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Abstract 

Model Order Reduction Methods, like the Proper Orthogonal Decomposition (POD), enable to reduce 

dramatically the size of a FE model. The price to pay is a loss of accuracy compared to the original FE 

model that should be of course controlled. In this paper, we apply an error estimator based on the 

verification of the constitutive relationship to compare the reduced model accuracy with the full model 

accuracy when POD is applied. This estimator is tested on an example: a permanent magnet synchronous 

machine.  

1 Introduction 

To study electrical devices with the help of numerical approach, the Finite Element Method combined 

with a time-stepping scheme is often used. The computation time of the large system of equations 

obtained from the discretization of the Maxwell equations can be prohibitive with a fine mesh and a small 

time step is applied. To decrease the computation time, Model Order Reduction (MOR) methods can be 

an alternative since they enable to create a model of small size from a complete Finite Element (FE) 

model. The price to pay is a loss of accuracy compared to the original FE model. In the literature, the 

Proper Orthogonal Decomposition is one of the most popular MOR methods to solve problems in 

engineering [1]. The POD consists in performing a projection of the solution of the original model (FE 

model for example) onto a reduced basis, yielding a reduction of the size of the equation system. The 

snapshot approach is often used to determine the discrete projection operator between the original basis 

(generated from the mesh in the case of a FE model) and the reduced basis [2]. For example, when 

solving a FE model in the time domain, the idea is to evaluate the solution of the original model for the 
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first time steps (the snapshots) and then to extract from these snapshots the projection operator. Then, the 

reduced model is solved for the other remaining time steps. In computational electromagnetics, the POD 

method combined with the snapshot technique has been developed in order to study linear and non-linear 

problems or magnetostatic and quasistatic problems [3-7]. In the case of a rotating electrical machine, the 

snapshots correspond to the solution of the original model for different positions of the rotor [8,9]. The 

accuracy of the POD method depends on the number and also on the distribution of the snapshots on the 

whole interval of rotation. This aspect has been emphasised in [9] where the influence of the snapshot 

distribution on the accuracy of the reduced model in the case of a rotating permanent magnet synchronous 

machine has been clearly shown. Therefore, when applying the POD, an error estimator can be very 

useful not only to control the loss of accuracy versus the original FE model, but also to optimize the 

distribution of the snapshots. 

In this paper, an error estimator based on the verification of the magnetic constitutive relationship is 

developed in magnetostatics when POD is applied. This estimator enables to evaluate the distance 

between the numerical solution (obtained from the original or the full model) and the exact solution 

without knowing it [10,11]. This estimator is then used to compare different snapshot distributions in 

terms of accuracy. In the first part, the error estimator is developed for a magnetostatic problem. In a 

second part, the reduced numerical model obtained from the snapshot POD approach is presented. 

Finally, a permanent magnet synchronous machine is studied to illustrate the proposed approach. 

Different distributions of the snapshots will be studied and compared using the proposed error estimator.  

2 Error estimation  

2-1 Magnetostatic Problem 

 

Let consider a couple (H,B) verifying the two equilibrium equations in magnetostatics on a domain D and 

the conditions on the boundary Γ (Γ=Γh∪Γb and 0=Γh∩Γb) that is to say: 

 

curl  H = J and nxH=0 on Γh 

div B = 0 and n.B=0 on ΓB 

(1.a) 

(1.b) 

 

with J the current density and n the outward unit vector. The behaviour of the material is assumed to be 

linear and we denote by µ the permeability. If the couple (H,B) verifies the behaviour law B=µH on D 

then it is equal to the exact solution (Hex,Bex) of the magnetostatic problem. We consider now the term ε 

such that: 
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1−µµ−=ε HB  (2) 

  

with ∫ µ=−µ
D

-12 dDYYY 1 an L2-norm since the permeability µ is a strictly positive function. Then, it can be 

shown that [10]: 

222
µµ −+−=ε − exex 1 HHBB  (3) 

  

The relationship (3) shows that the scalar ε is equal the sum of the two terms representing the distances 

either between B and Bex or H and Hex. If ε is equal to zero then the couple (H,B) is equal to the exact 

solution (Hex,Bex). If ε is not equal to zero, ε is an error estimator because it is a bound of the distance 

between the admissible field and the exact solution (3).  

In practice, this error estimator is commonly used to evaluate the discrepancy error introduced by the 

discretisation of space when applying the Finite Element Method. The admissible couple (H,B) is 

calculated from the solution of the dual formulations in magnetostatics [10]. In the case of the vector 

potential formulation, from (1.a), the magnetic flux density B is expressed such as B = curl A  with A the 

vector potential and nxA=0 on Γb with. Then, according to (1.b), in the case of the vector potential 

formulation, the following equation is solved:  

 

curl  (µ−1curl A)  = J (4) 

 

In the case of the scalar potential formulation, from (1.b), the magnetic field H is expressed such as H = 

Hs - grad Ω with Ω the scalar potential, curl Hs = J, nxHs=0 on Γh and Ω = cte on Γh. Then, according 

to (1.a), in the case of the scalar potential formulation, the following equation is solved:  

 

div (µ (ΗΗΗΗs −grad Ω)) = 0 (5) 

 

The solution of the scalar (resp. vector) potential formulation gives a magnetic field H (resp. a magnetic 

flux density B) verifying (1.a) (resp. (1.b)). Then, from the couple (H,B) obtained by solving both 

potential formulations,  the error is estimated by calculating the scalar ε using (2).  
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2-2 FE Model for an electrical machine 

 

We assume that the domain D is divided into two parts: the static part and the moving part. In the 

following, we consider only rotation but the method can be also applied for translation or for a 

combination of both. We denote by an angle θ the angular position of the moving part with respect to the 

static part. Then, the magnetic field distribution depends on the angle θ. Neglecting the eddy currents, the 

modelling of the electrical machine considered in the following is based on the magnetostatic formulation 

(see section 2.1) and is solved using the Finite Element Method. The movement is taken into account 

using the locked step technique. The angular positions θi (1≤i≤N) are then equally distributed in the 

interval [0,2π]. At each angular position θ=θi (1≤i≤N), both potential formulations are solved. For each 

formulation, the following linear equation system is [8]: 

 

M (θ) X(θ)=F(θ)  (6) 

 

with M (θ) the stiffness matrix, F(θ) the source vector and X(θ) the vector of the Degrees of Freedom 

(DoFs). The number of DoFs is denoted by n. The DoFs in the scalar potential formation are the values of 

the scalar potential Ω at the nodes of the mesh. The magnetic field H i obtained from the scalar potential 

formulation at θ=θi verifies (1.a). In the vector potential formulation, the DoFs are the circulations of the 

potential A along the edges. The magnetic flux density Bi obtained by the vector potential formulation at 

θ=θi verifies (1.b). For any angular position θ, it is straightforward to extrapolate a couple (H(θ),B(θ)) 

verifying (1.a) and (1.b) for any position θ∈[θi,θi+1] as: 
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(7) 

 

By applying (2), we can obtain an estimation of the error εFEM(θ) in function of the position θ due to the 

FE discretisation. A global error εFEM,GLO can be obtained by integrating the error εFEM(θ) on a period. 
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3 Model Order Reduction  

 

In order to reduce the computation time required to solve (6), the Proper Orthogonal Decomposition 

method is used [1][2]. The vector X(θ) is approximated in a reduced basis by using a vector Xr(θ) of size 

Ns (Ns<<n) and a discrete projection operator  ΨΨΨΨ such that: 

 

X(θ) ≈ ΨΨΨΨ Xr(θ)  (8) 

 

To construct the operator ΨΨΨΨ, the snapshot approach is typically used [2]. The full problem (6) is solved 

for Ns angular positions θi. The Ns solutions are so-called snapshots. We denote by S the 1xNs vector of 

position indices of the snapshots (i=Sj is the index the position θi of the jth snapshot). Then, a snapshot 

matrix M s is built from these Ns snapshots such that M s=(X j)1≤j≤Ns with X j the solution X(θi) and i the jth 

entry of the vector S. Applying a Singular Value Decomposition, the matrix M s can be decomposed under 

the form: 

 

∑
=

==
sN

1i

t
iiis Σ WV WVΣM  (9) 

 

with Vn×n and WNs×Ns orthogonal matrices and ΣΣΣΣn×Ns the diagonal matrix of the singular values Σi. The ith 

row of W corresponds to the components of the ith vector of the matrix M s projected in the reduced basis 

formed by the Ns vectors of the matrix VΣΣΣΣ. Then, the operator ΨΨΨΨ is a selection of r vectors of the matrix V 

corresponding to the singular values Σi higher than a given threshold (fixed arbitrarily). Finally, by 

combining (6) and (8), the reduced model to be solved can be written as: 

 

M r(θ) Xr(θ)=Fr(θ) (10) 

 

with M r(θ)=tΨΨΨΨM (θ)ΨΨΨΨ and Fr(θ)=tΨΨΨΨF(θ). The size of the equation system (10) is rather small compared to 

(6) since r<<n. In Figure 1, we give a flow chart gathering all the different steps of the snapshot POD, 

described above.  

 

The system (10) is solved for each angular position θ=θi giving a solution Xr(θi), then by applying (8) an 

approximation of the solution X(θi) of (6) is obtained. The question of the approximation quality is then 



6 

posed since the discrepancy comes not only from the FE discretisation but also from the process of 

reduction. The solution of the reduced problem using both potential formulations at each time step 

enables to calculate a couple (H’ (θ),B’ (θ)) verifying (1.a) and (1.b) for any angular position θ (see (5)). 

Then an error εMOR(θ) can be defined calculating (3) for each position. A global error εMOR,GLO can be 

also defined by integrating εMOR(θ) over a period. 

Choice of the angular
positions to calculate
the Ns snapshots

Solution of Ns full FE
model for the Ns

angular positionsθi,
i∈S

Singular Value
Decomposition of the
matrix M s=(X1,….,XNs)

Selection of the r most
representative vectors of
V=(V1,…,Vn) to
construct the operator
ΨΨΨΨ=(V1,…,Vr)

Determination of the
reduced model from the
full FE model M (θ)
X(θ)=F(θ)

Reduced model 
M r(θ) Xr(θ)=Fr(θ)  with M r(θ)=tΨΨΨΨM (θ)ΨΨΨΨ

Fr(θ)=tΨΨΨΨF(θ)

S={S1,…,SNs}

X1,…,XNS with X j=X(θSj) 

M s=VΣΣΣΣW

ΨΨΨΨ

 
Figure 1: Flow chart describing the process to obtain the reduced model from the full FE model by 

applying snapshot POD 

 

5 Application  

 

The 8-pole permanent magnet synchronous machine studied at no load operation is presented in Figure 2. 

The full FE model with 40449 nodes and 53672 prisms has been solved for 180 angular positions 

θ∈[0,90°] (the angle step is equal to 0.5 degree). The aim of the study is to analyse the error related to the 

choice of the snapshots. Three configurations for the construction of the reduced basis are considered. For 

the first configuration, the reduced basis is determined from Ns snapshots corresponding to the first Ns 
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angular positions. For the second configuration, the reduced basis is determined from Ns snapshots 

uniformly distributed in [0,90°] that is to say that the angular position of the snapshots are θj =90(j-1)/Ns 

with j∈[1,Ns]. For the last configuration, we consider all positions considered in the FE model as 

snapshots but only the r first vectors of VΣΣΣΣ are considered to construct the projection matrix ΨΨΨΨ. 

The last configuration has no practical interest because it requires the solution of the full FE model for all 

angular positions. This configuration, however, leads to the best reduced basis for a given NS. In the 

following, the last configuration will  be considered as a reference enabling to evaluate the accuracy of 

the two first configurations which are practically relevant because they only require the solution of the 

full problem for Ns positions (Ns<<N).  

 

 

Figure 2: Permanent magnet machine 

 

Figures 3, 4 and 5 give the errors εFEM(θ) of the reference model (i.e. full model) and the errors εMOR(θ) 

for different values of Ns and for the three configurations. For all configurations, the error of the reduced 

model decreases with the number of snapshots. For the first configuration where the snapshots correspond 

to the first time steps,  the error εMOR(θ) is equal to εFEM(θ) obtained from the full model for these angular 

positions. But for θ greater than Ns*90/N, εMOR(θ) differ significantly from εFEM(θ). For the second 

configuration, we notice that the error given from the reduced model are the same as the one of the 

reference model for the snapshots used to determine the reduced model (θj =(j-1)*90/Ns with j∈[1,Ns]). 

The maximum of the error is located at the center between two successive snapshots and this maximum 

value decreases with an increasing number of snapshots. For the last configuration, the error obtained 

from the reduced model is close to the reference for Ns=12.      
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Figure 3: Evolution of the error estimation for the 

first configuration 
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Figure 4: Evolution of the error estimation for the 

second configuration 
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Figure 5: Evolution of the error estimation for the third configuration 

 

We denote by εMOR,GLO and εFEM,GLO the global error obtained from the reduced and reference models. 

Figure 6 presents the ratio |εFEM,GLO-εMOR,GLO|/ εMOR,GLO as a function of the number of snapshots for all 

configurations. In order to compare the error on the magnetic field, an error estimation based on the 

magnetic flux linked to the first stator winding is defined. For all positions of the rotor, the L2-norm of 

the difference of the magnetic flux linkage obtained from the two formulations is computed by ∆Φ=|ΦA-

ΦΩ|2 with ΦA and ΦΩ the vectors of the magnetic flux linkage for all positions obtained from the vector 

and scalar formulations. Figure 7 shows the ratio |∆ΦFEM-∆Φ MOR|/∆ΦFEM as a function of the number of 

snapshots for all configurations. For both error estimators, the dependences of the error on the number of 

snapshots are similar meaning that the error estimator ε represents correctly the discrepancy on the 

magnetic flux linkage even after reduction. The errors decrease when the number of snapshots increases. 
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With the first configuration, the error decreases slowly compared to the others ones. For the second and 

the third configurations, the shapes of the errors are similar: the error obtained from the third 

configuration is smaller than the one associated with the second configuration when the number of 

snapshots is larger than 2. As explained before, the error of the third configuration can be considered as 

the reference error of the reduced model. With the second configuration, it is possible to obtain errors 

close to those of the third configurations when the Ns snapshots are uniformly distributed in [0,90°]. In 

order to compare the reduced basis generated from the second and third configuration, Figures 8 and 9 

show the distributions of curl  ΨΨΨΨi  for i={1,4} obtained from the vector potential formulation. The 

distributions are similar for the three first vectors and a difference firstly appears for the fourth vector. 

Physically, the distribution of curl  ΨΨΨΨ1 can be interpreted as a homopolar field component. The 

distributions of curl  ΨΨΨΨ2 and curl  ΨΨΨΨ3 are similar but shifted with an electrical angle of π/2. They can be 

interpreted as longitudinal and transverse field distributions of the magnetic field density.  
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Figure 6: Evolution of the error estimation 
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Figure 7: Evolution of the error  

|∆ΦFEM-∆Φ MOR|/∆ΦFEM (%) of the magnetic flux 

linkage linked with the first winding 

 

 



10 

    

Figure 8: Distributions of curl  ΨΨΨΨi  for i={1,4} obtained from the second configuration 

   
 

Figure 9: Distributions of curl  ΨΨΨΨi  for i={1,4} obtained from the third configuration 

 

In order to evaluate the magnetic flux linkage obtained from the second and third configurations, Figures 

10 and 11 show the magnetic flux linkage deduced from the vector potential formulation for different 

numbers of snapshots and for both configurations. The magnetic flux linkage are similar nevertheless, as 

shown in Figure 8, the result obtained from the third configuration converges toward the reference faster 

than the one of the reduced model. In order to obtain an acceptable shape, the reduced model deduced 

from the third configuration requires 8 vectors in the reduced basis whereas for the second configuration, 

16 vectors are necessary. Figure 12 presents the distribution of the magnetic flux density obtained from 

the reference configuration and the difference of the distribution between the reference and this from the 

second and third configurations. The number of snapshots is 16 for the second configuration and 12 for 

the third configurations in order to keep the same range of the error.  We can see that the maximum 

difference is not located where the magnetic flux density is maximum. 
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Figure 10: Evolution of the magnetic flux linkage 

linked with the first winding obtained from the 

vector formulation and the second configuration 
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Figure 11: Evolution of the magnetic flux linkage 

linked with the first winding obtained from the 

vector formulation and the third configuration   

 

   

Figure 12: Distribution of the magnetic field density (T) in the stator obtained from the vector potential 

formulation and the difference of the distribution between the reference and this from the second and 

third configurations (reference, second configuration with Ns=16 and third configuration with Ns=12) 

 

6 Conclusion 

 

In this paper, an error estimator based on the discrepancy of the constitutive relationship has been 

introduced in order in evaluate the quality of a reduced model obtained from the snapshot POD method. 

This error estimator has been applied successfully to compare different snapshot distributions for a 

rotating permanent magnet synchronous machine. It has been found that a uniform distribution of the 

snapshots is almost optimal and enables to get results which are very close to the original model but only 

with a dozen of snapshots. The error estimator can be very useful in numerous other applications. For 
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example, it can be applied to determine adaptively the snapshot distribution. Indeed, according to a given 

distribution of snapshots, the error in function of the position can be estimated. For the positions where 

the error is the highest, the full problem can be solved to enrich the set of snapshots. The error estimator 

can be used to compare different MOR methods like snapshot POD, PGD or other reduction methods in 

the case of rotating electrical machines.   
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