
HAL Id: hal-01107849
https://hal.science/hal-01107849v1

Preprint submitted on 21 Jan 2015 (v1), last revised 5 Jun 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Title: Open TURNS: An industrial software for
uncertainty quantification in simulation

Michaël Baudin, Anne Dutfoy, Bertrand Iooss, Anne-Laure Popelin

To cite this version:
Michaël Baudin, Anne Dutfoy, Bertrand Iooss, Anne-Laure Popelin. Title: Open TURNS: An indus-
trial software for uncertainty quantification in simulation. 2015. �hal-01107849v1�

https://hal.science/hal-01107849v1
https://hal.archives-ouvertes.fr

Title: Open TURNS: An industrial software for uncertainty quantifica-

tion in simulation

Name: Michaël Baudin, Anne Dutfoy, Bertrand Iooss and Anne-Laure

Popelin

Affil./Addr.: EDF R&D

6 quai Watier, 78401 Chatou, France

1, avenue du General de Gaulle Clamart, France

E-mail: michael.baudin@edf.fr, anne.dutfoy@edf.fr, bertrand.iooss@edf.fr,

anne-laure.popelin@edf.fr

Open TURNS: An industrial software

for uncertainty quantification in

simulation

Introduction

The needs to assess robust performances for complex systems and to answer tighter reg-

ulatory processes (security, safety, environmental control, and health impacts, etc.) have

led to the emergence of a new industrial simulation challenge: to take uncertainties into

account when dealing with complex numerical simulation frameworks. Many attempts

at treating uncertainty in large industrial applications have involved domain-specific

approaches or standards: metrology, reliability, differential-based approaches, variance

decomposition, etc. However, facing the questioning of their certification authorities

in an increasing number of different domains, these domain-specific approaches are no

more appropriate. Therefore, a generic methodology has emerged from the joint effort

of several industrial companies and academic institutions : [28] reviews these past devel-

2

opments. The specific industrial challenges attached to the recent uncertainty concerns

are:

• transparency: open consensus that can be understood by outside authorities and

experts,

• genericity: multi-domain issue that involves various actors along the study,

• modularity: easy integration of innovations from the open source community,

• multi-accessibility: different levels of use (simple computation, detailed quan-

titative results, and deep graphical analyses) and different types of end-users

(graphical interface, Python interpreter, and C++ sources),

• industrial computing capabilities: to secure the challenging number of simula-

tions required by uncertainty treatment.

As no software was fully answering the challenges mentioned above, EDF R&D,

Airbus Group and Phimeca Engineering started a collaboration at the beginning of

2005 for the development of an Open Source software platform dedicated to uncer-

tainty propagation by probabilistic methods, named OpenTURNS for Open source

Treatment of Uncertainty, Risk ’N Statistics [10],[29]. OpenTURNS is actively sup-

ported by its core team of four industrial partners (IMACS joined the consortium in

2014) and its industrial and academic users community that meet through the web

site www.openturns.org and annually during the OpenTURNS Users day. At EDF,

OpenTURNS is the repository of all scientific developments on this subject, to ensure

their dissemination within the several business units of the company. The software has

also been distributed for several years via the integrating platform Salome [27].

3

Presentation of OpenTURNS

OpenTURNS is an open source software under the LGPL license, that presents itself

as a C++ library and a Python TUI, and which works under Linux and Windows

environment, with the following key features:

• open source initiative to secure the transparency of the approach, and its open-

ness to ongoing Research and Development (R&D) and expert challenging,

• generic to the physical or industrial domains for treating of multi-physical prob-

lems;

• structured in a practitioner-guidance methodological approach,

• with advanced industrial computing capabilities, enabling the use of massive dis-

tribution and high performance computing, various engineering environments,

large data models etc.,

• includes the largest variety of qualified algorithms in order to manage uncer-

tainties in several situations,

• contains complete documentation (Reference Guide, Use Cases Guide, User

manual, Examples Guide, and Developers’ Guide).

All the methodological tools are described after this introduction in the different sec-

tions of this paper: uncertainty quantification, uncertainty propagation, sensitivity

analysis and metamodeling. Before the conclusion, a section also explains the generic

wrappers way to link OpenTURNS to any external code.

The uncertainty management methodology

The uncertainty management generic methodology [29] is schematized in Figure 1. It

consists of the following steps:

• Step A: specify the random inputs X, the deterministic inputs d, the model

G (analytical, complex computer code or experimental process), the variable of

4

interest (model output) Y and the quantity of interest on the output (central

dispersion, its distribution, probability to exceed a threshold, . . .). We then have

the fundamental relation:

Y = G(X, d) = G(X), (1)

with X = (X1, . . . , Xd).

• Step B: quantify the sources of uncertainty. This step consists in modeling the

joint probability density function (pdf) of the random input vector by direct

methods (e.g. statistical fitting, expert judgment) [15].

• Step B’: quantify the sources of uncertainty by indirect methods using some real

observations of the model outputs [39]. The calibration process aims to estimate

the values or the pdf of the inputs while the validation process aims to model

the bias between the model and the real system.

• Step C: propagate uncertainties to estimate the quantity of interest. With re-

spect to this quantity, the computational resources and the CPU time cost of

a single model run, various methods will be applied: analytical formula, ge-

ometrical approximations, Monte Carlo sampling strategies, metamodel-based

techniques, . . . [21], [11].

• Step C’: analyze the sensitivity of the quantity of interest to the inputs in order

to rank uncertainty sources [36], [14].

For each of these steps, OpenTURNS offers a large number of different methods whose

applicability depend on the specificity of the problem (dimension of inputs, model

complexity, CPU time cost for a model run, quantity of interest, etc.).

5

Step C : Uncertainty Propagation

Step A : Study Specification

Input
Uncertain : X
Fixed : d

Model
y=G(X,d)

Output
Y=G(X)

Quantity of
interest
e.g.: variance,
probability

Step C' : Sensitivity Analysis,
Ranking

Step B : Uncertainty
Quantification
Modeling with
probability distribution :
direct methods,
statistics, expertise.

Step B' : Quantification
of sources
Inverse methods, calibration,
assimilation

Observed
variables
Yobs

Fig. 1. The uncertainty management methodology.

Main originality of OpenTURNS

OpenTURNS is innovative in several aspects. Its input data model is based on the

multivariate cumulative distribution function (CDF). This enables the usual sampling

approach, as would be appropriate for statistical manipulation of large data sets, but

also facilitates analytical approaches. Distributions are classified (continuous, discrete,

elliptic, etc.) in order to take the best benefit of their properties in algorithms. If

possible, the exact final cumulative density function is determined (thanks to charac-

teristic functions implemented for each distribution, the Poisson summation formula,

the Cauchy integral formula, etc.).

OpenTURNS explicitly models the dependence with copulas, using the Sklar

theorem. Furthermore, different sophisticated analytical treatments may be explored:

aggregation of copulas, composition of functions from Rn into Rd, extraction of copula

and marginals from any distribution.

OpenTURNS defines a domain specific oriented object language for probability

modelling and uncertainty management. This way, the objects correspond to mathe-

6

matical concepts and their inter-relations map the relations between these mathemati-

cal concepts. Each object proposes sophisticated treatments in a very simple interface.

OpenTURNS implements up-to-date and efficient sampling algorithms (Mersenne-

Twister algorithm, Ziggurat method, the Sequential Rejection Method, etc.). Exact

Kolmogorov statistics are evaluated with the Marsaglia Method and the Non Central

Student and Non Central χ2 distribution with the Benton & Krishnamoorthy method.

OpenTURNS is the repository of recent results of PhD research carried out

at EDF R&D: for instance the sparse Polynomial Chaos Expansion method based on

the LARS method [7], the Adaptive Directional Stratification method [25] which is an

accelerated Monte Carlo sampling technique, and the maximum entropy order-statistics

copulas [20].

The flooding model

Throughout this paper, we illustrate our discussion with a simple application model

that simulates the height of a river and compares it to the height of a dyke that protects

industrial facilities as illustrated in Figure 2. When the river height exceeds that of the

dyke, flooding occurs. This academic model is used as a pedagogical example in [14].

The model is based on a crude simplification of the 1D hydro-dynamical equations

of SaintVenant under the assumptions of uniform and constant flowrate and large

rectangular sections. It consists of an equation that involves the characteristics of the

river stretch:

H =


 Q

BKs

√
Zm−Zv

L




0.6

, (2)

where the output variable H is the maximal annual height of the river, B is the river

width and L is the length of the river stretch. The four random input variables Q, Ks,

Zv and Zm are defined in Table 1 with their probability distribution. The randomness

7

of these variables is due to their spatio-temporal variability, our ignorance of their true

value or some inaccuracies of their estimation.

Fig. 2. The flood example: simplified model of a river.

Input Description Unit Probability distribution

Q Maximal annual flowrate m3/s Gumbel G(1.8e−3, 1014)

Ks Strickler coefficient - Normal N (30, 7.5)

Zv River downstream level m Triangular T (47.6, 50.5, 52.4)

Zm River upstream level m Triangular T (52.5, 54.9, 57.7)

Table 1. Input variables of the flood model and their probability distributions.

Uncertainty quantification

Modelling of a random vector

OpenTURNS implements more than 40 parametric distributions which are continuous

(more than 30 families) and discrete (more than 10 families), with several sets of pa-

rameters for each one. Some are multivariate, such as the Student distribution or the

Normal one.

8

Moreover, OpenTURNS enables the building of a wide variety of multivariate distribu-

tions thanks to the combination of the univariate margins and a dependence structure,

the copula, according to the Sklar theorem: F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

where Fi is the CDF of the margin Xi and C : [0, 1]d → [0, 1] the copula.

OpenTURNS proposes more than 10 parametric families of copula: Clayton, Frank,

Gumbel, Farlie-Morgenstein, etc. These copula can be aggregated to build the copula

of a random vector whose components are dependent by blocks. Using the inverse re-

lation of the Sklar theorem, OpenTURNS can extract the copula of any multivariate

distribution, whatever the way it has been set up: for example, from a multivariate

distribution estimated from a sample with the kernel smoothing technique.

All the distributions can be truncated in their lower and/or upper area. In addition

to these models, OpenTURNS proposes other specific constructions. Among them, we

can note the random vector which writes as a linear combination of a finite set of

independent variables: X = a0 + a1X1 + . . . aNXN thanks to the python command,

written for N = 2 with explicit notations:

>>>myX= RandomMixture ([distX1 , distX2] , [a1 , a2] , a0)

In that case, the distribution of X is exactly determined, using the characteristic

functions of the Xi distributions and the Poisson summation formula.

OpenTURNS also easily models the random vector whose probability density func-

tion (pdf) is a linear combination of a finite set of independent pdf: fX = a1fX1
+

. . . aNfXN
thanks to the python command, with the same notations as previously (the

weights are automatically normalized):

>>>mypdfX= Mixture ([distX1 , distX2] , [a1 , a2])

Moreover, OpenTURNS implements a random vector that writes as the random

sum of univariate independent and identically distributed variables, this randomness

being distributed according to a Poisson distribution: X =
∑N

i=1 X i, N ∼ P(λ),

thanks to the python command:

>>>d= CompoundDistribution (lambda , d istX)

where all the variables Xi are identically distributed according to distX. In that

case, the distribution of X is exactly determined, using the characteristic functions of

9

the Xi distributions and the Poisson summation formula.

In the univariate case, OpenTURNS exactly determines the pushforward distribution

D of any distribution D0 through the function f : R → R, thanks to the python

command (with straight notations):

>>>d= Compos i teDis t r ibut ion (f , d0)

Finally, OpenTURNS enables the modeling of a random vector (X1, . . . , Xd)

which almost surely verifies the constraint X = X1 ≤ · · · ≤ Xd , proposing a copula

adapted to the ordering constraint [8]. OpenTURNS verifies the compatibility of the

margins Fi with respect to the ordering constraint and then builds the associated

distribution, thanks to the python command, written in dimension 2:

>>>d=MaximumEntropyOrderStat ist icsDistr ibut ion ([distX1 , distX2])

Figure 3 illustrates the copula of such a distribution, built as the ordinal sum

of some maximum entropy order statistics copulae.

Fig. 3. An example of maximum entropy copula which almost surely satisfies the ordering constraint:

X1 ≤ X2.

The OpenTURNS python script to model the input random vector of the tutorial

presented previously is as follows:

#Margin d i s t r i b u t i o n s :

>>>dist_Q = Gumbel (1 . 8 e −3, 1014)

>>>dist_Q = TruncatedDis t r ibut ion (dist_Q , 0 . 0 , TruncatedDis t r ibut ion .LOWER)

10

>>>dist_K = Normal (3 0 . 0 , 7 . 5)

>>>dist_K = TruncatedDis t r ibut ion (dist_K , 0 . , TruncatedDis t r ibut ion .LOWER)

>>>dist_Zv = Triangular (4 7 . 6 , 5 0 . 5 , 5 2 . 4)

>>>dist_Zm = Triangular (5 2 . 5 , 5 4 . 9 , 5 7 . 7)

Copula in dimension 4 f o r (Q,K, Zv ,Zm)

>>>R=Corre la t ionMatr ix (2)

>>>R[0 , 1]=0 . 7

>>>copula = ComposedCopula ([IndependentCopula (2) , NormalCopula (R)])

Fina l d i s t r i b u t i o n f o r (Q,K, Zv ,Zm)

>>>di s t Input=ComposedDistr ibution ([loi_Q , loi_K , loi_Zv , loi_Zm] , copula)

Fina l random vec to r (Q,K, Zv ,Zm)

>>>inputVector=RandomVector (d i s t Input)

Note that OpenTURNS can truncate any distribution to a lower, an upper

bound or a given interval. Furthermore, we added a normal copula between the variables

Zv and Zm, with a correlation of 0.7. The variables (Q, K) are independent. Both blocks

(Q, K) and (Zv, Zm) are independent.

Stochastic processes

OpenTURNS implements some multivariate random fields X : Ω × D → R
d where

D ∈ R
s is discretized on a mesh. The User can easily build and simulate a random

walk, a white noise as illustrated in Figures 4 and 5. The python commands write:

>>>myWN = WhiteNoise (myDist , myMesh)

>>>myRW = RandomWalk(myOrigin , myDist , myTimeGrid)

Any field can be exported into the VTK format which allows it to be visualized

using e.g.ParaView (www.paraview.org).

Multivariate ARMA stochastic processes X : Ω × [0, T] → R
d are implemented in

OpenTURNS which enables some manipulations on times series such as the Box Cox

transformation or the addition / removal of a trend. Note that the parameters of the

11

Fig. 4. A Normal bivariate white noise.

Fig. 5. A Normal bivariate random walk.

Box Cox transformation can be estimated from given fields of the process.

OpenTURNS models normal processes, whose covariance function is a parametric

model (e.g. the multivariate Exponential model) as well as defined by the User as

illustrated in Figure 6. Stationary processes can be defined by its spectral density

function (e.g. the Cauchy model).

−4 −2 0 2 4

−
4

−
2

0
2

4

C as a function of (s,t)

s

t

Fig. 6. A User Defined non stationary covariance function and its estimation from several given fields.

With explicit notations, the following python commands create a stationary

Normal process defined by its covariance function, discretized on a mesh, with an

additional trend:

>>>myNormalProcess=TemporalNormalProcess (myTrend , myCovarianceModel , myMesh)

Note that OpenTURNS enables the mapping of any stochastic processes X into

a process Y through a function f : Y = f(X) where the function f can consist, for

12

example, of adding or removing a trend, applying a Box Cox transformation in order

to stabilize the variance of X. The python command is, with explicit notations:

>>>myYprocess=CompositeProcess (f , myXprocess)

Finally, OpenTURNS implements multivariate processes defined as a linear com-

bination of K deterministic functions (φi)i=1,...,K : Rd1 7→ R
d2 :

X(ω, x) =
K∑

i=1

Ai(ω)φi(x)

where (A1, . . . , AK) is a random vector of dimension K. The python command writes:

>>>myX =Funct iona lBas i sProce s s (myRandomCoeff , myBasis , myMesh)

Statistics estimation

OpenTURNS enables the User to estimate a model from data, in the univariate as

well as in the multivariate framework, using the maximum likelihood principle or the

moments based estimation.

Some tests, such as the Kolmogorov-Smirnov test, the Chi Square test and the Anderson

Darling test (for normal distributions), are implemented and can help to select a model

amongst others, from a sample of data. The python command to build a model and

test it, writes:

>>>est imatedBeta = BetaFactory (sample)

>>>t e s t R e s u l t = Fi t t ingTes t . Kolmogorov (sample , est imatedBeta)

OpenTURNS also implements the kernel smoothing technique which is a non-

parametric technique to fit a model to data: any distribution can be used as kernel.

In the multivariate case, OpenTURNS uses the product kernel. It also implements

an optimized strategy to select the bandwidth, depending on the number of data in

the sample, which is a mix between the Silverman rule and the plugin one. Note that

OpenTURNS proposes a special treatment when the data are bounded, thanks to the

mirroring technique. The python command to build the non-parametric model and to

draw its pdf, is as simple as the following one:

>>>est imatedDis t = KernelSmoothing () . bu i ld (sample)

13

>>>pdfGraph = est imatedDis t . drawPDF()

Several visual tests are also implemented to help to select models: among them,

the QQ-plot test and the Henry line test which write:

>>>graphQQplot = Visua lTest . DrawQQplot (sample , theore i ca lMode l)

>>>graphHenryLine = Visua lTest . DrawHenryLine (sample)

Stochastic processes also have estimation procedures from sample of fields or,

if the ergodic hypothesis is verified, from just one field. Multivariate ARMA processes

are estimated according to the BIC and AIC criteria and the Whittle estimator, which

is based on the maximization of the likelihood function in the frequency domain. The

python command to estimate an ARMA(p, q) process of dimension d, based on a

sample of time series, writes:

>>>estimatedARMA = ARMALikelihood (p , q , d) . bu i ld (sampleTimeSeries)

Moreover, OpenTURNS can estimate the covariance function and the spectral

density function of normal processes from given fields. For example, the python com-

mand to estimate a stationary covariance model from a sample of realizations of the

process:

>>>myCovFunc = Stat ionaryCovarianceModelFactory () . bu i ld (sampleProcess)

This estimation is illustrated in Figure 6.

Conditioned distributions

OpenTURNS enables the modeling of multivariate distributions by conditioning. Sev-

eral types of conditioning are implemented.

At first, OpenTURNS enables the creation of a random vector X whose distribution

DX |Θ whose parameters Θ form a random vector distributed according to the distri-

bution DΘ. The python command writes:

>>>myXrandVect = ConditionalRandomVector (distXgivenTheta , d i s tTheta)

Figure 7 illustrates a random variable X distributed according to a Normal

distribution: DX |Θ=(M,Σ)
= Normal(M, Σ), which parameters are defined by M ∼

14

Uniform([0, 1]) and Σ ∼ Exponential(λ = 4). We can see the probability density

function of X that has been built with the kernel smoothing technique from n = 106

realizations of X with the normal kernel. It also draws, for comparison needs, the

probability density function of X in the case where the parameters are fixed to their

mean value.

Furthermore, when the random vector Θ is defined as Θ = g(Y) where the random

vector follows a known distribution DY and g is a given function, OpenTURNS creates

the distribution of X with the python command:

>>>f i n a l D i s t = C o n d i t i o n a l D i s t r i b u t i o n (distXGgivenTheta , distY , g)

Figure 8 illustrates the distribution of X that follows a Uniform(A, B) dis-

tribution, with (A, B) = g(Y), g : R → R
2, g(Y) = (Y, 1 + Y 2) and Y follows a

Uniform(−1, 1) distribution.

Fig. 7. Normal distribution with random or fixed

parameters.

−1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Conditional distribution

X

P
D

F

Fig. 8. Uniform(Y, 1 + Y 2), with Y ∼

Uniform(−1, 1).

15

Bayesian Calibration

Finally, OpenTURNS enables the calibration of a model (which can be a computer

code) thanks to the Bayesian estimation, which is the evaluation of the model’s param-

eters. More formally, we consider a model G that writes: y = G(x, θ) where x ∈ R
d1 ,

y ∈ R
d3 and θ ∈ R

d2 is the vector of unknown parameters to calibrate. The Bayesian

calibration consists in estimating θ, based on a certain set of n inputs (x1, . . . , xn) (an

experimental design) and some associated observations (z1, . . . , zn) which are regarded

as the realizations of some random vectors (Z1, . . . , Zn), such that, for all i, the distri-

bution of Zi depends on yi = g(xi, θ). Typically, Zi = Y i + εi where εi is a random

measurement error. Once the User has defined the prior distribution of θ, OpenTURNS

maximizes the likelihood of the observations and determines the posterior distribution

of θ, given the observations, using the Metropolis-Hastings algorithm [5, 23].

Uncertainty propagation

Once the input multivariate distribution has been satisfactorily chosen, these uncer-

tainties can be propagated through the G model to the output vector Y . Depending on

the final goal of the study (min-max approach, central tendency, or reliability), several

methods can be used to estimate the corresponding quantity of interest, tending to

respect the best compromise between the accuracy of the estimator and the number of

calls to the numerical, and potentially costly, model.

Min-Max approach

The aim here is to determine the extreme (minimum and maximum) values of the

components of Y for the set of all possible values of X. Several techniques enable it to

be done :

16

• techniques based on design of experiments : the extreme values of Y are sought

for only a finite set of combinations (x1, . . . , xn),

• techniques using optimization algorithms.

Techniques based on design of experiments

In this case, the min-max approach consists of three steps:

• choice of experiment design used to determine the combinations (x1, . . . , xn) of

the input random variables,

• evaluation of yi = G(xi) for i = 1, . . . , N ,

• evaluation of min1≤i≤N yk
i and of max1≤i≤N yk

i , together with the combina-

tions related to these extreme values: xk,min = argmin1≤i≤Nyk
i and xk,max =

argmax1≤i≤Nyk
i .

The type of design of experiments impacts the quality of the meta model and

then on the evaluation of its extreme values. OpenTURNS gives access to two usual

family of design of experiments for a min-max study :

• some stratified patterns (axial, composite, factorial or box patterns) Here are

the two command lines that generate a sample from a 2-level factorial pattern.

>>>myCenteredReductedGrid = F a c t o r i a l (2 , l e v e l s)

>>>mySample = myCenteredReducedGrid . generate ()

• some weighted patterns that include on the one hand, random patterns (Monte

Carlo, LHS), and on the other hand, low discrepancy sequences (Sobol, Faure,

Halton, Reverse Halton and Haselgrove, in dimension n>1).

Sobol Sequence Sampling

>>>mySobolSample = mySobolSeq . generate (64)

Monte Carlo Sampling

>>>myMCSample = MonteCarloExperiment (d i s t Input , 100)

17

Techniques based on optimization algorithm

In this kind of approach, the min or max value of the output variable is sought

thanks to an optimization algorithm. OpenTURNS offers several optimization algo-

rithms for the several steps of the global methodology. Here the TNC (Truncated

Newton Constrainted) is often used, which minimizes a function with variables subject

to bounds, using gradient information. More details may be found in [26].

For the research o f the min va lue

>>>myAlgoTNC = TNC(TNCSpecif icParameters () , l im i tS ta t eFunct i on ,

intervalOpt im , s t a r t i n g P o i n t , TNC.MINIMIZATION)

For the research o f the max va lue

>>>myAlgoTNC = TNC(TNCSpecif icParameters () , l im i tS ta t eFunct i on ,

intervalOpt im , s t a r t i n g P o i n t , TNC.MAXIMIZATION)

Run the research and e x t r a c t the r e s u l t s

>>>myAlgoTNC . run ()

>>>myAlgoTNCResult = BoundConstrainedAlgorithm (myAlgoTNC) . ge tResu l t ()

>>>optimalValue = myAlgoTNCResult . getOptimalValue ()

Central tendency

A central tendency evaluation aims at evaluating a reference value for the variable

of interest, here the water level H, and an indicator of the dispersion of the variable

around the reference. To address this problem, mean µY = e(Y), and the standard

deviation σY =
√
V(Y) of Y are here evaluated using two different methods.

First, following the usual method within the Measurement Science community

[12], µY and σY have been computed under a Taylor first order approximation of the

function Y = G(X) (notice that the explicit dependence on the deterministic variable

d is here omitted for simplifying notations):

18

µY ≃ G (E(X)) (3)

σY ≈
d∑

i=1

d∑

j=1

∂G

∂X i

∣∣∣∣
e(X)

∂G

∂Xj

∣∣∣∣
e(X)

ρijσiσj, (4)

σi and σj being the standard deviation of the ith and jth component Xi and Xj

of the vector X and ρij their correlation coefficient. Thanks to the formulas above, the

mean and the standard deviation of H are evaluated as 52.75m and 1.15m respectively.

>>>myQuadCum = QuadraticCumul (outputVar iab le)

F i r s t order Mean

>>>meanFirstOrder = myQuadCum. getMeanFirstOrder () [0]

Second order Mean

>>>meanSecondOrder = myQuadCum. getMeanSecondOrder () [0]

F i r s t order Variance

>>>varFir s tOrder = myQuadCum. getCovar iance () [0 , 0]

Then, the same quantities have been evaluated by a Monte Carlo evaluation : a

set of 10000 samples of the vector X is generated and the function G(X) is evaluated,

thus giving a sample of H. The empirical mean and standard deviation of this sample

are 52.75m and 1.42m respectively. Figure 9 shows the empirical histogram of the

generated sample of H.

Create a random sample o f the output v a r i a b l e o f i n t e r e s t o f s i z e 10000

>>>outputSample = outputVar iab le . getNumericalSample (10000)

Get the emp i r i ca l mean

>>>empiricalMean = outputSample . computeMean ()

Get the emp i r i ca l covar iance matrix

>>>empir i ca lCovar ianceMatr ix = outputSample . computeCovariance ()

Failure probability estimation

We now turn to the estimation of the probability for the output Y to exceed a certain

threshold s, which we note Pf in the following. If s is the altitude of a flood protection

19

48 50 52 54 56 58 60 62

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

sample histogram

realizations

fr
eq

ue
nc

y

Unnamed histogram

Fig. 9. Empirical histogram of 10000 samples of H.

dyke, then the above excess probability, Pf can be interpreted as the probability of an

overflow of the dyke, i.e. a failure probability.

Note that an equivalent way of formulating this reliability problem would be

to estimate the (1 − p)-th quantile of the output’s distribution. This quantile can

be interpreted as the flood height qp which is attained with probability p each year.

T = 1/p is then seen to be a return period, i.e. a flood as high than q1/T occurs on

average every T years.

Hence, the probability of overflowing a dyke with height s is less than p (where

p, for instance, could be set according to safety regulations) if and only if s ≥ qp, i.e.

if the dyke’s altitude is higher than the flood with return period equal to T = 1/p.

FORM

A way to evaluate such failure probabilities is through the so-called First Order Relia-

bility Method (FORM) [9]. This approach allows, by using an equiprobabilistic trans-

formation and an approximation of the limit-state function, the evaluation with a much

reduced number of model evaluations, of some low probability as required in the reliabil-

20

ity field. Note that OpenTURNS implements the Nataf transformation where the input

vector X has a normal copula, the generalized Nataf transformation when X has an

elliptical copula, and the Rosenblatt transformation for any other cases [16, 17, 18, 19].

We evaluated the probability that the yearly maximal water height H exceeds

s=58m using FORM. The Hasofer-Lind Reliability index was found to be equal to:

βHL = 3.04, yielding a final estimate of:

P̂f,F ORM = 1.19 × 10−3.

The method gives also some importance factors that measure the weight of each

input variable in the probability of exceedance, as shown on Figure 10

FORM Importance Factors − Event Zc > 58.0

Q : 32.4%

Ks : 56.8%

Zv : 9.5%

Zm : 1.2%

Fig. 10. FORM Importance Factors.

>>>myFORM = FORM(Cobyla () , myEvent , meanInputVector)

>>>myFORM. run ()

>>>FormResult = myFORM. getResu l t ()

>>>pFORM = FormResult . ge tEventProbab i l i ty ()

>>>HasoferIndex = FormResult . g e t H a s o f e r R e l i a b i l i t y I n d e x ()

Importance f a c t o r s

>>>importanceFactorsGraph = FormResult . drawImportanceFactors ()

21

Monte Carlo

Whereas the FORM approximation relies on strong assumptions, the Monte Carlo

method is always valid, independently from the regularity of the model. It is neverthe-

less much more computationally intensive, covering all the input domain to evaluate

the probability of exceeding a threshold. It consists in sampling many input values

(X(i))1≤i≤N from the input vector joint distribution, then computing the correspond-

ing output values Y (i) = g(X(i)). The excess probability Pf is then estimated by the

proportion of sampled values Y (i) that exceed t :

P̂f,MC =
1

N

N∑

i=1

1{Y (i)>s}. (5)

The sample average of the estimation error P̂f,MC − Pf decreases as 1/
√

N, and can

be precisely quantified by a confidence interval derived from the central limit theorem.

In the present case we found:

P̂f,MC = 1.50 × 10−3,

with the following 95% confidence interval:

IPf ,MC =
[
1.20 × 10−3, 1.79 × 10−3

]
.

These results are coherent with those of the FORM approximation, confirming that

the assumptions underlying the latter are correct. Figure 11 shows the convergence of

the estimate depending on the size of the sample, obtained with OpenTURNS .

>>>myEvent = Event (outputVariable , Greater () , th r e sho ld)

>>>myMonteCarlo = MonteCarlo (myEvent)

Spec i f y the maximum number o f s imu la t i on s

>>>numberMaxSimulation = 100000

>>>myMonteCarlo . setMaximumOuterSampling (numberMaxSimulation)

Perform the a l gor i thm

>>>myMonteCarlo . run ()

Get the convergence graph

22

0 10000 20000 30000 40000 50000 60000

−
0.

00
1

0.
00

0
0.

00
1

0.
00

2
0.

00
3

MonteCarlo convergence graph at level 0.95

outer iteration

es
tim

at
e

probability estimate
bounds

Fig. 11. Monte Carlo Convergence graph.

>>>convergenceGraph = myMonteCarlo . drawProbabi l i tyConvergence ()

>>>convergenceGraph . draw (" MonteCarloCovergenceGraph ")

Importance Sampling

An even more precise estimate can be obtained through importance sampling [31],

using the Gaussian distribution with identity covariance matrix and mean equal to the

design point u∗ as the proposal distribution. Many values (U (i))1≤i≤N are sampled from

this proposal. Because φn(u−u∗) is the proposal density from which the U (i) have been

sampled, the failure probability can be estimated without bias by:

P̂f,IS =
1

N

N∑

i=1

1{G◦T −1U(i)>s}

φn(U (i))

φn(U (i) − u∗)
(6)

The rationale of this approach is that by sampling in the vicinity of the failure domain

boundary, a larger proportion of values fall within the failure domain than by sampling

around the origin, leading to a better evaluation of the failure probability, and a reduc-

tion in the estimation variance. Using this approach, we found for our flood example

:

P̂f,IS = 1.40 × 10−3

23

As in the simple Monte-Carlo approach, a 95%-level confidence interval can be derived

from the output of the Importance Sampling algorithm. In the present case, this is

equal to:

IPf ,IS =
[
1.26 × 10−3, 1.53 × 10−3

]
,

and indeed provides tighter confidence bounds for Pf .

Spec i f y the s t a r t i n g po in t from FORM algor i thm

>>>standardPoint = FormResult . getStandardSpaceDesignPoint ()

Define the importance d i s t r i b u t i o n

>>>sigma = [1 . 0 , 1 . 0 , 1 . 0 , 1 . 0]

>>>importanceDi s t r ib = Normal (standardPoint , sigma , Corre la t ionMatr ix (4))

Define the IS a l gor i thm : event , d i s t r i b u t i o n , c r i t e r i a o f convergence

>>>myAlgoImportanceSampling = ImportanceSampling (myStandardEvent , importanceDi s t r ib)

>>>myAlgoImportanceSampling . setMaximumOuterSampling (maximumOuterSampling_IS)

>>>myAlgoImportanceSampling . setMaximumCoef f ic ientOfVariat ion (0 . 0 5)

Directional Sampling

The directional simulation method is an accelerated sampling method, that involves

as a first step a preliminary iso-probabilistic transformation as in FORM method. The

basic idea is to explore the space by sampling in several directions in the standard

space. The final estimate of the probability Pf after N simulations is the following:

P̂f,DS =
1

N

N∑

i=1

qi

where qi is the probability obtained in each explored direction. A central limit theorem

allows to access to some confidence interval on this estimate. More details on this

specific method can be found in [32].

In practice in OpenTURNS , the Directional Sampling simulation requires the

choice of several parameters in the methodology : a sampling strategy to choose the

explored directions, a "root strategy" corresponding to the way to seek the limit state

24

function (i.e. a sign change) along the explored direction and a non-linear solver to

estimate the root. A default setting of these parameters allows the user to test the

method in one command line :

>>>myAlgo = Direc t iona lSampl ing (myEvent)

Subset Sampling

The subset sampling is a method for estimating rare event probability, based on the

idea of replacing rare failure event by a sequence of more frequent events Fi.

F1 ⊃ F2 ⊃ · · · ⊃ Fm = F

The original probability is obtained conditionaly to the more frequent events :

Pf = P (Fm) = P (
m⋂

i=1

Fi) = P (F1)
m∏

i=2

P (Fi|Fi−1)

In practice, the subset simulation shows a substantial improvement (NT ∼ log Pf)

compared to crude Monte Carlo (NT ∼ 1
Pf

) sampling when estimating rare events.

More details on this specific method can be found in [2].

OpenTURNS provides this method through a dedicated module. Here also, some

parameters of the methods have to be chosen by the user : a few command lines allows

the algorithm to be set up before its launch.

>>>mySSAlgo=SubsetSampling (myEvent)

Change the t a r g e t c o n d i t i o n a l p r o b a b i l i t y o f each s u b s e t domain

>>>mySSAlgo . s e tTarge tProbab i l i t y (0 . 9)

Set the width o f the MCMC random walk uniform d i s t r i b u t i o n

>>>mySSAlgo . setProposalRange (1 . 8)

This a l l o w s to c o n t r o l the number o f samples per s t ep

>>>mySSAlgo . setMaximumOuterSampling (10000)

Run the a l gor i thm

>>>mySSAlgo . run ()

25

Sensitivity analysis

The sensitivity analysis aims to investigate how a given computational model answers

to variations in its inputs. Such knowledge is useful for determining the degree of resem-

blance of a model and a real system, distinguishing the factors that mostly influence

the output variability and those that are insignificant, revealing interactions among in-

put parameters and correlations among output variables, etc. A detailed description of

sensitivity analysis methods can be found in [36] and in the Sensitivity analysis chapter

of the Springer Handbook. In the global sensitivity analysis strategy, the emphasis is

put on apportioning the output uncertainty to the uncertainty in the input factors,

given by their uncertainty ranges and probability distributions.

Graphical tools

In sensitivity analysis, graphical techniques have to be used first. With all the scatter-

plots between each input variable and the model output, one can immediately detect

some trends in their functional relation. The following instructions allow scatterplots of

Figure 12 to be obtained from a Monte Carlo sample of size N = 1000 of the flooding

model.

>>> inputSample = inputRandomVector . getNumericalSample (1000)

>>> inputSample . s e t D e s c r i p t i o n ([’Q ’ , ’K ’ , ’Zv ’ , ’Zm’])

>>> outputSample = f inalModelCrue (inputSample)

>>> outputSample . s e t D e s c r i p t i o n ([’H ’])

Here , we s t a c k both samples in one

>>> inputSample . s tack (outputSample)

>>>myPairs = Pai r s (inputSample)

>>>myGraph = Graph ()

>>>myGraph . add (myPairs)

In the right column of Figure 12, we see immediately the strong and rather

linear effects of Q and Zv on the output variable H. In the plot of third line and fourth

26

column, we also see the dependence between Zv and Zm, which comes from the large

correlation coefficient introduced in the probabilistic model (see section).

Q

10 20 30 40 50 53 54 55 56 57

0
20

00
40

00

10
30

50

K

Zv

48
50

52

53
55

57

Zm

0 1000 3000 48 49 50 51 52 50 52 54 56

50
52

54
56

H

Fig. 12. Scatterplots between the inputs and the output of the flooding model.

However scatterplots do not capture some interaction effects between the inputs.

Cobweb plots are then used to visualize the simulations as a set of trajectories. The

following instructions allow the cobweb plots of Figure 13 to be obtained where the

simulations leading to the largest values of the model output H have been colored in

red.

>>>inputSample = inputRandomVector . getNumericalSample (1000)

>>>outputSample = f inalModelCrue (inputSample)

Graph 1 : va lue based s c a l e to d e s c r i b e the Y range

>>>minValue = outputSample . computeQuantilePerComponent (0 . 0 5) [0]

>>>maxValue = outputSample . computeQuantilePerComponent (0 . 9 5) [0]

>>>myCobweb = Visua lTest . DrawCobWeb(inputSample , outputSample ,

minValue , maxValue , ’ red ’ , Fa l se)

27

The cobweb plot allows us to immediately understand that these simulations

correspond to large values of the flowrate Q and small values of the Strickler coefficient

Ks.

Q
K
Zv
Zm
H

Fig. 13. Cobweb plots for the flooding model.

Sampling-based methods

In order to obtain quantitative sensitivity indices rather than qualitative information,

one may use some sampling-based methods which often suppose that the input variables

are independent. In the following, we illustrate some of these methods on the flooding

model with independence between its input variables.

If the behavior of the output Y compared to the input vector X is overall linear,

it is possible to obtain quantitative measurements of the inputs influences from the

regression coefficients αi of the linear regression connecting Y to the X = (X1, . . . , Xp).

The Standard Regression Coefficient (SRC), defined by

28

SRCi = αi
σi

σY

(for i = 1 . . . p), (7)

with σi (resp. σY) the standard deviation of Xi (resp. Y), measures the variation of the

response for a given variation of the parameter Xi. In practice, we also determine if

the relation is approximately linear by calculating the coefficient of determination R2

(the variance percentage of the output variable Y explained by the regression model).

Therefore, if R2 is close to one, the relation connecting Y to all the parameters Xi is

almost linear and we can use the SRC as sensitivity indices.

The following instructions allow the results of Table 2 to be obtained from a

Monte Carlo sample of size N = 1000.

>>>inputSample = inputRandomVector . getNumericalSample (1000)

>>>outputSample = f inalModelCrue (inputSample)

>>>SRCCoef f ic ient = Cor r e l a t i onAna ly s i s .SRC(inputSample , outputSample)

>>>linRegModel=LinearModelFactory () . bu i ld (inputSample , outputSample , 0 . 9 0)

>>>Rsquared = LinearModelTest . LinearModelRSquared (inputSample ,

outputSample , linRegModel , 0 . 9 0)

The SRC values confirm our first conclusions drawn from the scatterplots visual

analysis. We also see that R2 = 0.97 is very close to one which means that the model

is quasi-linear. the SRC are sufficient to perform a global sensitivity analysis.

Table 2. Regression coefficients and SRC of the flood model inputs (α0 = −0.1675 and R2 = 0.97).

Q Ks Zv Zm

αi 3.2640 0.0012 -0.0556 1.1720

SRCi 0.3462 0.0851 0.6814 0.0149

Several other estimation methods are available in OpenTURNS for a sensitivity

analysis purpose:

• derivatives and Pearson correlation coefficients (linearity hypothesis between

output and inputs),

29

• Spearman correlation coefficients and Standard Rank Regression Coefficients

(monotonicity hypothesis between output and inputs),

• reliability importance factors with the FORM/SORM importance measures pre-

sented previously (section),

• variance-based sensitivity indices (no hypothesis on the model). These last in-

dices, often known as Sobol’ indices and defined by

Si =
Var[E(Y |Xi)]

Var(Y)
(first order index) and STi

=
p∑

i=1

Si+
∑

i<j

Sij+. . . (total index),

(8)

are estimated in OpenTURNS with the classic pick-freeze method based on two

independent Monte Carlo samples [34]. In OpenTURNS, other ways to compute

the Sobol’ indices are the Extended FAST method [35] and the coefficients of

the polynomial chaos expansion [38].

Metamodels

When each model evaluation is time consuming, it is usual to build a surrogate model

which is a good approximation of the initial model and which can be evaluated at

negligible cost. OpenTURNS proposes some usual polynomial approximations: the lin-

ear or quadratic Taylor approximations of the model at a particular point, or a linear

approximation based on the least squares method. We point out here two recent tech-

niques that OpenTURNS implements: the polynomial chaos expansion and the kriging

approximation.

Polynomial chaos expansion

The polynomial chaos expansion enables the approximation of the output random

variable of interest Y = G(X) with g : Rd → R
p by the surrogate model:

30

Ỹ =
∑

k∈K

αkΨk ◦ T (X)

where αk ∈ R
p, T is an isoprobabilistic transformation (e.g. the Rosenblatt transforma-

tion) which maps the multivariate distribution of X into the multivariate distribution

µ =
∏d

i=1 µi, and (Ψk)k∈N a multivariate polynomial basis of L2
µ(Rd,Rp) which is or-

thonormal according to the distribution µ. K is a finite subset of N. Y is supposed to

be of finite second moment.

OpenTURNS proposes the building of the multivariate orthonornal basis (Ψk(x))k∈N

as the cartesian product of orthonormal univariate polynomial family (Ψ i
l (zi))l∈N :

Ψk(z) = Ψ 1
k1

(z1) ∗ Ψ 2
k2

(z2) ∗ · · · ∗ Ψd
kd

(zd)

The possible univariate polynomial families associated to continuous measures

are :

• Hermite, which is orthonormal with respect to the Normal(0, 1) distribution,

• Jacobi(α, β, param), which is orthonormal with respect to the Beta(β + 1, α +

β+2, −1, 1) distribution if param = 0 (default value) or to the Beta(α, β, −1, 1)

distribution if param = 1,

• Laguerre(k), which is orthonormal with respect to the Gamma(k + 1, 1, 0) dis-

tribution,

• Legendre, which is orthonormal with respect to the Uniform(−1, 1) distribu-

tion.

OpenTURNS proposes three strategies to truncate the multivariate orthonormal

basis to the finite set K : these strategies select different terms from the multivariate

basis, based on a convergence criterion of the surrogate model and the cleaning of the

less significant coefficients.

The coefficients of the polynomial decomposition writes:

31

α = argminα∈RK Eµ





g ◦ T −1(Z) −

∑

k∈K

αkΨk(Z)




2

 (9)

as well as:

α =
(
Eµ

[
g ◦ T −1(Z)Ψk(Z)

])
k

(10)

where Z = T (X) is distributed according to µ.

It corresponds to two points of view implemented by OpenTURNS : the relation (9)

means that the coefficients (αk)k∈K minimize the mean quadratic error between the

model and the polynomial approximation; the relation (10) means that αk is the scalar

product of the model with the k − th element of the orthonormal basis (Ψk)k∈K . In

both cases, the expectation Eµ is approximated by a linear quadrature formula that

writes, in the general case:

Eµ [f(Z)] ≃
∑

i∈I

ωif(Ξi) (11)

where f is a function L1(µ). The set I, the points (Ξi)i∈I and the weights (ωi)i∈I are

evaluated from weighted designs of experiments which can be random (Monte Carlo

experiments, and Importance sampling experiments) or deterministic (low discrepancy

experiments, User given experiments, and Gauss product experiments).

At last, OpenTURNS gives access to:

• the composed model h : Z 7→ Y = G ◦ T −1(Z), which is the model of the

reduced variables Z. We have h =
∑

k∈N

αkΨk,

• the coefficients of the polynomial approximation : (αk)k∈K ,

• the composed meta model: ĥ, which is the model of the reduced variables reduced

to the truncated multivariate basis (Ψk)k∈K . We have ĥ =
∑

k∈K

αkΨk,

• the meta model: ĝ : X 7→ Y = ĥ ◦ T (X) which is the polynomial chaos approx-

imation as a NumericalMathFunction. We have ĝ =
∑

k∈K

αkΨk ◦ T .

When the model is very expensive to evaluate, it is necessary to optimize the

number of coefficients of the polynomials chaos expansion to be calculated. Some spe-

32

cific strategies have been proposed by [6] for enumerating the infinite polynomial chaos

series: OpenTURNS implements the hyperbolic enumeration strategy which is inspired

by the so-called sparsity-of-effects principle. This strategy states that most models

are principally governed by main effects and low-order interactions. This enumeration

strategy selects the multi-indices related to main effects.

The Kriging approximation

Kriging (also known as Gaussian process regression) [33, 37, 30, 24] is a Bayesian

technique that aims at approximating functions (most often in order to surrogate them

because they are expensive to evaluate). In the following it is assumed we aim at

surrogating a scalar-valued model G : x 7→ y. Note the OpenTURNS implementation of

Kriging can deal with vector-valued functions (G : x 7→ y), with simple loops over each

output. It is also assumed the model was run over a design of experiments in order to

produce a set of observations gathered in the following dataset: ((xi, yi) , i = 1, . . . , n).

Ultimately Kriging aims at producing a predictor (also known as a response surface or

metamodel) denoted as G̃.

We assume that the model G is a realization of the normal process Y : Ω × R
d → R

defined by:

Y (ω, x) = m(x) + Z(ω, x) (12)

where m(x) is the trend and Z(x) is a zero-mean Gaussian process with a covariance

function cθ : Rd × R
d → R which depends on the vector of parameters θ ∈ R

nθ :

E[Z(x), Z(y)] = cθ(x, y) (13)

The trend is generally taken equal to the generalized linear model:

m(x) = (f(x))t
β (14)

33

where (f(x))t = (f1, . . . , fp) and β = (β1, . . . , βp). Then, the Kriging method approxi-

mates the model f by the mean of the Y given that:

Y (ω, x(i)) = y(i) ∀i = 1, . . . , n (15)

The Kriging meta model G̃ of G writes:

G̃(x) = E[Y (ω, x)|Y (ω, x(i)) = y(i), ∀i = 1, . . . , n] (16)

The meta model is then defined by:

G̃(x) = (f(x))t
β̃ +

(
cθ(x)

)t
C−1

θ
(y − F β̃) (17)

where β̃ is the least squares estimator for β defined by:

β̃ =
(
F tC−1

θ
F

)−1
F tC−1

θ
y (18)

and Cθ = [cθ(xi, xj)]i,j=1...n, F = [f(xi)
t]i=1...n and ct

θ
(x) = [cθ(x, xi)]i=1...n. The line

command writes:

>>> algo = KrigingAlgor ithm (inputSample , outputSample , bas i s , covarianceModel)

>>> algo . run ()

>>> r e s u l t = a lgo . ge tResu l t ()

>>> metamodel = r e s u l t . getMetaModel ()

>>> graph = metamodel . draw ()

Figure 14 approximates the G : x 7→ x sin x with a realization of a Gaussian

process based on 6 observations.

34

0 2 4 6 8
−

20
−

15
−

10
−

5
0

5
10

x

m
od

el
, k

rig
in

g

●
●

●

●

●

●

model
kriging
data

Fig. 14. An example of kriging approximation based on 6 observations.

Using an external code

The external simulator

Fast evaluations of G

On the practical side, the OpenTURNS software provides features which make the

connection to the simulator G easy, and make its evaluation generally fast. Within the

OpenTURNS framework, the method to connect to G is called "wrapping".

In the simplest situations, the function G is analytical and the formulas can be

provided to OpenTURNS with a character string. Here, the Muparser C++ library [4]

is used to evaluate the value of the mathematical function. In this case, the evaluation

of G by OpenTURNS is quite fast.

In the following Python script, we consider the function G : R3 → R
2, where

G1(x) = x1 + x2 + x3 and G2(x) = x1 − x2x3, for any real numbers x1, x2 and x3.

The input argument of the NumericalMathFunction class is a Python tuple, where

the first item describes the three inputs variables, the second item describes the two

output variables and the last item describes the two functions G1 and G2.

>>>G = NumericalMathFunction (

(" x0 " , " x1 " , " x2 ") ,

(" y0 " , " y1 ") ,

35

(" x0+x1+x2 " , " x0−x1∗x2 "))

Once created, the function G can be used as a regular Python function, or can be passed as

an input argument of other OpenTURNS classes.

In most cases, the function G is provided as a Python function, which can be connected to

OpenTURNS with the PythonFunction class. This task is easy (for those who are familiar with

this language), and allows the scientific packages already available in Python to be combined. For

example, if the computational code uses XML files on input or output, it is easy to make use of

the XML features of Python (e.g. the minidom package). Moreover, if the function evaluation can be

vectorized (e.g. with the numpy package), then the func_sample option of the PythonFunction class

can improve the performance a lot.

In the following Python script, we create the function G associated with the flooding model.

The flood function is first defined with the def Python statement. This function takes the variable X

as input argument, which is an array with four components, Q, K_s, Z_v and Z_m, which corresponds

to the input random variables in the model. The body of the flood function is a regular Python

script, so that all Python functions can be used at this point (e.g. the numpy or scipy functions). The

last statement of the function returns the overflow S. Then the PythonFunction class is used in order

to convert this Python function into an object that OpenTURNS can use. This class takes as input

arguments the number of input variables (in this case, 4), the number of outputs (in this case, 1) and

the function and returns the object G.

>>>from openturns import PythonFunction

>>>def f l o o d (X) :

L = 5 .0 e3 ; B = 300 .0

Q, K_s, Z_v, Z_m = X

alpha = (Z_m − Z_v)/L

H = (Q/(K_s∗B∗ s q r t (alpha))) ∗ ∗ (0 . 6)

return H

>>>G = PythonFunction (4 , 1 , f l o o d)

If, as many of the computational codes we commonly use, the data exchange is based on

text files, OpenTURNS provides a component (coupling_tools) which is able to read and write

structured text files based, for example, on line indices and perhaps containing tables (using line and

36

column indices). Moreover, OpenTURNS provides a component which can evaluate such a Python

function using the multi-thread capabilities that most computers have.

Finally, when the computational code G is provided as a C or Fortran library, OpenTURNS

provides a generic component to exchange data by memory, which is much faster than with files. In

this case, the evaluation of G is automatically multi-thread. This component can be configured by

Python, based on a XML file. If this method is not flexible enough, then the connection can be done

with the C++ library.

The previous techniques are documented in the OpenTURNS Developer’s Guide [1].

In Figure 15, we compare the performance of three methods to connect to the function G : the

PythonFunction class, the PythonFunction class with the func_sample option and the analytical

function. This test was performed with a basic MS Windows laptop computer. Obviously, the fastest

method is the analytical function, which can provide as many as 0.2 million samples per second, a

performance which is four times the performance of the PythonFunction class.

100 101 102 103 104 105 106 107

Num ber of Monte Carlo Sam ples

0.00

0.05

0.10

0.15

0.20

N
um

be
r

of
 M

ill
io

n
Sa

m
pl

es
/S

ec
on

d

Analytical

func_sample

PythonFunction

Fig. 15. Performance of various connection methods in OpenTURNS

37

Evaluation of the derivatives

When the algorithm involves an optimization step (e.g. in the FORM-SORM method) or a local

approximation of G (e.g. in the Taylor development used to approximate the expectation and variance),

the derivatives of G are required.

When the computer code can compute the gradient and Hessian matrix of G, this information

can be used by OpenTURNS . This happens sometimes, for example when the computer code has

been differentiated with automatic differentiation methods, such as forward or adjoint techniques.

In the case where the function is analytical and is provided as a character string, OpenTURNS

is able to compute the exact derivatives of G. In order to do this, the software uses the Ev3 C++

library [22] to perform the symbolic computation of the derivatives and MuParser [4] to evaluate it.

In most common situations, however, the code does not compute its derivatives. In this case,

OpenTURNS provides a method to compute the derivatives based on finite difference formulas. By

default a centered finite difference formula for the gradient and a centered formula for the Hessian

matrix are used.

High performance computing

For most common engineering practices, OpenTURNS can evaluate G with the multi-thread capa-

bilities of most laptop and scientific workstations. However, when the evaluation of G is more CPU

consuming or when the number of evaluations required is larger, these features are not sufficient by

themselves and it is necessary to use a high performance computer such as the Zumbrota, Athos or

Ivanhoe supercomputers available at EDF R&D which have from 16 000 to 65 000 cores [40].

In this case, two solutions are commonly used. The first one is to use a feature which can

execute a Python function on remote processors, connected on the network with ssh. Here, the data

flow is based on files, located in automatically generated directories, which prevents the loss of inter-

mediate data. This feature (the DistributedPythonFunction) allows each remote processor to use

its multi-thread capabilities, providing two different levels of parallel computing.

The second solution is to use the OpenTURNS component integrated in the Salome platform.

This component, along with a graphical user interface, called "Eficas", makes use of a software, called

"YACS", which can call a Python script. The YACS module allows calculation schemes in Salome to

be built, edited and executed. It provides both a graphical user interface to chain the computations by

38

linking the inputs and outputs of computer codes, and then to execute these computations on remote

machines.

Several studies have been conducted at EDF based on the OpenTURNS component of Salome.

For example, an uncertainty propagation study (the thermal evaluation of the storage of high-level

nuclear waste) was making use of a computer code where one single run required approximately 10

minutes on the 8 cores of a workstation (with shared memory). Within Salome, the OpenTURNS

simulation involving 6000 unitary evaluations of the function G required 8000 CPU hours on 32 nodes

[3].

Conclusions

This educational example has shown a number of questions and problems that can be addressed by

UQ methods: uncertainty quantification, central tendency evaluation, excess probability assessment

and sensitivity analysis, that can require the use of a metamodel.

Different numerical methods have been used for solving these three classes of problems, lead-

ing substantially to the same (or very similar) results. In the industrial practice of UQ, the main issue

(which actually motivates the choice of one mathematical method instead of another) is the compu-

tational budget, which is actually given by the number of allowed runs of the deterministic model

G. When the computer code implementing G is computationally expensive, one needs specifically

designed mathematical and software tools.

OpenTURNS is specially intended to meet these issues : (i) it includes a set of efficient

mathematical methods for UQ and (ii) it can be easily connected to any external black box model

G. Thanks to these two main features, OpenTURNS is a software that can address many different

physics problems, and thus help to solve industrial problems. From this perspective, the partnership

around OpenTURNS focuses efforts on the integration of the most efficient and innovative methods

required by the industrial applications that takes into account both the need of genericity and of ease

to communicate. The main projects for 2015 concern the improvement of the kriging implementa-

tion to integrate some very smart methods of optimization. Around this theme some other classical

optimization methods will also be generalized or newly implemented.

A growing need for model exploration and analysis of uncertainty problem in industrial appli-

cations is to better visualise the information provided by such a volume of data. In this area, specific

39

visualization software, such as Paraview, can provide very efficient and interactive features. Taking

the advantage of the integration of OpenTURNS in the Salome platform, EDF is working on a bet-

ter link between the Paraview module in Salome (called ParaVIS) and the uncertainty analysis with

OpenTURNS : in 2012, functional boxplot ([13]) has been implemented. Some recent work around

in-situ visualization for uncertainty analysis should also be developed and implemented and so benefit

very computationaly expensive model physics that generate an extremely high volume of data.

References

[1] Airbus, EDF, Phimeca (2014) Developer’s guide, OpenTURNS 1.4, http://openturns.org

[2] Au S, Beck JL (2001) Estimation of small failure probabilities in high dimensions by subset

simulation. Probabilistic Engineering Mechanics 16

[3] Barate R (2013) Calcul haute performance avec OpenTURNS, workshop du GdR MASCOT-

NUM, Quantification d’incertitude et calcul intensif", http://www.gdr-mascotnum.fr/media/

openturns-hpc-2013-03-28.pdf

[4] Berg I (2014) muparser, URL http://muparser.beltoforion.de, fast Math Parser Library

[5] Berger J (ed) (1985) Statistical decision theory and bayesian analysis. Springer

[6] Blatman G (2009) Adaptative sparse polynomial chaos expansions for uncertainty propagation

and sensitivity anaysis. PhD thesis, Clermont University

[7] Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle

regression. Journal of Computational Physics 230:2345–2367

[8] Butucea C, Delmas J, Dutfoy A, Fischer R (2015) Maximum entropy copula with given diagonal

section. Journal of Multivariate Analysis, in press

[9] Ditlevsen O, Madsen H (1996) Structural Reliability Methods. Wiley

[10] Dutfoy A, Dutka-Malen I, Pasanisi A, Lebrun R, Mangeant F, Gupta JS, Pendola M, Yalamas

T (2009) OpenTURNS, An Open Source initiative to Treat Uncertainties, Risks’N Statistics in

a structured industrial approach. In: Proceedings of 41èmes Journées de Statistique, Bordeaux,

France

[11] Fang KT, Li R, Sudjianto A (2006) Design and modeling for computer experiments. Chapman

& Hall/CRC

40

[12] gum08 (2008) JCGM 100-2008 - Evaluation of measurement data - Guide to the expression of

uncertainty in measurement. JCGM

[13] Hyndman R, Shang H (2010) Rainbow plots, bagplots, and boxplots for functional data. Journal

of Computational and Graphical Statistics 19

[14] Iooss B, Lemaître P (2015) A review on global sensitivity analysis methods. In: Meloni C, Dellino

G (eds) Uncertainty management in Simulation-Optimization of Complex Systems: Algorithms

and Applications, Springer

[15] Kurowicka D, Cooke R (2006) Uncertainty analysis with high dimensional dependence modelling.

Wiley

[16] Lebrun R, Dutfoy A (2009) Do rosenblatt and nataf isoprobabilistic transformations really differ?

Probabilistic Engineering Mechanics 24:577–584

[17] Lebrun R, Dutfoy A (2009) Do rosenblatt and nataf isoprobabilistic transformations really differ?

Probabilistic Engineering Mechanics 24:577–584

[18] Lebrun R, Dutfoy A (2009) A generalization of the nataf transformation to distributions with

elliptical copula. Probabilistic Engineering Mechanics 24:172–178

[19] Lebrun R, Dutfoy A (2009) An innovating analysis of the nataf transformation from the viewpoint

of copula. Probabilistic Engineering Mechanics 24:312–320

[20] Lebrun R, Dutfoy A (2014) Copulas for order statistics with prescribed margins. Journal of

Multivariate Analysis 128:120–133

[21] Lemaire M (2009) Structural reliability. Wiley

[22] Liberty L (2003) Ev3: A library for symbolic computation in c++ using n-ary trees, URL http:

//www.lix.polytechnique.fr/~liberti/Ev3.pdf

[23] Marin JM, Robert C (eds) (2007) Bayesian core: a practical approach to computational bayesian

statistics. Springer

[24] Marrel A, Iooss B, Van Dorpe F, Volkova E (2008) An efficient methodology for modeling complex

computer codes with Gaussian processes. Computational Statistics and Data Analysis 52:4731–

4744

[25] Munoz-Zuniga M, Garnier J, al ER (2011) Adaptive directional stratification for controlled esti-

mation of the probability of a rare event. Reliability Engineering and System Safety 96:1691–1712

[26] Nash S (2000) A survey of truncated-newton methods. Journal of Computational and Applied

Mathematics 124

41

[27] OPEN CASCADE S (2006) Salome: The open source integration platform for numerical simula-

tion. URL http://www.salome-platform.org

[28] Pasanisi A (2014) Uncertainty analysis and decision-aid: Methodological, technical and manage-

rial contributions to engineering and R&D studies. Habilitation Thesis of Université de Technolo-

gie de Compiègne, France, URL https://tel.archives-ouvertes.fr/tel-01002915

[29] Pasanisi A, Dutfoy A (2012) An industrial viewpoint on uncertainty quantification in simulation:

Stakes, methods, tools, examples. In: Dienstfrey A, Boisvert R (eds) Uncertainty quantification

in scientific computing - 10th IFIP WG 2.5 working conference, WoCoUQ 2011, Boulder, CO,

USA, August 1-4, 2011, Berlin: Springer, IFIP Advances in Information and Communication

Technology, vol 377, pp 27–45

[30] Rasmussen C, Williams C, Dietterich T (2006) Gaussian processes for machine learning. MIT

Press

[31] Robert CP, Casella G (2004) Monte Carlo statistical methods. Springer

[32] Rubinstein R (1981) Simulation and The Monte-Carlo methods. Wiley

[33] Sacks J, Welch W, Mitchell T, Wynn H (1989) Design and analysis of computer experiments.

Statistical Science 4:409–435

[34] Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Computer

Physics Communication 145:280–297

[35] Saltelli A, Tarantola S, Chan K (1999) A quantitative, model-independent method for global

sensitivity analysis of model output. Technometrics 41:39–56

[36] Saltelli A, Chan K, Scott E (eds) (2000) Sensitivity analysis. Wiley Series in Probability and

Statistics, Wiley

[37] Santner T, Williams B, Notz W (2003) The design and analysis of computer experiments. Springer

[38] Sudret B (2008) Global sensitivity analysis using polynomial chaos expansion. Reliability Engi-

neering and System Safety 93:964–979

[39] Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society

for Industrial and Applied Mathematics, SIAM

[40] Top 500 Supercomputer Sites (2014) Zumbrota, URL http://www.top500.org/system/177726,

BlueGene/Q, Power BQC 16C 1.60GHz, Custom

