 1/8 and h < 1/8, so we get θ ≤ (1 + c)hπ. Now the proof is complete.

3. Remarks

(1) In the proof in the first inequality (1.1), one can consider the following function
g(w) = (h2 − Re(w − ζ)2)2(h2 − Im(w − ζ)2)2 if Re(w − ζ) ≤ h and Im(w − ζ) ≤ πh
and g(w) = 0 otherwise. We obtain as before :

For every 0 < c < 1/8 and 0 < h < 1/8, we have

mϕ[W (ζ, (1− c)h] ≤ A

c4
sup

z∈W (ζ,h)∩D
Nϕ(z) (ζ ∈ T, ϕ(0) /∈ W (ζ, h))),
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where A is an absolut constant.

(2) The following corollary, first proved by Rudin [6], (see also Bishop [1] ), is an immediate
consequence of the Lemma 2.1

Corollary 3.1 ((Bishop & Rudin)). We have

∆Nϕ = −δϕ(0) +mϕ,

where ∆ is the distributional Laplacian and δz0 is the Dirac mass at z0. Furthermore

Nϕ is equal to a subharmonic function almost everywhere on D.

(3) The formula from Lemma 2.1 was given by Stanton [2, Theorem 2] when g is a sub-
harmonic function instead of a smooth function. The proof of Stanton’s formula is
based on Jensen’s formula.

(4) The following result of Lefèvre, Li, Queffélec and Rodiguez–Piazza in [3] is based on
Stanton’s formula. Their proof is quite complicated. They showed that the classical
Nevanlinna counting function and the pull back measure are connected as follows :

For every ζ ∈ T and 0 < h < (1− |ϕ(0)|)/16, we have

1

64
mϕ[W̃ (ζ, h/64] ≤ sup

z∈W (ζ,h)
Nϕ(z) ≤ 196mϕ[W̃ (ζ, 24h)],

where W̃ (ζ, h) := {z ∈ D : 1− h ≤ |z| ≤ 1 and |arg(zζ)| ≤ h}.

(5) By Corollary 3.1, Nϕ is equal to a subharmonic function almost everywhere on D. In
fact Nϕ fails to be subharmonic only on a set of logarithmic capacity zero [2]. The
Nevanlinna function satisfies the sub-mean value property

Nϕ(z) ≤
2

r2

∫

D(0,r)
Nϕ(w)dA(w),

for every disc D(z, r) of center z and radius r does not contain ϕ(0) see [7, 8].

(6) There are several different conditions which characterize the compactness of the com-
position operator Cϕ(f) = f ◦ϕ on the Hardy space H2. For the holomorphic self-map
ϕ of D the following conditions are equivalent :
(i) Nϕ(z) = o(log 1/|z|) as |z| → 1−,
(ii) mϕ[W (ζ, h)] = o(h) as h → 0,
(iii) Cϕ is compact on H2.
The condition (ii) means that mϕ is a vanishing Carleson measure for H2 [5]. For
Hilbert-Schmidt class membership see [4]. We refer the reader to the monograph by
Shapiro for an account of these problems [7].
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