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Abstract. The fluctuations of the current for the one-dimensional totally asymmetric

exclusion process with L sites are studied in the relaxation regime of times T ∼ L3/2.

Using Bethe ansatz for the periodic system with an evolution conditioned on special

initial and final states, the Fourier transform of the probability distribution of the fluc-

tuations is calculated exactly in the thermodynamic limit L → ∞ with finite density

of particles. It is found to be equal to a sum over discrete realizations of a scalar field

in a linear potential with coupling constant equal to the rescaled time T/L3/2.
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At equilibrium, computing expectation values of physical observables requires the

evaluation of a partition sum over the set Ω of all micro-states, whose number is often

exponential in the system size. This scheme is valid even for systems with only a few

degrees of freedom, where it has the well defined meaning of having the system in contact

with a thermal bath. In the thermodynamic limit, it becomes even more general due

to a kind of universality called equivalence of ensembles, that states that the details of

the coupling between the system and the heat bath become irrelevant for large systems

with short range effective interactions.

The situation is more complicated for systems out of equilibrium. In the context

of Markov processes with finite number of states, the stationary probabilities in the

non-equilibrium steady state require in general a summation over spanning trees on Ω

[1], whose number typically grows exponentially with the number of micro-states; it

is only for very special exactly solvable models that this huge summation simplifies to

”only” an exponentially large sum, such as in the case of models with a matrix product

representation [2] for the stationary state.

At large scales, however, when the number of degrees of freedom goes to infinity,

some kind of universality is expected as in the equilibrium case. A prominent example is

one-dimensional driven diffusive systems [3] and growth models [4] in the Kardar-Parisi-

Zhang (KPZ) universality class [5, 6, 7], for which many exact results have been obtained

in the last twenty years for fluctuations of current and interface height. Two regimes

have received much attention: the stationary regime, attained in the long time limit,

for which large deviations of the fluctuations have been characterized [8, 9, 10], and the

transient regime of infinite volume, where probability distributions of the fluctuations

have been obtained [11, 12, 13, 14, 15, 16] and were later observed experimentally in

growth of turbulent phases in liquid crystals [17, 18].

The crossover between these two regimes is characterized by the system size L and

the observation time T going both to infinity with T ∼ L3/2. This corresponds to the

scale of relaxation to stationarity, with the dynamical exponent 3/2 of one-dimensional

KPZ universality. We compute the large scale limit of the fluctuations of the current

in a specific model, the totally asymmetric simple exclusion process (TASEP) [19, 20],

conditioned on special initial and final states. Our main result (11) is very similar to

an equilibrium expectation value, with a sum over discrete realizations of a scalar field

ϕ in a linear potential.

We consider TASEP defined on a periodic one-dimensional lattice with L sites,

on which N undistinguishable classical particles are placed. The exclusion constraint

requires that each site has at most one particle. The dynamics consists of random hops

of particles from any site i to the site i+1 at its right. In a small time interval dt, each

particle attempts to move with probability dt provided it has no neighbour on its right:

moves breaking the exclusion constraint are forbidden. The total number of particles in

the system is conserved, and we call ρ = N/L the density of particles. In the following,

we are interested in the thermodynamic limit L,N → ∞ with ρ kept fixed.

For technical reasons, it is convenient to condition the evolution both on the initial
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and the final state. We choose them respectively equal to CX and CY , where Ci is the

configuration where sites i, i+1, . . . , i+N−1 are occupied, the other sites being empty.

The numbers X and Y are not required to be between 1 and L at the moment, although

the evolution only depends on Y −X modulo L. The initial and final states correspond

to initial and final density profiles equal to 1 in an interval and 0 in the rest of the

system. This choice has no influence in the stationary situation T ≫ L3/2 [8]; in the

transient regime T ≪ L3/2, however, several universality subclasses exist [7].

We consider the total time-integrated current Q through the system, equal to the

total number of hops of particles anywhere in the system between time 0 and time T .

This observable is related to the current Qb through a bond between two sites, say

(L, 1), by Q = LQb +
∑N

j=1(xj − x0j ), where x
0
j and xj , taken between 1 and L, are

the positions of the particles respectively in the initial and the final configuration. At

large times, Q grows typically proportionally to T , with a coefficient ρ(1 − ρ)L equal

to the sum over all sites i of the probability that site i is occupied while site i + 1 is

empty. We are interested in the fluctuations around this mean value, since they give

some indication on the universal process emerging at large scales.

The total current Q depends on the whole evolution of the system between time 0

and time T , and not only on the state of the system at time T . Its evolution in time

follows from the master equation for the probability PT (C, Q) that the system is at time

T in the configuration C with a value Q for the current. It is useful [8] to consider the

quantities FT (C, γ) =
∑∞

Q=−∞ eγQPT (C, Q) with parameter γ conjugate to the current.

The probability PT (C) that the system is in configuration C at time T is equal to FT (C, 0).
Writing FT (C, γ) in terms of the conditional probability PT (Q|C) = PT (C, Q)/PT (C), we
observe that the generating function G(γ) = FT (CY , γ)/FT (CY , 0) is the average of eγQ

over all evolutions conditioned on ending in configuration CY at time T and starting in

configuration CX at time 0.

Since TASEP dynamics is Markovian, the transition rates between configurations

are independent of the whole evolution, and in particular of Q. It implies that

FT (C, γ) also evolves in time by a linear master equation. Writing the FT (C, γ) in

a vector |FT (γ)〉 =
∑

C FT (C, γ)|C〉, the evolution in time of |FT (γ)〉 is given by

∂T |FT (γ)〉 = M(γ)|FT (γ)〉, and the generating function can be computed from the

matrix M(γ) as

G(γ) = 〈eγQ〉 = 〈CY |eTM(γ)|CX〉
〈CY |eTM(0)|CX〉

. (1)

The generating function can be evaluated further by inserting into (1) a

decomposition of the identity operator on the eigenstates of M(γ) and M(0). We write

Er(γ), 〈ψr(γ)|, |ψr(γ)〉 respectively for the eigenvalues and corresponding left and right

(unnormalized) eigenvectors of M(γ). Since M(γ) is not Hermitian, the eigenvalues are

complex numbers, and the left and right eigenvectors are not related in a simple way by

transposition. One has

〈CY |eTM(γ)|CX〉 =
∑

r

eTEr(γ)
〈CY |ψr(γ)〉〈ψr(γ)|CX〉

〈ψr(γ)|ψr(γ)〉
. (2)
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Figure 1. Characterization of the first excited states by 4 sets of positive half integers

A+
0 , A

−

0 , A
+, A− verifying the constraint |A+

0 | = |A+|, |A−

0 | = |A−|.

The dynamics of TASEP is known to be integrable in the sense of quantum integrability,

also called stochastic integrability [21] in this context. Both eigenvalues and eigenvectors

of M(γ) can be obtained [8] using the Bethe ansatz technique. Each eigenstate r is

characterized by N complex numbers, the Bethe roots yj, j = 1, . . . , N , which are

required to satisfy the N Bethe equations eLγ(1− yj)
L = (−1)N−1

∏N
k=1(yj/yk). Then,

the corresponding eigenvalue of M(γ) and of the translation operator are equal to

Er(γ) =
N∑

j=1

yj
1− yj

and e
2iπpr

L = eNγ
N∏

j=1

(1− yj) , (3)

while the scalar products in (2) are equal to [22]

〈CY |ψ(γ)〉〈ψ(γ)|CX〉
〈ψ(γ)|ψ(γ)〉 = (−1)

N(N−1)
2 e

2iπpr(Y −X+1−N)
L (4)

×
(eNγ

∏N
j=1 y

−1
j )N−1

∏

1≤j<k≤N(yj − yk)
2

L
N

(
∑N

j=1
yj

N+(L−N)yj

)
∏N

j=1

(

L−N + N
yj

) .

The latter formula follows from the Gaudin determinant [23, 24] for scalar products

of Bethe states. It has a particularly simple form for TASEP, where the usual very

complicated determinant essentially reduces to the denominator in the right hand side

of (4).

The Bethe equations of TASEP can be solved using the following procedure: let us

define the quantity b = γ+ 1
L

∑N
j=1 log yj. Then, there exists wave numbers kj, integers

(half-integers) if N is odd (even) such that yj = g−1(exp(−b + 2iπkj/L)), where g
−1

is the inverse of the function g : y 7→ (1 − y)/yρ [25]. The wave numbers are required

to be distinct modulo L because of the exclusion constraint. The expression above for

the yj is very convenient to study the thermodynamic limit: it allows to write both

the eigenvalue (3) and the scalar product (4) in terms of sums over j of functions of

kj/L, on which the Euler-Maclaurin formula can be used to derive large L asymptotic

expansions.

Since we are interested in the crossover regime T ∼ L3/2, we only need to consider

the eigenstates with eigenvalues having a real part scaling as L−3/2 in the thermodynamic
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limit with fixed density of particles. We call first eigenstates these eigenstates, which

are infinitely many. The first one is the stationary state. It corresponds to the choice

of consecutive wave numbers kj = k0j with k0j = j − (N + 1)/2, which is exactly like

a filled Fermi sea of spinless fermions in one dimension. It was shown in [25] that all

other first eigenstates correspond to independent excitations at finite distance of both

ends of the Fermi sea. More precisely, the first excited states are built by removing from

{k0j , j = 1, . . . , N} a finite number of kj’s at a finite distance of ±N/2 and adding the

same number of kj’s at a finite distance of±N/2 but outside of the interval [−N/2, N/2].
On each side, the number of kj ’s removed and added must be equal. They can be

described by 4 finite sets of positive half integers A±
0 , A

± ⊂ N + 1
2 : the kj’s removed

from {k0j , j = 1, . . . , N} are the elements of N/2 − A+
0 and −N/2 + A−

0 , while the kj ’s

added are the elements of N/2 + A+ and −N/2 − A−, see figure 1. The cardinals of

the sets verify the constraints m+
r = |A+

0 | = |A+|, m−
r = |A−

0 | = |A−|. We define

mr = m+
r +m−

r . In the following, we use the symbol r to label the first eigenstates, as

a shorthand for (A+
0 , A

+, A−
0 , A

−).

To each elementary excitation represented by a half-integer a, we associate

quantities χa(u) = i
√
2u+ 4iπa and χa(u) = −i

√
2u− 4iπa. The large L asymptotics

of the eigenvalue (3) and of the scalar product (4) can be expressed nicely [25, 22] in

terms of the field ϕr equal to

ϕr(u) =
∑

a∈−N−
1
2

χa(u) +
∑

a∈A+
0

χa(u) +
∑

a∈A−

χa(u)

+
∑

a∈−N−
1
2

χa(u) +
∑

a∈A−

0

χa(u) +
∑

a∈A+

χa(u) . (5)

The divergent infinite sums are made sense of by the zeta regularization

±i
∑

a∈−N−1/2

√
u± 2iπa =

√
2πe±iπ/4ζ(−1

2 ,
1
2 ± iu

2π ), which comes directly from the

Euler-Maclaurin formula. The Hurwitz zeta function is the analytic continuation for

ν 6= 1 of ζ(ν, z) =
∑∞

j=0(j + z)−ν . The functions ϕr have branch points ±iπ coming

from the ζ functions, as well as branch points in ±2iπ(N + 1
2) from the square roots.

The branch cuts of ϕr can always be taken equal to (−i∞,−iπ] ∪ [iπ, i∞).

The derivations of the asymptotics involving (5) use Euler-Maclaurin formula

applied to functions with logarithmic and square root singularities coming from the

function g−1 in terms of which the Bethe equations are solved. A generalization with

square roots of Stirling’s formula for the Γ function is used crucially in order to handle

some of these singularities. One has

M∑

j=1

log(
√

j + d±
√
v) ≃ M logM

2
− M

2
± 2

√
v
√
M (6)

+
1

2
log

√
2πMd−v+

1
2

Γ(d− v + 1)
±
∫ v

0

du
ζ(12 , u+ d− v + 1)

2
√
u

.

With the relaxation scale in mind, we define a rescaled conjugate variable s and a
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rescaled time t. We write

γ =
s

√

ρ(1− ρ)L3/2
and T =

t L3/2

√

ρ(1− ρ)
. (7)

Then, imposing that e−γJLTG(γ) has a finite limit when L → ∞ gives natural scalings

for the distances and the mean value of the current J . One finds

Y −X =
(1− 2ρ) t L3/2

√

ρ(1− ρ)
+
(

x− 1− 2ρ

2

)

L . (8)

and

J = ρ(1− ρ)− (ρ(1− ρ))3/2

t
√
L

. (9)

The large L limit of the typical individual velocities of the particles vp = J/ρ is equal

to 1− ρ, which is positive. On the other hand, the scaling for the distances corresponds

to a group velocity vg = (Y −X)/T asymptotically equal to 1− 2ρ, which can be either

positive or negative. The sub-leading term introduces a reduced position x, defined

modulo 1 since the positions X and Y are defined modulo L.

The fluctuations ξt,x of the current per site Q/L are defined by subtracting the

typical value and rescaling by the magnitude of the fluctuations, of order T 1/3 ∼
√
L in

1-dimensional KPZ universality. We define

ξt,x =
Q/L− JT

√

ρ(1− ρ)
√
L
. (10)

The generating function of the fluctuations in the large L limit is Gt,x(s) =

limL→∞〈esξt,x〉 = limL→∞ e−γJLTG(γ). From the asymptotic expansion of the eigenvalue

[25] (easily extended to non-zero γ scaling as L−3/2) and of the scalar product [22], one

finds

Gt,x(s) =
1

Z

∑

r

ωr e
2iπprx

ϕ′
r(ϕ

−1
r (s))

e−Ss,t[ϕr ] . (11)

The summation is over all admissible choices for the sets A±
0 , A

± that characterize

the first eigenstates. The normalization constant Z is such that Gt,x(0) = 1. The

functional Ss,t is very similar to the action of a scalar field in a linear potential:

Ss,t[ϕr] = limΛ→∞ SΛ
s,t[ϕr]−DΛ

t with

SΛ
s,t[ϕr] = −

∫ ϕ−1
r (s)

−Λ

du
(

(ϕ′
r(u))

2 + t ϕr(u) + 1
)

. (12)

The path of integration is required to avoid the branch cuts of ϕr: it has to cross the

imaginary axis between −iπ and iπ when Reϕ−1
r (s) > 0. The integral in (12) is divergent

at u → −∞; the calculation of the asymptotics with Euler-Maclaurin formula provides

the above regularization, where the divergent part is

DΛ
t =

4
√
2mrt

3
Λ3/2 − Λ− 2

√
2iπqrt

√
Λ− 2m2

r log Λ , (13)
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Figure 2. Probability distribution function (a) and its logarithm (b) for the current

fluctuations
√
2 π−1/4(ξt,0 − t)/

√
t, obtained by summing over the first 74 eigenstates.

The various curves correspond from right to left to rescaled times t equal to 0.1, 0.2, 0.5,

2, and +∞ where the distribution is a standard Gaussian. The artifacts at t = 0.1 are

caused by imperfect cancellations in the numerical evaluation of the Fourier transform.

with qr =
∑

a∈A+
0
a +

∑

a∈A− a−
∑

a∈A−

0
a−

∑

a∈A+ a. The total momentum pr in (11)

is equal for the first eigenstates to pr =
∑

a∈A+
0
a+

∑

a∈A+ a−
∑

a∈A−

0
a−∑

a∈A− a. The

combinatorial factor ωr is given by

ωr =
ω(A+

0 )ω(A
−
0 )ω(A

+)ω(A−)ω(A+
0 , A

−
0 )ω(A

+, A−)

(−1)pr+mr(π2/4)−m2
r(2π)2mr

, (14)

with

ω(A) =
∏

a,a′∈A

a<a′

(a− a′)2 , ω(A,A′) =
∏

a∈A

∏

a′∈A′

(a+ a′)2 . (15)

The function ϕ−1
r is the inverse function of the field, ϕr(ϕ

−1
r (s)) = s. It appears from

Bethe ansatz since ϕ−1
r (s) is the large L limit of L(b− ρ log ρ− (1− ρ) log(1− ρ)). The

denominator ϕ′
r(ϕ

−1
r (s)) comes from the denominator in (4). The linear potential in

the action is a part of the eigenvalue Er(γ). Finally, the integral of (ϕ′
r)

2 in the action

follows from the asymptotics of the Vandermonde determinant of the Bethe roots in (4),

which uses (6) and a related formula with summation on two indices.

The probability distribution Pξ of the random variable ξt,x in the large L limit

can be obtained from the generating function at imaginary argument by inverse Fourier

transform Pξ(w) =
∫∞

−∞

ds
2π

eiswGt,x(−is). Interestingly, making the change of variables

d = ϕ−1
r (−is) in the integral over s, the Jacobian cancels the factor ϕ′

r(ϕ
−1
r (−is)) in

(11).

The short time behaviour of (11) seems to involve significant contributions from

many eigenstates, with subtle cancellations between them. We observe in figure 2 that

the probability distribution Pξ becomes very asymmetric in that limit. For large t on

the other hand, only the stationary state denoted by the index r = 0 contributes to (11),

up to exponentially small terms in t. This eigenstate has m0 = p0 = q0 = 0, ω0 = 1

and ϕ0(u) = −(2π)−1/2Li3/2(−eu) using the relation between Hurwitz zeta function and

polylogarithms, defined by Liν(z) =
∑∞

k=1 z
k/kν . The probability distribution of the
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random variable
√
2π−1/4(ξt,x − t)/

√
t converges to that of a standard Gaussian, see

figure 2. In particular, its mean value approaches 0 as
√
2π1/4/

√
t while the finite time

correction to the variance is of order 1/t. Beyond the Gaussian fluctuations, the large

deviation function of Derrida and Lebowitz [8] corresponding to ξt,x varying on the scale

t is recovered: the large t limit of t−1 log〈esξt,x〉 is equal to G[
√
2πs]/

√
2π, with G defined

by equations (20) and (21) in [8].

Conclusions. The fluctuations of the current have been computed for TASEP, a far

from equilibrium model with interacting particles, on the temporal scale on which the

relaxation to the stationary state occurs. From the Bethe ansatz calculation, a field ϕ

appears as a result of logarithmic and square root singularities in the Euler-Maclaurin

formula. The generating function of the fluctuations of the current is expressed as

a discrete path integral over realizations of ϕ, the action being that of a scalar field

in a linear potential with coupling constant equal to time. Although a clear physical

interpretation of the field ϕ is currently missing, it seems appealing that fluctuations in

a non-equilibrium model relaxing to its non-equilibrium steady state can be described at

large scales in an equilibrium-like fashion, with a time-dependent potential maintaining

the system out of equilibrium.

[1] J. Schnakenberg. Network theory of microscopic and macroscopic behavior of master equation

systems. Rev. Mod. Phys., 48:571, 1976.

[2] R.A. Blythe and M.R. Evans. Nonequilibrium steady states of matrix-product form: a solver’s

guide. J. Phys. A: Math. Theor., 40:R333–R441, 2007.

[3] B. Schmittmann and R.K.P. Zia. Driven diffusive systems. An introduction and recent

developments. Phys. Rep., 301:45–64, 1998.

[4] T. Halpin-Healy and Y.-C. Zhang. Kinetic roughening phenomena, stochastic growth, directed

polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep., 254:215–

414, 1995.

[5] T. Sasamoto and H. Spohn. The 1+1-dimensional Kardar-Parisi-Zhang equation and its

universality class. J. Stat. Mech., 2010:P11013.

[6] T. Kriecherbauer and J. Krug. A pedestrian’s view on interacting particle systems, KPZ

universality and random matrices. J. Phys. A: Math. Theor., 43:403001, 2010.

[7] I. Corwin. The Kardar-Parisi-Zhang equation and universality class. Random Matrices: Theory

and Applications, 1:1130001, 2011.

[8] B. Derrida and J.L. Lebowitz. Exact large deviation function in the asymmetric exclusion process.

Phys. Rev. Lett., 80:209–213, 1998.

[9] S. Prolhac. Tree structures for the current fluctuations in the exclusion process. J. Phys. A: Math.

Theor., 43:105002, 2010.

[10] M. Gorissen, A. Lazarescu, K. Mallick, and C. Vanderzande. Exact current statistics of the

asymmetric simple exclusion process with open boundaries. Phys. Rev. Lett., 109:170601, 2012.

[11] K. Johansson. Shape fluctuations and random matrices. Commun. Math. Phys., 209:437–476,

2000.

[12] C.A. Tracy and H. Widom. Total current fluctuations in the asymmetric simple exclusion process.

J. Math. Phys., 50:095204, 2009.

[13] V. Dotsenko. Bethe ansatz derivation of the Tracy-Widom distribution for one-dimensional

directed polymers. Europhys. Lett., 90:20003, 2010.

[14] P. Calabrese, P. Le Doussal, and A. Rosso. Free-energy distribution of the directed polymer at



Current fluctuations for TASEP on the relaxation scale 9

high temperature. Europhys. Lett., 90:20002, 2010.

[15] T. Sasamoto and H. Spohn. One-dimensional Kardar-Parisi-Zhang equation: An exact solution

and its universality. Phys. Rev. Lett., 104:230602, 2010.

[16] G. Amir, I. Corwin, and J. Quastel. Probability distribution of the free energy of the continuum

directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math., 64:466–537, 2011.

[17] K.A. Takeuchi and M. Sano. Universal fluctuations of growing interfaces: Evidence in turbulent

liquid crystals. Phys. Rev. Lett., 104:230601, 2010.

[18] K.A. Takeuchi, M. Sano, T. Sasamoto, and H. Spohn. Growing interfaces uncover universal

fluctuations behind scale invariance. Sci. Rep., 1:34, 2011.

[19] B. Derrida. An exactly soluble non-equilibrium system: the asymmetric simple exclusion process.

Phys. Rep., 301:65–83, 1998.

[20] O. Golinelli and K. Mallick. The asymmetric simple exclusion process: an integrable model for

non-equilibrium statistical mechanics. J. Phys. A: Math. Gen., 39:12679–12705, 2006.

[21] H. Spohn. Stochastic integrability and the KPZ equation. IAMP news bulletin, pages 5–9, April

2012.

[22] S. Prolhac. Asymptotics for the norm of Bethe eigenstates in the periodic totally asymmetric

exclusion process. arXiv:1411.7008, 2014.

[23] M. Gaudin, B.M. McCoy, and T.T. Wu. Normalization sum for the Bethe’s hypothesis wave

functions of the Heisenberg-Ising chain. Phys. Rev. D, 23:417–419, 1981.

[24] V.E. Korepin. Calculation of norms of Bethe wave functions. Commun. Math. Phys., 86:391–418,

1982.

[25] S. Prolhac. Spectrum of the totally asymmetric simple exclusion process on a periodic lattice -

first excited states. J. Phys. A: Math. Theor., 47:375001, 2014.


