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Abstract—This paper considers the Broadcast Channel with
Confidential Message (BCCM) where the sender attempts
to send altogether a common message to two receivers and
a confidential message to one of them. The achievable rate
regions are derived for the power-constrained Gaussian
BCCM with finite input alphabet using various transmission
strategies. Namely, time sharing, superposition modulation
and superposition coding are used as broadcast strategies.
For superposition modulation and superposition coding, the
maximal achievable rate regions are obtained by maximizing
over both constellation symbol positions and the joint probability
distribution. The maximization of the secrecy rate for wiretap
channels is also studied as a particular case of the BCCM
problem. We compare the considered transmission strategies in
terms of percentage gains in achievable rates. We concentrate on
the impact of the finite alphabet constraint on achievable rates,
and show that this constraint may change well known results
obtained in the Gaussian case. We show also that the secrecy
constraint can change the shape of the achievable rate region in
superposition modulation used in some standards when symbols
are equiprobable. On a more practical side, it is shown that a
performance close to the optimum can be obtained by strategies
with reduced complexity.

Index Terms—Information-theoretic security, finite-alphabet
input, broadcast channel with confidential message, achievable
rate region.

I. INTRODUCTION

Security is an important issue for wireless communications.
Vulnerability to eavesdropping comes from the shared nature
of the wireless environment. Traditionally, cryptographic tech-
niques are used at higher layers of the protocol stack for
security purpose. In these techniques, security relies on the
assumption of limited computational power at the eavesdrop-
per. Recently, the wireless communications community has
devoted a considerable attention to the information theoretic
security at the physical layer, which makes use of totally
different concepts. Indeed, in physical layer security, secrecy
is achieved by exploiting the randomness of the wireless
channels and does not assume any computational restrictions
at the eavesdropper.

In the wiretap channel model, introduced by Wyner in [1],
a transmitter wants to send reliably confidential message to a
legitimate receiver and to keep the transmitted message secure

from an eavesdropper. The level of ignorance at the wiretapper
with respect to the confidential message is measured by the
equivocation rate. Wyner demonstrated that secure communi-
cation is possible without sharing a secret key and determined
the secrecy capacity of the memoryless degraded wiretap
channel. The secrecy capacity is the maximal achievable rate to
communicate reliably with the destination while the wiretapper
is not able to obtain any information from the incoming signal.
The secrecy capacity for the Gaussian wiretap channel was
given later in [2]. Csiszar and Korner studied in [3] a more
general model of the wiretap channel called broadcast channel
with confidential message where the channels do not obey
necessarily any degradation relationship. In this model, there
is a common message for two receivers in addition to the
confidential message for one receiver. More recently, fading
was also introduced in the secret transmission model [4],
[5] and the Gaussian multiple-input–multiple-output (MIMO)
and multiple-input–single-output (MISO) wiretap channel are
revisited in [6] and [7] respectively.

The secrecy capacity for the Gaussian wiretap channel
and the secrecy-capacity region for the Gaussian BCCM
are achieved using random Gaussian codebooks. However,
Gaussian alphabets are not used in real systems since they are
not practical to implement, and instead finite constellations
such as Pulse Amplitude Modulation (PAM) or Quadrature
Amplitude Modulation (QAM) are considered, usually with
equal probability. The impact of finite size constellations on
the achievable secrecy rate is analyzed in [8] and [9] in the
particular case of equiprobable symbols. It is shown that the
secrecy rate curves for a finite constellation plotted against the
Signal-to-Noise-Ratio (SNR) and for a fixed noise variance
of the eavesdropper’s channel have a global maximum at
an internal point. This comes in contrast to what is known
in the case of Gaussian codebook input where the secrecy
capacity curve is a bounded, monotonically increasing function
of SNR. Ref. [10] investigates the secrecy rate of the Gaussian
wiretap channel with standard M -PAM inputs. The authors
provide the necessary conditions for both the M -PAM input
power and the M -PAM input distribution to maximize the
secrecy rate which they specialize to the asymptotic low-power
and high-power regimes. Ref. [11] and [12] study the effect of
finite discrete-constellation on the secrecy achievable rate of
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multiple-antenna wiretap channels and [13] investigates the
power allocation and artificial noise design for orthogonal
frequency-division multiplexing (OFDM) wiretap channels
with discrete channel inputs. In [14], the authors investigated
the design of optimum linear transmit precoding for the
maximum secrecy rate over multiple-input–multiple-output–
multiple-antenna eavesdropper (MIMOME) wiretap channels.
The authors develop an iterative algorithm for secrecy rate
maximization via a gradient method which achieves substantial
rate gains over the precoding design in [11].

This paper studies the achievable rates for the Gaussian
broadcast channel with confidential message using M -PAM
constellations. Unlike prior works, where the secrecy rate for
the wiretap channel is studied massively assuming uniform
input distribution or/and standard symbol positions, we in-
vestigate in this work the maximal achievable rate region for
Gaussian BCCM, by optimizing over both symbol positions
and the joint probability distribution, subject to the availabil-
ity of a suitable initial guess. To our knowledge, no work
investigated the maximization of achievable rate regions of the
BCCM under finite alphabet constraint. The symbol positions
in our work are allowed to take arbitrary values and are not
necessarily proportional to those of standard constellation as in
[10]. This leads to the determination of the maximal achievable
rates with any constellation of M symbols. The achievable
rate regions are also given for various broadcast transmission
strategies which differ in their complexity of implementation.
Preliminary and partial results were published in [15] by the
same authors. The whole picture is given here. Additional
contributions of this paper compared to [15] are specified
hereafter. Regarding the achievable rate regions for the BCCM,
comparisons between the various strategies are conducted, in
this paper, in terms of SNR savings for target achievable rates
and percentage of gain in achievable rates. The corresponding
trade-off between complexity and efficiency is discussed. The
goal is to know whether using practical schemes is sufficient
to achieve good rates or it leads to significant losses. This
contribution is a first step towards a practical implementation
of secure communication at the physical layer.

II. ACHIEVABLE RATES FOR THE BCCM
This section recalls classical results on the achievable rates

of the BCCM [3], i.e. a broadcast channel with two receivers
for which a sender attempts to send two messages simultane-
ously: a common message w0 to both receivers and a secret
message w1 for receiver 1. A discrete-memoryless BCCM
(DM-BCCM) consists of an input alphabet X , two output
alphabets Y1 and Y2 and transition probabilities PY1Y2|X
such that PY n

1 Y
n
2 |Xn(yn1 , y

n
2 |xn) =

∏n
i=1 PY1Y2|X(y1i, y2i|xi)

(Figure 1). Conventionally, random variables (RV) are written
in upper case letters and particular realizations are written in
corresponding lower case letters.

A (2nR0 , 2nR1 , n) code for the DM-BCCM consists of the
following elements.
• Two message sets W0 = {1, .., 2nR0} and W1 =
{1, .., 2nR1}. We assume throughout that the messages
W0 and W1 are uniformly distributed over the message
sets W0 and W1 respectively.

(W1, W0) Xn

Y n1 (Ŵ1, Ŵ0)

Randomized
Encoder

Decoder 1

PY1Y2|X
Y n2 W̃0

Decoder 2

Figure 1. The broadcast channel with confidential message

• A randomized encoder that maps a message pair
(w0, w1) ∈ (W0,W1) to a codeword xn.

• Two decoders: Decoder 1 maps a received sequence yn1 ∈
Yn1 to a message pair (ŵ0, ŵ1) or an error message e,
the second one at receiver 2 maps a received sequence
yn2 ∈ Yn2 to a message w̃0 or an error message e.

The secrecy level of W1 at the eavesdropper is measured by
the equivocation rate. The average error probability is P (n)

e

with expression given below

1

2nR02nR1
·
nR0∑
w0=1

nR1∑
w1=1

Pr{(ŵ0, ŵ1) 6= (w0, w1) or w̃0 6= w0}

The rate-equivocation triple (R0, R1, Re) is achievable if there
is a sequence of (2nR0 , 2nR1 , n) codes with P

(n)
e → 0

as n → ∞ and with equivocation rate satisfying Re ≤
lim inf
n→∞

1
nH(W1|Y n2 ).

Throughout this work, we focus on the case in which
perfect secrecy is achieved (R1 = Re) , i.e. the confidential
messages transmitted are entirely hidden to the eavesdropper.
The secrecy-capacity region is the set of all rate pairs (R0, R1)
such that (R0, R1, Re = R1) is achievable. The secrecy-
capacity region which has been provided in [3] is the closure
of the set that includes all (R0, R1) such that:

0 ≤R1 ≤ I(V ;Y1|U)− I(V ;Y2|U) (1)
R0 ≤ min{I(U ;Y1), I(U ;Y2)} (2)

for some PUVXY1Y2 , and where U and V are auxiliary random
variables satisfying U ↔ V ↔ X ↔ Y1Y2. U serves as a
cloud center distinguishable by both receivers. In other terms,
it carries the common information. V is an auxiliary random
variable for additional randomization at the encoder side. The
cardinality of the set U can be limited to |U| ≤ |X |+ 3.

The channel to receiver 2 is called a physically de-
graded version of the channel to receiver 1 if p(y1, y2|x) =
p(y1|x)p(y2|y1) i.e. X ↔ Y1 ↔ Y2 is a Markov chain. In
this case, it is shown in [4] that I(V ;Y1|U)− I(V ;Y2|U) ≤
I(X;Y1|U) − I(X;Y2|U). Moreover, we have I(U ;Y1) ≥
I(U ;Y2) due to the Markov chain condition U ↔ V ↔ X ↔
Y1 ↔ Y2. Thus, the achievable rates in (1) and (2) satisfy for
the degraded BCCM U ↔ V ↔ X ↔ Y1 ↔ Y2 [4]:

R1 ≤ I(X;Y1|U)− I(X;Y2|U) (3)
R0 ≤ I(U ;Y2) (4)

where V = X in this case. It can be shown that the secrecy-
capacity region depends only on the conditional marginals.
Hence, this result generalizes to stochastically degraded DM-
BCCM. In the case of degraded BCCM, the cardinality of U
can be limited to |U| ≤ min{|X |, |Y1|, |Y2|} which follows
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from Caratheodory’s theorem [16]. Comparing to the capacity
region of the degraded broadcast channel without confidential
messages [17], it may seem that the secrecy constraint leads
to sacrifice a significant portion of the available capacity to
confuse the eavesdropper. However, this is misleading because
it is possible to send an additional private message to the
legitimate receiver in addition to the confidential message to
achieve the capacity region of the degraded broadcast channel
without confidential message. In this paper, we will focus on
the study of the secrecy rate for the legitimate receiver and
the common message rate only.

Throughout this work, we consider the (degraded) Gaussian
BCCM channel. The channel outputs are Yi = X+Zi, where
i ∈ {1, 2}, Zi ∼ N (0, Ni) and N2 > N1. We consider also an
input power constraint E[X2] ≤ P . In [4], the secrecy-capacity
region of the Gaussian BCCM with input power constraint P
is given as:

=
⋃

β∈[0,1]


R0 ≤ C( (1−β)·P

N2+β·P )

(R0, R1) :

R1 ≤ C(β·PN1
)− C(β·PN2

)

(5)

where C(x) = 1
2 · log2(1 + x). The achievability of the

secrecy-capacity region follows from the previous definition of
achievable rates for degraded BCCM with the following choice
of random variables: U ∼ N (0, (1 − β) · P ), X = U + X ′

with X ′ ∼ N (0, β · P ).
The wiretap channel is a special case of BCCM where U is

a constant, and R0 is equal to zero. The secrecy capacity of the
discrete memoryless WTC is obtained by taking U = const
in the BCCM case [3].

III. BROADCAST TRANSMISSION STRATEGIES

The common rate R0 in (4) and the secrecy rate R1 in
(3) are achieved using superposition coding (SC) to transmit
simultaneously both messages. Stochastic encoding [3], [18] is
used to ensure security. This paper considers various broadcast
strategies which differ in their complexity of implementation
and performance. A detailed description of these strategies
can be found in [19], [20]. They are listed below in ascending
order of complexity and performance:
• TIME SHARING (TS). Messages w0 and w1 are trans-

mitted in different time-slots. Here, transmitted symbols
belong to a standard M -PAM constellation (X = {M −
1− 2 · (i− 1) for i = 1, ..,M}).

• SUPERPOSITION MODULATION (SM) M symbols are
obtained by adding two random variables X1 and X2

of respective cardinality M1 and M2, i.e. M = M1M2.
This corresponds to a separable labeling. Two situations
are considered: (i) equiprobable symbols and optimized
symbol positions, denoted as SMX ,PUX ,PX

, which allows
a separate encoding for both common and secret infor-
mation and (ii) full optimization of symbol positions and
joint probability distribution PUX , a scheme denoted as
SMX ,PUX ,PX

.
• SUPERPOSITION CODING (SC). PUX takes the most

general form, i.e. U has the largest cardinality: |U| = |X |
for Gaussian BCCM. The auxiliary variable U serves as

a cloud center for the information. Thus labeling does
not allow to distinguish between the common and the
secret information. The encoding of both messages is
done jointly using the joint distribution of probability
PUX and the decoding is based on large block typicality
[17]. Superposition coding is here assumed to correspond
to the optimization of the symbol position and PUX . This
scheme is denoted as SCX ,PUX ,PX

.

IV. ACHIEVABLE RATES WITH M -PAM
This section shows how to compute the maximal achievable

rate region (i.e. R0 as a function of R1) of two-user power-
constrained (degraded) Gaussian BCCM when the transmitted
signal is modulated using an M -PAM constellation. This work
is easily extended to complex Gaussian channel models using
M -PSK and M -QAM constellations.

A. Problem Formulation
Consider a Gaussian BCCM in which the transmitter at-

tempts to send a common message to two receivers (1 and
2) and a confidential message to receiver 1 at rates R0 and
R1 respectively. The channel additive white Gaussian noise
(AWGN) of receiver k ∈ {1, 2} follows a normal distribution
of zero mean and variance Nk. The channel input X is
subject to a practical average power constraint E[X2] ≤ P .
The input alphabet X consists of M real valued symbols
: |X | = M . We study the case where the receiver SNRs
verifies SNR2 < SNR1, with SNRk = P

Nk
: the output at

receiver 2 is a degraded version of the output at receiver 1.
The optimal rates R0 and R1 for some broadcast strategy
satisfy the right hand side inequalities of (3) and (4). Thus
the achievable rates in our system model can be computed for
some θ ∈ [0, 1], by solving the following weighted sum rate
maximization problem:

max
PUX ,X

θ ·
[
I(X;Y1|U)− I(X;Y2|U)

]
+ (1− θ) · I(U ;Y2)

s.t.


pij ≥ 0 ∀(i, j) ∈ I × J∑
ij pij · x2j ≤ P∑
ij pij = 1

(6)
where pij = Pr{U = ui, X = xj}, j ∈ J = {0, ..,M − 1}
and i ∈ I = {0, .., |U| − 1}. When PX is constrained to
be uniform, the last constraint is replaced by

∑
i pij = 1

M .
I(X;Yk|U) where k ∈ {1, 2}, and I(U ;Y2) can be written
for the Gaussian channel with finite input alphabet case as 1

I(X;Yk|U) =
∑
i,j

∫ +∞

−∞
pijPYk|X(yk|xj)·

log
(
∑
j′ pij′)PYk|X(yk|xj)∑
j′ pij′PYk|X(yk|xj′)

dyk (7)

I(U ;Y2) =
∑
i

∫ +∞

−∞
(
∑
j

pijPY2|X(y2|xj))·

log

∑
j′ pij′PY2|X(y2|xj′)

(
∑
j′ pij′)(

∑
i′,j′ pi′j′PY2|X(y2|xj′))

dy2 (8)

1All logarithms are taken base 2.
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Here also, one can note that the optimization for the wiretap
channel is equivalent to the one for BCCM with θ = 1 and
constant U (6).

Clearly, the non-concave problem (6) can hardly be solved
using exhaustive search especially when M increases. An
iterative method is proposed below.

B. Numerical Solution

In order to solve the problem (6), we use an alternative
maximization of the Lagrangian with respect to X and PUX . A
similar method was proposed in [19] for the broadcast channel
without secrecy constraint. The Lagrangian L of problem (6)
can be written as:

L(PUX ,X , s) = θ ·
[
I(X;Y1|U)− I(X;Y2|U)

]
+ (1− θ) · I(U ;Y2) + s ·

(
P −

∑
ij

pij · x2j
)

(9)

For a given value of s, the maximization of L with respect
to PUX and to X is done iteratively until convergence:

P
(`)
UX = arg max

PUX∈C
L(PUX ,X (`−1), s) (10)

X (`) = arg max
X

L(P
(`)
UX ,X , s) (11)

where ` is the iteration index and C denotes the set of
constraints on PUX and can be defined either as C = {PUX :
pij ≥ 0,

∑
i,j pi,j = 1} or as C = {PUX : pij ≥ 0,

∑
i pi,j =

1
M } if symbols are used with equal probability. It is observed
in [15] that L(P

(`)
UX ,X , s) is a concave function in D where D

is the set of input alphabets with a minimum spacing between
symbols greater than d and d is a function of the SNR and
of the constellation size [15]. This condition was observed in
experiments for most values of studied SNR (except when
the value of s is very high such that s ·

(
P −

∑
ij pij · x2j

)
becomes the dominant part in L, then L is concave in X and
the optimal X contains null symbols.). A simplex method is
then used to solve (11) on D. Fig. 2 shows an example of
the contour of L as a function of symbol positions x0 and
x1 of a 4-PAM constellation (X = {x0, x1,−x1,−x0}) for
fixed s and PUX . We observe that the Lagrangian has one
global maximum and one local maximum which are located
in the regions x0 > x1 and x0 < x1. The Lagrangian also
has multiple minima in the region where x0 is close to x1.
From a practical point of view, this corresponds to a case
where the modulation has a tendency to degenerate to a smaller
size, therefore denoting a poor match between the SNR and
the constellation size. Thus, in simulations, we make multiple
initializations for x0 and x1 in the case of 4-PAM (in the
regions x0 > x1 and x0 < x1). In the same manner, for other
constellation cardinalities, we can identify the regions where
the function is concave. Then, we run the simplex algorithm
for multiple initializations and choose the result that achieves
the maximum value of the Lagrangian.

Now, we turn to the optimization problem in (10) which is
used when PUX is not constrained to be uniform. In the liter-
ature, there exists a Blahut-Arimoto type algorithm which en-
ables to maximize the secrecy rate R1 = I(X;Y1)−I(X;Y2)

x
0

x 1

0 1 2 3 4 5
0
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1

1.5
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2.5
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5

Figure 2. Contour of Lagrangian L. SNR1 = 10 dB, SNR2 = 4 dB,
s=0.03, PUX arbitrarily chosen, θ = 0.7. The maximum corresponds to
x0 = 3 and x1 = 1.

for the case of wiretap channel in which the eavesdropper’s
channel is noisier than the main channel. This algorithm pro-
posed in [21] is guaranteed to converge to a global maximum
since the function I(X;Y1)− I(X;Y2) is concave in PX for
a fixed X in this case [22]. For the general case of Gaussian
BCCM, the following lemma focuses on the (non)-concavity
of (10) when 0 ≤ θ < 1.

Lemma 1: (i) The receiver 1’s channel X → Y1 is less
noisy than the receiver 2’s channel X → Y2 if and only if
I(X;Y1|U)− I(X;Y2|U) is a concave function of PUX , (ii)
I(U ;Y2) is a difference of concave functions of PUX .

Proof: (i) is proven in the Appendix and (ii) is demon-
strated in [23, Appendix A].

Thus (10) is a non-concave optimization problem but it is
similar to the non-concave problem without secrecy constraint
considered in [19]. From the expressions of the mutual infor-
mation I(X;Yk|U) and I(U ;Y2), where k ∈ {1, 2}, we have
also the following lemma.

Lemma 2: Consider the case of superposition coding where
the alphabet of the transmitted signal is not a sum of two alpha-
bets for the common and the secret information respectively.
In this case, if P ∗(l)UX (s) is a solution of problem (10), then any
joint probability distribution PUX obtained by permuting the
rows of P ∗(l)UX (s) is also a solution of problem (10).

Proof: Lemma 2 comes from (7), (8) and the constraints
in (6) in which permuting the rows of the joint distribution of
probability does not change the function value in (10). Hence,
problem (10) has multiple solutions. However Lemma 2 does
not hold for superposition modulation, since in this scheme
U represents the alphabet of the common information. Thus
the constellation symbol positions in X will depend on the
values of U , i.e. X = U +X1 where X1 represents the signal
carrying the secret information. Consequently, permuting the
rows of PUX will change the mutual information values in
(7), (8) for superposition modulation strategy.
Therefore, obviously, in some of the considered situations, the
problem of interest has multiple solutions, and the uniqueness
of a global maximum cannot hold. This is indicated below.

In order to solve the optimization problem in (10) with
constraint set C we used a Blahut-Arimoto type algorithm
which can be done for the Gaussian BCCM using the same
method in [24] for the degraded broadcast channel without
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Step 0 s← s(0)

Step k Step 0 X ← X (0) where X = (x0, x1, .., xM−1)

Step ` P
(`)
UX = argmaxPUX∈C L(PUX ,X (`−1), s(k−1))

X (`) = argmaxX L(P
(`)
UX ,X , s

(k−1))

Stopping |L(P (`)
UX ,X

(`), s(k))− L(P (`−1)
UX ,X (`−1), s(k−1))|

criterion ≤ εL

s(k) =
[
s(k−1) − β

(
P −

∑
i,j p
∗
ij(s

(k−1)) · (x∗j (s(k−1)))2
)]+

where [.]+ = max(., 0)
Stopping
criterion |s(k) − s(k−1)| ≤ εs

Table I
NUMERICAL SOLUTION FOR SOLVING (6)

secrecy constraint. However since (10) is not concave in
PUX , the Blahut-Arimoto type algorithm can be demonstrated
to converge only when some specific conditions hold [24].
These conditions are given in Theorem 2 of [24]. Indeed,
if the solution of (10), P ∗(l)UX (s), lies in a set Tk,θ(P̃UX)
and the function L(PUX ,X (`−1), s) is concave in Tk,θ(P̃UX)

and the initial guess P
(0)(l)
UX (s) ∈ Tk,θ(P̃UX), the Blahut-

Arimoto type algorithm is shown to converge to the optimal
value. Tk,θ(P̃UX) is defined in [24] as the set of all the
points PUX ∈ Sk,θ , {PUX |L(PUX ,X (`−1), s) ≥ k} such
that PUX is reachable from P̃UX ∈ Sk,θ by a continuous
path. Therefore, the problem is now to choose an appropriate
initial point. It is observed in [15] that the size of the region
Tk,θ(P̃UX) where the objective function in (10) is concave
in PUX is larger when θ increases. Thus we have more
chance that the algorithm converges from a random initial
guess in this case. In our experiments, the initial guesses
are chosen randomly (avoiding “Degenerate cases” such as
uniform distribution, distribution with similarities [15] and
distribution with null elements) and the Blahut-Arimoto type
algorithm is observed to converge to reasonable solutions,
since the resulting rate regions have a very smooth shape.
In the case of general superposition coding, the algorithm
converges to one of the M ! solutions (Lemma 2). Note that
when θ = 0, the maxima of I(U ;Y2) are obtained when
U ≡ X . Note also that the algorithm proposed in [21] is
a particular case of the Blahut-Arimoto type algorithm for the
Gaussian BCCM when θ = 1.

Clearly, each iteration of the alternative maximization
method increases the objective function. In the experiments,
we have observed that this method converges at least to a
local maximum (denoted p∗i,j(s), x∗j (s), 0 ≤ j ≤ M − 1,
0 ≤ i ≤ |U| − 1).

Finally, the function g(s) = max
PUX ,X

L(PUX ,X , s) is convex

in s even L(PUX ,X , s) is not concave. This is because
L(PUX ,X , s) is linear in s for each (PUX ,X ), and g(s) is
the maximum of linear functions, and is therefore convex [25].
Since g(s) is convex, a gradient-type search is guaranteed to
converge to the global optimum s∗. Thus in order to update
the value of s, we use a gradient search method as follows:

s(k+1) =
[
s(k) − β

(
P −

∑
i,j

p∗ij(s
(k)) · (x∗j (s(k)))2

)]+
(12)

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

SNR
1
 [dB]

S
ec

re
cy

 r
at

e

 

 
Gaussian
2−PAM
4−PAM
8−PAM
16−PAM
32−PAM
64−PAM
128−PAM
256−PAM
uniform

Figure 3. Secrecy rate for a Gaussian wiretap channel using Gaussian
alphabet or M -PAM standard constellation where PX is uniform. SNR2

[dB]=SNR1 [dB]-2 dB

where [.]+ = max(., 0). We use a constant step size, i.e.,
β(k) = β whose value is chosen in experiments to be
sufficiently small and such that the value of s does not change
very much from an iteration to another. The optimal value of
s is found when |s(k) − s(k−1)| ≤ εs, where εs is the target
resolution.

The algorithm used to solve the optimization problem (6)
is summarized in Table I.

V. RESULTS AND DISCUSSION

This section provides an evaluation of the achievable rate
regions for Gaussian BCCM using various transmission strate-
gies.

A comparison between the achievable rate regions for
Gaussian BCCM using time sharing, superposition modu-
lation and superposition coding is provided. The effect of
constellation shaping is evaluated by analyzing the achievable
rate region curves obtained for an M -PAM constellation
(M ∈ {4, 8, 16, 32}) and for several pairs (SNR1, SNR2).
The comparisons of achievable rates are conducted in terms
of SNR savings for target achievable rates (Maximum Shaping
Gain) and in terms of Maximum Percentage of Gain on the
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Figure 4. Secrecy rate for a Gaussian wiretap channel using Gaussian
alphabet or M -PAM standard constellation where PX is uniform. SNR2

[dB]=SNR1 [dB]-10 dB

common message rate R0 or the secrecy message rate R1 or
the sum R0 +R1. These quantities are defined below.

Definition 1: Consider two transmission strategies (A and
B). The pair of rates (R1, R0) is achieved for (SNR1,SNR2)
with A and for (SNR1 + ∆SNR,SNR2 + ∆SNR) with B.
The shaping gain (with A compared to B) is ∆SNR. The
maximum shaping gain is defined as:

MGSNRdB
(A|B) = maxR0∆SNR (13)

The maximum percentage of gain on the secrecy message rate
is defined below and can be defined in the same way for the
other cases.

Definition 2: Consider two transmission strategies (A and
B). For a given pair of SNR (SNR1,SNR2) and a fixed value
of R0, the achievable pair of rates is (RA1 , R0) resp. (RB1 , R0)
with A resp. B. The gain on the achievable secrecy rate for
user 1 is given by

GR1
(A|B) =

RA1 −RB1
RB1

· 100 (%) (14)

The maximum gain on the achievable secrecy rate for user 1
(with A compared to B) is given by

MGR1(A|B) = maxR0GR1(A,B) (15)

A. Analysis of the secrecy rate

To understand the behavior of the achievable rate region
curves, we begin by analyzing the secrecy rate for the wiretap
channel, i.e. BCCM when U = const. (θ = 1). The conclu-
sions obtained here also apply in the presence of the common
message as shown in the next section.

Figures 3 and 4, show the achievable secrecy rate using
standard M -PAM constellations whose symbols are used with
equal probability, where M ∈ {2, 4, 8, 16, 32, 64, 128, 256},
the secrecy capacity achieved using Gaussian input, and the
performance of a PAM constellation with uniform distribution
input. Both figures depict the secrecy rate as a function of
SNR1, Fig. 3 corresponds to the case where the eavesdropper

channel SNR is 2 dB below SNR1, while in Fig. 4, the
difference is 10 dB.

Obviously, the secrecy rate should increase when the gap
between SNR1 and SNR2 increases for fixed SNR1, this is
observed in the corresponding figures. It is also observed in
Fig. 3 and 4 that when the SNR for both receivers is “high”,
the secrecy rate is null. This is in line with the results in [8] ,
[9] where it is shown that when a standard finite constellation
of M symbols is used and when symbols are chosen with
equal probability, the optimal transmission power may not
be given by the total available power, since when P → ∞,
both I(X;Y1) and I(X;Y2) converge to log2M . Thus, the
transmitter should use a cardinality M sufficiently high and
adapted to the target SNRs n order to obtain sufficient secrecy
capacity. It is also observed that the uniformly distributed input
always introduces a gap with the secrecy capacity even when
the cardinality of the input alphabet tends to ∞. It is seen
below that constellation shaping does not result in the same
drawback.
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Figure 5. Secrecy rate for a Gaussian wiretap channel using 4-PAM standard
constellation where PX is uniform and when X and PX are optimized (4-
PAM opt.). SNR2 [dB]=SNR1 [dB]-2 dB

Figures 5 and 6 show also the secrecy rate using standard
4-PAM constellation and the maximal secrecy rate obtained by
maximizing over both symbol positions and their probabilities
as a function of SNR1, where the eavesdropper channel SNR
is 2 dB and 10 dB respectively below SNR1. In Fig. 5 and
6, it can be observed that the joint optimization of symbol
positions and their probabilities seems to bring moderate gains
in secrecy rate for small SNRs. However, when translated
in SNR improvement, this gain is far from negligible. For
example, in Fig. 5, the 4-PAM standard with uniform PX
achieves a secrecy rate R1 = 0.23 bit/ch.use when SNR1 = 7
dB (SNR2 = 5 dB) which is achieved using the optimized
4-PAM at almost SNR1 = 5 dB (SNR2 = 3 dB); thus the
shaping gain is close to 2 dB in terms of SNR. The optimal
symbol positions when SNR1 = 5 dB (SNR2 = 3 dB) are
given by X = {4.03, 1.29,−1.29,−4.03} and the optimal
PX = {0.114, 0.386, 0.386, 0.114}. We observe that optimal
probabilities of symbols near origin are higher than the ones of
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Figure 6. Secrecy rate for a Gaussian wiretap channel using 4-PAM standard
constellation where PX is uniform and when X and PX are optimized (4-
PAM opt.). SNR2 [dB]=SNR1 [dB]-10 dB

symbols far from origin. Thus, the optimal distribution is very
similar to the sampling of a Gaussian distribution. We note
that in Fig. 5 and 6, the optimal transmission power when
SNR1 < 9 dB and SNR1 < 12 dB respectively is given
by the maximal available power as shown in Fig. 7 when
SNR2 = SNR1 − 2 dB.

The main difference between uniform and optimized con-
stellations is that when SNR1 is higher than a certain value,
full optimization of the secrecy rate prevents the secrecy rate
to vanish and brings significant gains compared to standard
4-PAM with equally probable symbols (eg. SNR1 ≥ 9 dB in
Fig. 5). The optimal transmit power is less than the maximal
available power when SNR1 ≥ 9 dB in Fig. 5 and it decreases
with SNR1 as shown in Fig. 7. This was already explained
in [8], [9] for uniform constellations. The novelty here is
the improvement brought by constellation shaping. Note also
that when SNR1 ≥ 9 dB in Fig. 5, the optimal probability
distribution is given by PX = {0.169, 0.331, 0.331, 0.169},
∀SNR1 and only symbol positions change with SNR1 in order
to conserve the maximum value of the secrecy rate when
SNR1 and SNR2 increase.

The next subsections are concerned not only with the
secrecy rate, but also with the tradeoff between the achievable
common rate and the corresponding secrecy rate.

B. Superposition modulation using M -PAM

The achievable rate region computation for superposition
modulation with M = 4 and using equiprobable symbols
(SMX ,PUX ,PX

) does not require to solve any optimization
problem. In SMX ,PUX ,PX

strategy, the total power P is
split such that α · P is used for the alphabet of the secret
information and (1 − α) · P for the alphabet of the common
information, with α ∈ [0, 1]. Thus, the four transmitted signal
constellation symbols can be expressed as a function of α
only [26]. Consequently, obtaining the maximal achievable
rate region for SMX ,PUX ,PX

and with M = 4, involves
the computation of I(X;Y1|U) − I(X;Y2|U) and I(U ;Y2)
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Figure 7. Optimal transmission power for a Gaussian WTC channel using 4-
PAM constellation given that the maximal allowed power is equal to P = 5.
SNR2 = SNR1 − 2 dB.
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Figure 8. Achievable rate regions with M = 4 and (SNR1,SNR2) =
(10, 8) dB

in function of α, knowing that PUX is uniform, and then to
vary α between 0 and 1. In Figs. 8 and 9, the achievable rate
regions are illustrated for the Gaussian BCCM with 4-PAM
inputs using various broadcast strategies when SNR1= 10 dB
and SNR2 ∈ {0, 8} dB.

The particular shape of the achievable rate region using
superposition modulation scheme in Fig. 8, comes also from
the fact that the common rate is not necessarily increasing
when the portion of power allocated to the common message
increases using finite alphabet inputs as explained in [27]. For
a fixed secrecy rate, the curve of achievable rate region using
superposition modulation with equally probable symbols can
have two possible values of the common message rate which
is not the case of the secrecy capacity region achieved with
Gaussian inputs. Thus, it is necessary to choose the good
portion of power for each message in order to avoid the “bad”
part of the rate region.
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Figure 9. Achievable rate regions with M = 4 and (SNR1,SNR2) =
(10, 0) dB

Consider for example the case where SNR1= 10 dB and
SNR2 = 0 dB. Users 1 and 2 receive the secret information
with a SNR equal to SNR′1 = α · P

σ2
1

and SNR′2 = α · P
σ2
2

respectively. When α = 1, SNR′1 = 10 dB and SNR′2 = 0 dB,
the secrecy capacity is equal to 0.51 bit/ch.use using a 2-PAM
constellation according to Fig. 4. We observe also in this figure
that the maximal secrecy rate is obtained when SNR1 = 6 dB
(SNR2 = −4 dB) and is equal to 0.6711 bit/ch.use. Thus
the optimal α = α∗ which maximize the secrecy rate in the
case of superposition modulation is such that α∗ · P

σ2
1

= 6

dB. Obviously if we solve (6) we cannot obtain the region
when α > α∗ because it is not optimal, in other terms, it does
not correspond to the solution of any θ ∈ [0, 1]. This is what
we can observe also from the achievable rate regions using
{8, 16, 32}-PAM.

M SNR1 SNR2 MGR0|1 (A|B) MGSNRdB
(A|B)

8 0.06% 0.24
4 10 6 0.477% 0.1

4 0.34% 0.03
2 0.14% 0

14 5.15%(M1=4,M2=2) 0.36

8 16 12 5.3%(M1=4,M2=2) 0.43

10 5.14%(M1=4,M2=2) 0.4

8 5.02%(M1=4,M2=2) 0.38

18 7.06%(M1=4,M2=4) 0.61

16 20 16 5.93%(M1=4,M2=4) 0.57

14 8%(M1=4,M2=4) 0.54

12 8.48%(M1=4,M2=4) 0.43

Table II
COMPARISON OF SMX ,PUX ,PX

(A) AND SMX ,PUX ,PX
(B) WITH

RESPECT TO MGR1
OR MGR0

AND MGSNRdB
(A|B)

In Fig. 10, achievable rate region with 4-PAM using
SMX ,PUX ,PX

is given for several pairs (SNR1,SNR2) such
that SNR1 − SNR2 = 2 dB. We observe that the maximal
secrecy rate is the same for all pairs and is achieved for α < 1
when SNR1 > 3 dB. However when SNR1 = 3 dB, the
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Figure 10. Achievable rate regions with M = 4 and for superposition
modulation where symbols are used with equal probability. The SNRs are in
dB.

maximal achievable secrecy rate is when α = 1 as SNR1 = 3
dB maximizes the secrecy rate for a 2-PAM with a gap equal
to 2 dB between user SNRs (see Fig. 3).

Regions of achievable rates (Fig 8 to 15) show the im-
provement obtained by optimizing symbol positions and the
joint probabilities (SMX ,PUX ,PX

(full optimization) compared
to SMX ,PUX ,PX

(optimization of X only)). In table II the
maximum gain in achievable rate on R1 or R0 is given
(MGR1(A|B) or MGR0(A|B)), depending if the full opti-
mization provides an horizontal or vertical gain in achievable
rates. The maximum SNR savings (MGSNRdB

) are also given
in table II for the 4-PAM, the 8-PAM when M1 = 4,M2 = 2
and for the 16-PAM when M1 = 8,M2 = 2. For the
other cases of 8-PAM (M1 = 2,M2 = 4) and 16-PAM
(M1 = 4,M2 = 4 and M1 = 2,M2 = 8), we did not evaluate
the gain in SNR because the maximum secrecy rate obtained
by full optimization (SMX ,PUX ,PX

) can not be reached by
superposition modulation using equally probable symbols even
when we increase the user SNRs. This is due to the fact that
in these cases and for the considered values of user SNRs,
the maximum secrecy rate will not necessarily increase when
the user SNRs increase as can be seen in Fig. 10. One can
observe that the maximum shaping gain increases with the
constellation size. Thus, constellation shaping for SM strategy
seems more useful for high values of M . Moreover, we
observe that independently of M , the maximum shaping gain
is very small when the gap between the user SNRs increases.
This is also the case for a broadcast channel model without
secrecy constraints [19]. The analysis of the optimal matrix
PUX (results not reported) when X = X1 +X2, such that X1

and X2 are two signals carrying the secret information and
the common information respectively, leads to the conclusion
that X1 and X2 are not independent in general when using
finite-size constellations.
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Figure 12. Achievable rate regions with M = 8 and (SNR1,SNR2) =
(16, 14) dB

C. Superposition modulation vs time sharing

This section compares the achievable rates for the Gaussian
BCCM using two classical schemes: time sharing using stan-
dard constellation and superposition modulation. Moreover,
we consider the case where symbols are used with equal
probability for practical constraints. Figures 8-15 show that
the achievable rate region can be divided into two parts,
such that in each part, one strategy is more efficient than the
other. This is also what is observed in [19] for a broadcast
channel model without secrecy constraints. The efficiency of
time sharing strategy increases with respect to superposition
modulation when SNR1 and SNR2 become closer. Table III
shows the maximum percentage of improvement in achievable
rate by user 1 (R0 + R1) using SMX ,PUX ,PX

, comparing to
TS strategy, in the achievable rate area where SMX ,PUX ,PX

outperforms TS. It can also be observed that the best improve-
ment happens when δSNR increases for all M ∈ {4, 8, 16}.
Thus superposition modulation should be preferred to time
sharing when users have very different SNRs.
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Figure 13. Achievable rate regions with M = 16 and (SNR1,SNR2) =
(20, 18) dB
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Figure 14. Achievable rate regions with M = 16 and (SNR1,SNR2) =
(20, 12) dB

D. Superposition coding

It is well known that the secrecy-capacity region for the
Gaussian BCCM is achievable using superposition modulation
scheme (SMX ,PUX ,PX

), a.k.a. signal superposition, where
U = X2. However, in the finite-input alphabet case, the
results show that the general case of superposition coding,
SCX ,PUX ,PX

, outperforms superposition modulation in terms
of achievable rate region. A detailed discussion about this
result for the two-user broadcast channel without secrecy con-
straint was given in [19]. In table III, the maximum percentage
of improvement in achievable rate by user 1 (R0 + R1) is
given using SCX ,PUX ,PX

, comparing to SMX ,PUX ,PX
(full

optimization). It can be observed that the maximum gain is
proportionally greater for small values of M since superpo-
sition modulation offers less flexibility in this case, while
superposition coding keeps all its power.
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M SNR1 SNR2 MGR1+R0
(A|B) MGR1+R0

(A|C)

8 4.51% 32.33%
6 12.54% 11.57%

4 10 4 24.06% 9.86%
2 35.22% 9.7%
0 48.23% 17.562%

14 7.3%(M1=4,M2=2) 17.48%
8 16 12 14.23%(M1=4,M2=2) 5.4%

10 22.12%(M1=4,M2=2) 1.03%
8 32.1%(M1=4,M2=2) 2.99%

18 7.09%(M1=8,M2=2) 6.93%
16 20 16 13.73%(M1=8,M2=2) 1.24%

14 19.94%(M1=8,M2=2) 0.11%
12 30.31%(M1=4,M2=4) 3.56%

Table III
COMPARISON OF SMX ,PUX ,PX

(A) VS TS (B). COMPARISON OF
SCX ,PUX ,PX

(A) VS SMX ,PUX ,PX
(C).

VI. CONCLUSION

In this paper, we derived the achievable rate region for the
Gaussian broadcast channel with confidential message using
finite input constellations for various broadcast strategies. The
simulation conducted in the previous section gives insights
for choosing the best strategy for a given situation. For
superposition modulation and the general case of superposition
coding, the achievable rate regions are maximized by optimiz-
ing over symbol positions and over the joint distribution of
probability. It is shown that, for finite modulations, the optimal
transmission power which maximizes the secrecy rate may not
be given by the total available power, whatever the allowed
flexibility (superposition modulation or coding). In addition,
full maximization of achievable rate region for superposition
modulation (a suboptimal strategy with reasonable complexity)
provides more significant improvements when the cardinality
of the input alphabet increases compared to the case where
only symbol positions are optimized. It is also observed that
superposition modulation should be preferred to time sharing
when users have very different SNRs. In that case, full
optimization is not necessary.

In the case of BCCM with finite input alphabet, superposi-
tion modulation is not the optimal strategy, like in the Gaussian
alphabet case. The general case of superposition coding can
provide significant gains when compared to practical schemes.

However in many cases, using practical schemes can achieve
near optimal rates and provides a good tradeoff between com-
plexity of implementation and efficiency. This paper provides
tools allowing to choose the appropriate complexity/efficiency
tradeoff.

APPENDIX

Proof of Lemma 1 (i): First, we recall that a function
f(PUX) is a concave function of the probability distribution
PUX if for all α, 0 ≤ α ≤ 1, and all probability distributions
P aUX and P bUX ,

αf(P aUX) + (1− α)f(P bUX) ≤ f
(
αP aUX + (1− α)P bUX

)
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Figure 15. Achievable rate regions with M = 32 and (SNR1,SNR2) =
(26, 16) dB

To prove Lemma 1 (i), we use the method for proving [22,
Theorem 2]. Indeed, for an arbitrary V with finite input alpha-
bet V , consider the Markov chain (U, V ) → X → (Y1, Y2).
Each v ∈ V specifies a probability distribution P vUX for X in
the manner

P vUX(u, x) = PUX|V (u, x|v), (u, x) ∈ U × X

We first note that

I(XV ;Y1|U)
i)
=I(X;Y1|U) + I(V ;Y1|UX)

ii)
=I(X;Y1|U) (16)

where i) follows from the chain rule for mutual information
and where ii) follows from the fact that (U, V ) → X →
(Y1, Y2) is a Markov chain so that I(V ;Y1|UX) = 0. We
note also that

I(XV ;Y1|U)
iii)
= I(V ;Y1|U) + I(X;Y1|UV ) (17)

where iii) follows from the chain rule for mutual information.
By combining (16) and (17), we can write:

I(V ;Y1|U) = I(X;Y1|U)− I(X;Y1|UV ) (18)

In the same way, we can show that

I(V ;Y2|U) = I(X;Y2|U)− I(X;Y2|UV ) (19)

From (18) and (19), we infer that

I(V ;Y2|U) ≤ I(V ;Y1|U)

if and only if

I(X;Y1|UV )− I(X;Y2|UV ) ≤ I(X;Y1|U)− I(X;Y2|U)
(20)
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But it can be shown, using the definition of mutual informa-
tion, that

I(X;Y1|UV )− I(X;Y2|UV )

=
∑
v∈V

PV (v) ·
[
I(X;Y1|U, V = v)− I(X;Y2|U, V = v)

]
=
∑
v∈V

PV (v) ·
[
I(X;Y1|U)− I(X;Y2|U)

]
Pv

UX

(21)

and

I(X;Y1|U)− I(X;Y2|U)

=

[
I(X;Y1|U)− I(X;Y2|U)

]
∑

v∈V PV (v)·Pv
UX

(22)

Using the definition of a concave function, the part (i) of
Lemma 1 follows immediately from (20), (21) and (22).
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