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Introduction

In many physical, engineering or financial mathematics models based on random perturbations, the usual construction is performed by using the standard white noise and studying the resulting diffusion process. The Gaussian feature and the continuity of paths of the Brownian motion are essential when choosing the tools used for this kind of situation. During the last fifteen years, the study of some particular phenomena, as discontinuous behaviour of paths or self-similarity in time scale, focuses on another type of random perturbation, mainly an α-stable Lévy noise. The resulting processes are called in physical literature anomalous (fractional) diffusions or Lévy flights.

In this paper, we consider the one-dimensional and non-linear Langevin type equation driven by an α-stable Lévy process. Let us denote by x ε t the one-dimensional process describing the position of a particle at time t ≥ 0, having the speed v ε t

x ε t = x 0 + t 0 v ε s ds, t ≥ 0, (1.1) 
and such that v ε t is a small α-stable Lévy process in a potential U(x) := 2 β+1 |x| β+1 ,

dv ε t = εdℓ t - 1 2 U ′ (v ε t )dt, v ε 0 = v 0 , (1.2) 
in other words v ε t verifies the following integral equation

v ε t = v 0 + εℓ t - t 0 sgn(v ε s )|v ε s | β ds, t ≥ 0. (1.3)
Here β > -1 and {ℓ t : t ≥ 0} is an α-stable Lévy process, α ∈ (0, 2]. If α ∈ (0, 2), the Lévy process is a pure jump process with càdlàg paths and the jump measure is given by ν(dz) = |z| -1-α 1 R\{0} (z)dz.

The 2-stable Lévy process is the standard Brownian motion {b t : t ≥ 0} which is continuous. In all cases, the process has the property of self-similarity which means that the processes {ℓ t : t ≥ 0} and {c -1 /α ℓ ct : t ≥ 0} have the same law, for any c > 0.

The case of a harmonic potential (β = 1, linear equation), when the speed is a Ornstein-Uhlenbeck process, was already considered by Hintze and Pavlyukevich [START_REF] Hintze | Small noise asymptotics and first passage times integrated Ornstein-Uhlenbeck process driven by α-stable Lévy process[END_REF]. The dynamic of the integrated Ornstein-Uhlenbeck process appears in some financial mathematics (volatility) models (see for instance Barndorff-Nielsen and Shephard [START_REF] Barndorff-Nielsen | Integrated OU processes and non-Gaussian OU-based stochastic volatility models[END_REF]) or in models in physics of plasma (see for instance Chechkin, Gonchar and Szydlowski [START_REF] Chechkin | Fractional kinetics for relaxation and superdiffusion in a magnetic field[END_REF]). In the paper by Hintze and Pavlyukevich, the authors study the asymptotic behaviour of the integrated Ornstein-Uhlenbeck and prove that this process converges weakly, as ε → 0, to the underlying α-stable Lévy process. In particular, when the driving process is a Brownian motion (α = 2), the asymptotic behaviour is Gaussian. In [START_REF] Hintze | Small noise asymptotics and first passage times integrated Ornstein-Uhlenbeck process driven by α-stable Lévy process[END_REF], asymptotics of the first exit time from an interval are deduced. Several physical papers pointed out that new interesting phenomena appear when one considers super-harmonic potentials (see for instance Metzler, Chechkin, Klafter [START_REF] Metzler | Levy statistics and anomalous transport: Levy flights and subdiffusion[END_REF]).

Our goal is to answer to the same question in the situation of a super-harmonic potential (non-linear equation): what is the asymptotic behaviour of the position process x ε t , as ε → 0 ? On the one hand, the non-linear case introduces new technical difficulties, mainly since the solution is no longer explicit. Indeed, this fact was essential to prove weak convergence in the linear case. On the other hand, different conditions on the two parameters α and β will generate different asymptotics for the position process. The intuition suggests that the big jumps should be compensated by a strong negative drift (for instance if β > 1) and small jumps should have some regularising effect. In the present paper, we answer to the question by showing that for α and β in some unbounded domain, the position process x ε t will behave as a Brownian motion when ε goes to 0. In other words, we get Gaussian asymptotic behaviour even if α is smaller than 2, provided that β is not very small, more precisely if β + α 2 > 2. When α and β are in somehow "small" the previous heuristic fails. To get convergence toward a stable process, one needs to change the approach and other technical difficulties appear (this case will be presented in a forthcoming paper, see [START_REF] Gradinaru | Small noise asymptotics of solutions of the Langevin equation with non-linear damping subject α-stable Lévy forcing[END_REF]).

To state the main result of the present paper, we will perform some scaling transformations. Without loss of generality, we can assume that the initial position is the origin x 0 = 0. Moreover we will assume that the initial speed vanishes v 0 = 0, contrary to the linear case. By using the self-similarity, it is clear that the process {L ε t := εℓ ε -α t : t ≥ 0} is also an α-stable process. Let us denote, for t ≥ 0,

X ε t := x ε ε -α t and V ε t := v ε ε -α t (1.4)
satisfying, respectively,

X ε t = 1 ε α t 0 V ε s ds and V ε t = L ε t - 1 ε α t 0 sgn(V ε s )|V ε s | β ds. (1.5) Set Ľε t := L ε t ε α 2 /(α+β-1) ε α /(α+β-1) = ℓ t ε -α(β-1) /(α+β-1) ε (β-1) /(α+β-1)
and

V ε t := V ε t ε α 2 /(α+β-1) ε α /(α+β-1) , (1.6) 
provided that α + β -1 > 0. Again by self-similarity, Ľε is distributed as an α-stable Lévy process and we have

X ε t = ε α(2-β) α+β-1 tε -α 2 /(α+β-1) 0 V ε s ds and V ε t = Ľε t - t 0 sgn( V ε s )| V ε s | β ds. (1.7)
Let us note that if α = 2, all previous computations hold true with ℓ, L or Ľ replaced respectively by b, B or B a standard Brownian motion. Our main result is the following:

Theorem 1.1. Assume that 0 < α ≤ 2 and β + α 2 > 2.
There exists a positive constant κ α,β such that the process ε

α(β+ α /2-2) α+β-1 x ε ε -α t : t ≥ 0 = ε α(β+ α /2-2) α+β-1 X ε t : t ≥ 0 (1.8)
converges in distribution toward a Brownian motion process with variance κ α,β , as ε → 0. Moreover, if α = 2, the result is true even for -1 < β ≤ 1.

Remark 1.2.

1. If the driving noise is the Brownian motion α = 2, the convergence in the theorem holds in the space of continuous functions C([0, ∞)) endowed by the uniform topology. If the driving noise is α-stable with α ∈ (0, 2), the convergence in Theorem 1.1 holds in the Skorokhod space of càdlàg functions D([0, ∞)) endowed by J 1 (or simple) Skorokhod topology. Our situation is simpler than in [START_REF] Hintze | Small noise asymptotics and first passage times integrated Ornstein-Uhlenbeck process driven by α-stable Lévy process[END_REF] since the limit is a continuous paths process.

2. If the driving noise is the Brownian motion α = 2, the normalizing factor is ε 2(β-1) /(β+1) and it behaves differently following with the position of β with respect to 1 (if β = 1, the position process X ε converges in distribution toward a standard Brownian motion, see also Remark 2.4 below).

3. The case when β + α 2 = 2 should be considered as a critical for some phase transition from Gaussian to stable case. It should be reasonable that there is some continuity but the proof seems more delicate since natural integrability conditions are not fulfilled.

4. The constant κ α,β has an integral representation (see (2.9) and (3.28) ) and it is more explicit when the driving noise is the Brownian motion (α = 2).

5. Again, as an application, one can find asymptotics of the first exit time from an interval : Corollary 2.1, p. 269, in [START_REF] Hintze | Small noise asymptotics and first passage times integrated Ornstein-Uhlenbeck process driven by α-stable Lévy process[END_REF] applies.

Let us explain the method of proof and the organisation of the paper. To simplify the notations, all along the paper we will denote

θ = θ α,β := α α + β -1 ∈ (0, 1). (1.9)
It is a simple observation that

ε θ(β+ α 2 -2) X ε t = ε αθ 2 tε -αθ 0 V ε s ds , hence Theorem 1.
1 is in fact a second order type ergodic theorem. By using stochastic calculus, we will show that the latter quantity is a sum of a square integrable martingale and a term which tends in probability toward 0 as ε → 0. The result is then obtained by using the functional central limit theorem for martingales and the continuous-mapping theorem.

In the next section, we consider the case when the driving noise is the Brownian motion: in this case computations are performed by using Itô's calculus and are more explicit. For instance, the constant κ 2,β can be written in terms of the scale function and the speed measure. In Section 3, we follow the same structure of the proof for a pure jump driving noise. Computations are more technical and new ideas are needed: for instance, we need to find and use a Lyapunov function which allows to perform the same reasoning by using Lévy-Itô's calculus. We collect in the Appendix the technical proofs.

Brownian motion driving noise

Recall that in this case, {b t : t ≥ 0} is a standard one-dimensional Brownian motion, β > -1 and we set

Bε t := B ε t ε 4 /(β+1) ε 2 /(β+1) = b t ε 2(1-β) /β+1 ε (β-1) /(β+1) , and 
V ε t := V ε t ε 4 /(β+1) ε 2 /(β+1) . (2.1)
Recall also that

X ε t = ε 2(2-β) (β+1) tε -4 /(β+1) 0 V ε s ds and V ε t = Bε t - t 0 sgn( V ε s )| V ε s | β ds . (2.2)
Bε is distributed as a standard Brownian motion so, to simplify the notation, we will suppress the index ε, as well as for V ε .

2.1 The speed process V ε x 0 e -c β (y) dy and m β (dx) := 2e c β (x) dx, where c β (x) := -

2 β + 1 |x| β+1 . (2.3) Since ∞ 0 m β ([0, x]
)e -c β (x) dx = ∞, by Theorem 52.1, p. 297 in [START_REF] Rogers | Diffusions, Markov Processes, and Martingales[END_REF], the pathwise uniqueness holds to (2.2 2 ). Finally, there exists a pathwise unique strong solution V to the equation (2.2 2 ).

Convergence in probability

The main result of this section is the following Proposition 2.1. As ε → 0, {V ε t : t ≥ 0} converges to 0 in probability uniformly on each compact time interval.

By (2.1 2 ), the relation between V ε and V is V ε t = ε 2 /(β+1)
Vt ε -4 /(β+1) . To prove Proposition 2.1, we need a preliminary result: Lemma 2.2.

Fix p ≥ 2.

There exists a positive constant C p,β such that, for any t ≥ 0,

E | Vt | p ≤ C p,β t.
(2.4)

2. Fix p ≥ 4 and T > 0. There exists a positive constant C ′ p,β such that

E sup 0≤t≤T | Vt ε -4 /(β+1) | p ≤ C ′ p,β T 2 ε -8 /(β+1) . (2.5) 
Proof of Proposition 2.1. Taking p > 4 in Lemma 2.2, we deduce that for any T > 0, as ε → 0, sup 0≤t≤T |V ε t | converges to 0 in L p (Ω), and the conclusion follows.

Proof of Lemma 2.2. By using Itô's formula and the equation (2.2 2 ), we can write

| Vt | p = p t 0 sgn( Vs )| Vs | p-1 d Bs + p t 0 (1/2)(p -1)| Vs | p-2 -| Vs | p-1+β ds Since β > -1, there exists a constant C p,β > 0 such that p (1/2)(p -1)|x| p-2 -|x| p-1+β ≤ C p,β , ∀x ∈ R.
We deduce that

| Vt | p ≤ C p,β t + p t 0 sgn( Vs )| Vs | p-1 d Bs (2.6)
We show that

t 0 sgn( Vs )| Vs | p-1 d Bs is a martingale. Fix T > 0, for all t ≤ T , since (a + b) 2 ≤ 2(a 2 + b 2 ) and |x| 2p-2 ≤ 1 + |x| 2p
, by using the Burkholder-Davis-Gundy inequality, we can see that there exists a positive constant

C ′ 1 such that E sup 0≤u≤t | Vu | p 2 ≤ 2C 2 p,β T 2 + 2p 2 E sup 0≤u≤t u 0 sgn( Vs )| Vs | p-1 d Bs 2 ≤ 2C 2 p,β T 2 + 2p 2 C ′ 1 t 0 E | Vs | 2p-2 ds ≤ 2p 2 C ′ 1 T + 2C 2 p,β T 2 + 2p 2 C ′ 1 t 0 E | Vs | 2p ds ≤ 2p 2 C ′ 1 T + 2C 2 p,β T 2 + 2p 2 C ′ 1 t 0 E sup 0≤u≤s | Vu | p 2 ds.
By Gronwall's lemma, we get, for all t ≤ T ,

E sup 0≤u≤t | Vu | p 2 ≤ (2p 2 C ′ 1 T + 2C 2 p,β T 2 )e 2p 2 C ′ 2 T . Hence t 0 sgn( Vs )| Vs | p-1 d
Bs is a martingale and we get (2.4) by taking expectation in (2.6). It is now possible to improve the inequality (2.4). Indeed, it can be used to see that

E sup 0≤t≤T | Vt ε -4 /(β+1) | p = E sup 0≤t≤T | Vt ε -4 /(β+1) | p /2 2 ≤ p 2 2 E sup 0≤t≤T t ε -4 /(β+1) 0 | Vs | p /2-1 d Bs 2 + 2 C 2 p /2,β T 2 ε -8 /(β+1) ≤ p 2 2 C ′ 1 T ε -4 /(β+1) 0 E | Vs | p-2 ds + 2C 2 p /2,β T 2 ε -8 /(β+1) ≤ p 2 4 C ′ 1 C p-2,β T 2 ε -8 /(β+1) + 2C 2 p /2,β T 2 ε -8 /(β+1) . Therefore (2.5) follows taking C ′ p,β := p 2 4 C ′ 1 C p-2,β + 2C 2 p /2,β .

Ergodicity

Recall that we introduced the scale function and the speed measure in (2.3). Since s β (∞) = ∞ and m β (R) < ∞, the diffusion V is regular (see for instance (45.2) and (46.10) pp. 272-275 in [START_REF] Rogers | Diffusions, Markov Processes, and Martingales[END_REF]) and is a recurrent and ergodic process with the invariant measure m β (see for instance Theorem 53.1, p. 300 in [START_REF] Rogers | Diffusions, Markov Processes, and Martingales[END_REF]). Therefore, for all

f ∈ L 1 (m β ), lim T →∞ 1 T T 0 f ( Vs )ds = 1 m β (R) R f (x)m β (dx), almost surely. (2.7)

The position process X ε

We recall that the infinitesimal generator of V is given by L

2,β = 1 2 d 2 dx 2 -sgn(x)|x| β d dx . Introduce g β (x) := x 0 +∞ y -2ze c β (z) dz e -c β (y) dy, x ∈ R, (2.8) 
and note that (L 2,β g β )(x) = x, for all x ∈ R. Set

κ 2,β := 1 m β (R) R g ′ β (x) 2 m β (dx) = - 2 m β (R) R xg ′ β (x)m β (dx) (2.9) 
(the latter equality is obtained by integrating by parts). We can give now the proof of the main result.

Proof of Theorem 1.1 for the case α = 2. By applying Itô's formula, we can see that

g β ( Vt ) = t 0 g ′ β ( Vs )d Bs + t 0 (L 2,β g β )( Vs )ds = t 0 g ′ β ( Vs )d Bs + t 0
Vs ds, and therefore

ε 2(β-1) /(β+1) X ε t = -ε 2 /(β+1) t ε -4 /(β+1) 0 g ′ β ( Vs )d Bs + ε 2 /(β+1) g β ( Vt ε -4 /(β+1) ) .
The continuous local martingale

M ε t := -ε 2 /(β+1) t ε -4 /(β+1) 0 g ′ β ( Vs )d Bs
has the quadratic variation

M ε t = ε 4 /(β+1) t ε -4 /(β+1) 0 g ′ β ( Vs ) 2 ds .
As a consequence of (2.7), for all t, M ε t → κ 2,β t a.s., as ε → 0, where κ 2,β is given by (2.9), and it is the constant in the statement of Theorem 1.1. Indeed, using Whitt's theorem (see Theorem 2.1(ii), p. 270 in [START_REF] Whitt | Proofs of the martingale FCLT[END_REF]), we deduce that M ε converges in distribution (as a process) toward κ 1 /2 2,β B. We will prove that the second term in the right hand side converges in probability uniformly on compact sets to 0. At this level, we need a technical result: Lemma 2.3. There exist two positive constants µ β , ν β such that for all x ∈ R,

|g β (x)| ≤ µ β |x| (2-β)∨1 + ν β .
(2.10)

We postpone the proof of the lemma to the Appendix and finish the proof of Theorem 1.1 in the case α = 2. By using the classical inequality

(a + b) 2m ≤ 2 2m-1 (a 2m + b 2m ), (m ≥ 1 integer), we obtain |ε 2 /(β+1) g β ( Vt ε -4 /(β+1) )| 2m ≤ 2 2m-1 µ 2m β ε (4m) /(β+1) | Vt ε -4 /(β+1) | 2m((2-β)∨1) + 2 2m-1 ν 2m β ε (4m) /(β+1) .
By choosing the integer m ≥ 1 such that p := 2m((2 -β) ∨ 1) > 4, we can use Lemma 2.2 and we get for all T > 0, lim

ε→0 E sup 0≤t≤T ε 4m /(β+1) g 2m β ( Vt ε -4 /(β+1) ) = 0.
We finish the proof of the theorem by employing the joint convergence theorem and the simple continuousmapping theorem (Theorem 11.4.5 p. 379 and Theorem 3.4.1, p. 85 in [START_REF] Whitt | Stochastic-process limits: an introduction to stochastic process limits and their applications to queues[END_REF]) on the space of continuous functions C([0, ∞)) endowed with the uniform topology. 

α-stable driving noise

Recall that Ľε is distributed as a α-stable Lévy process (see (1.6 1 )) so, to simplify the notation, we will suppress the index ε, as well as for V ε (see (1.7 2 )).

3.1

The speed process V ε

Existence and uniqueness

If β > 1, the drift coefficient in (1.7 2 ) is a locally Lipschitz function and it is well known (see, for instance, Theorem 6.2.11, p. 376 in [START_REF] Applebaum | Lévy Processes and Stochastic Calculus[END_REF]) that there exists a locally pathwise unique strong solution V for equation (1.7 2 ) defined up to an explosion random time τ . Moreover it can be proved that τ = ∞ a.s. hence V is a global solution. For the sake of completeness, we give the proof of the latter statement (see also [START_REF] Samorodnitsky | Tails of solutions of certain nonlinear stochastic differential equations driven by heavy tailed Levy motions[END_REF], p. 73) by following some ideas in [START_REF] Fournier | On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes[END_REF], pp. 156-157.

Lemma 3.1. For any α ∈ (0, 2), any δ ∈ (0, α) and any T > 0, E sup

t∈[0,T ] | Vt | δ < ∞.
Proof. By Itô-Lévy's decomposition, there exists a Poisson process N and its compensated Ñ such that

Ľt = t 0 |z|≤1 z Ñ (ds, dz) + t 0 |z|>1
zN (ds, dz)

and so the equation satisfied by V , starting from any x ∈ R, is

Vt = x + t 0 |z|≤1 z Ñ (ds, dz) + t 0 |z|>1 zN (ds, dz) - t 0 sgn( Vs )| Vs | β ds. (3.1)
Consider another equation where we skip the (third) big jumps term

Y t = x + t 0 |z|≤1 z Ñ (ds, dz) - t 0 sgn(Y s )|Y s | β ds, (3.2) 
and apply Itô-Lévy's formula. We obtain

Y 2 t = x 2 + M t + t 0 |z|≤1 [(Y s + z) 2 -Y 2 s -2zY s ]ν(dz)ds -2 t 0 |Y s | β+1 ds = x 2 + Mt + t |z|≤1 z 2 ν(dz) -2 t 0 |Y s | β+1 ds, (3.3)
where the local martingale term is given by

Mt := t 0 |z|≤1 [(Y s + z) 2 -Y 2 s ] Ñ (ds, dz).
The constants depending only on α and β will be denoted c α or k α,β and could change from line to line in this proof. Let us write the third term in (3.3) as c α t and note that lim |y|→∞ (c α -2|y| β+1 ) = -∞.

We deduce that there exists a positive constant k α,β such that, for all t ≥ 0,

Y 2 t ≤ x 2 + k α,β t + Mt . (3.4) 
By Kunita's inequality (see for instance [START_REF] Applebaum | Lévy Processes and Stochastic Calculus[END_REF], p. 265) and by our convention on constants,

E sup 0≤s≤t Y 2 s ≤ x 2 + k α,β t + c α t 0 |z|≤1 E (Y s + z) 2 -Y 2 s 2 ν(dz)ds ≤ x 2 + k α,β t + c α t 0 E[Y 2 s ]ds ≤ x 2 + k α,β t + c α t 0 E sup 0≤u≤s Y 2 u ds. (3.5) 
Applying Gronwall's inequality, we get

E sup 0≤u≤t Y 2 u ≤ (x 2 + k α,β t)e cαt . (3.6) 
Hence M is a (true) square integrable martingale and, taking expectation in (3.4), we obtain

E[Y 2 t ] ≤ x 2 + k α,β t. (3.7) 
Re-injecting this in (3.5), we get that, for any T > 0, there exists a positive constant C α,β,T depending also on T , such that

E sup t∈[0,T ] Y 2 t ≤ C α,β,T (1 + x 2 ). (3.8) 
We proceed with the study of (3.1). Denote by 0 < T 1 < T 2 < . . . the jumping times of N restricted to {|z| > 1}, and by (Z n ) the jumps which are i.i.d. random variables with distribution λ -1 1 {|z|>1} ν(dz), where λ := {|z|>1} ν(dz). Therefore t 0 |z|>1 zN (ds, dz) = n∈N Z n 1 {Tn≤t} and (3.1) coincides with (3.2) on each time interval (T n , T n+1 ). Since V is a solution of (3.2) on [0, T 1 ), by using (3.8),

E sup t∈[0,T1∧T ) V 2 t G ≤ C α,β,T (1 + x 2 ), with G := σ(T 1 , T 2 , . . . ).
By using the Jensen inequality and the classical inequality

(a + b) δ ≤ c δ (a δ + b δ ), we obtain E sup t∈[0,T1∧T ) V δ t G ≤ C α,β,δ,T (1 + |x| δ ). Furthermore, VT1 = VT1-+ Z 1 , hence | VT1 | δ ≤ c δ | VT1-| δ + |Z 1 | δ . Since δ < α, E(|Z 1 | δ ) < ∞.
Consequently, we have

E sup t∈[0,T1∧T ] V δ t G ≤ C α,β,δ,T (1 + |x| δ ).
Using the same inequality on (T n , T n+1 ), but starting from VTn , we can show that, for any n ≥ 0,

u n := E sup t∈[Tn∧T,Tn+1∧T ] V δ t G ≤ C ′ T,δ (1 + E[| VTn | δ |G]) (with T 0 = 0).
Then the sequence

(u n ) n≥0 satisfies u 0 ≤ C ′ T,δ (1 + |x| δ ) and u n+1 ≤ C ′ T,δ (1 + u n ), implying that there exists C T,δ,x > 1 such that u n ≤ C n+1
T,δ,x . We deduce that

E sup t∈[0,Tn∧T ] V δ t G ≤ u 0 + • • • + u n-1 ≤ C n+1 T,δ,x C T,δ,x -1 .
Finally,

E sup t∈[0,T ] V δ t ≤ n≥0 E 1 Tn<T <Tn+1 E sup t∈[0,Tn∧T ] V δ t G ≤ 1 C T,δ,x -1 n≥0 C n+2 T,δ,x (λT ) n n! e -λT < ∞.

Ergodicity

The ergodic feature of the process V is a consequence of Proposition 0.1, p. 604 in [START_REF] Kulik | Exponential ergodicity of the solutions to SDE's with a jump noise[END_REF]. Indeed, provided that β > 1, the drift coefficient b(x) = -sgn(x)|x| β and the jump measure ν(dz) = |z| -1-α 1 R\{0} dz clearly satisfy the conditions in the cited result. Hence V is an exponential ergodic (and Harris recurrent) process having an unique invariant distribution, denoted by m α,β , which satisfies

m α,β ([x, +∞)) ∼ |x|→∞ +∞ |x| ν([u, +∞)) -b(x) du = C |x| α+β-1
(3.9)

as follows from Theorem 4.1, p. 92 in [START_REF] Samorodnitsky | Tails of solutions of certain nonlinear stochastic differential equations driven by heavy tailed Levy motions[END_REF]. Clearly, the identity function, id ∈ L 1 (m α,β ) under the hypothesis of Theorem 1.1, β + α 2 -2 > 0. By the classical ergodic theorem, for all f ∈ L 1 (m α,β ), lim

T →∞ 1 T T 0 f ( Vs )ds = R f (x)m α,β (dx), a.s. ( 3.10) 
Recall that we are interested on the behaviour as ε → 0 of

ε θ(β+ α 2 -2) x ε ε -α t = ε αθ 2 tε -αθ 0 Vs ds, (3.11) 
where θ is given by (1.9). In other words, we are studying a large time behaviour of a functional of V , hence it is quite natural to perform the study in steady state. In fact, we can prove the following lemma (see also [START_REF] Bhattacharya | On the functional central limit theorem and the law of iterated logarithm for Markov processes[END_REF], Theorem 2.6, p. 194):

Lemma 3.2. Suppose that β + α 2 -2 > 0. Assume that the process ε αθ /2 tε -αθ 0 Vs ds : t ≥ 0 converges, as ε → 0, in distribution toward a Brownian motion, provided that V is starting with m α,β as an initial distribution. Then the same process converges in distribution toward a Brownian motion when V0 = 0.

Proof. In this proof we will denote the process in (3.11) by Z ε,0 (t), and for ∆ ≥ 0,

Z ε,∆ (t) := ε αθ 2 tε -αθ +∆ ∆ Vs ds.
First, let us prove that Z ε,∆ (•) converges in distribution, as ∆ → ∞ and ε → 0, toward a Brownian motion, when V0 = 0. Denoting by µ ∆ the distribution of V∆ , for each bounded continuous real function ψ on C([0, +∞)), by the Markov property, we have

E ψ(Z ε,∆ (•)) | V0 = 0 = E ψ(Z ε,0 (•)) | V0 ∼ µ ∆ .
We can write, for all ε > 0,

E ψ(Z ε,0 (•)) | V0 ∼ µ ∆ -E ψ(Z ε,0 (•)) | V0 ∼ m α,β = R E ψ(Z ε,0 (•)) | V0 = y µ ∆ (dy)-m α,β (dy) ≤ ||ψ|| ∞ R p(∆, 0, dy) -m α,β (dy) ≤ ||ψ|| ∞ ||p(∆, 0, dy) -m α,β (dy)|| TV ,
where p(t, x, dy) = P x ( Vt ∈ dy) is the transition kernel of V (and therefore p(∆, 0, dy) = µ ∆ (dy)) , and • TV is the norm in total variation. Since V is (exponentially) ergodic, we get that

lim ∆→∞ E ψ(Z ε,0 (•)) | V0 ∼ µ ∆ -E ψ(Z ε,0 (•)) | V0 ∼ m α,β = 0, uniformly in ε.
Second, by choosing ∆ = ∆(ε) = ε -αθ /4 we obtain

sup t≥0 Z ε,∆(ε) (t) -ε αθ 2 tε -αθ +∆(ε) 0 Vs ds ≤ ε αθ 2 ∆(ε) 0 | Vs |ds = ε αθ 4 1 ∆(ε) ∆(ε) 0 | Vs |ds.
The right hand side term of the latter inequality tends to 0 almost surely, by using the ergodicity (3.10). Therefore ε αθ /2 •ε -αθ +∆(ε) 0 Vs ds converges in distribution, as ε → 0, toward a Brownian motion when V0 = 0. Clearly, lim ε→0 (t -∆(ε)ε αθ ) = t, and applying Lemma p. 151 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF] (a consequence of the continuous mapping theorem for the composition function), we can conclude.

In the sequel, we will always assume that V is starting with m α,β as an initial distribution. Let us recall that the infinitesimal generator of V is given by

(L α,β g)(x) = -sgn(x)|x| β g ′ (x) + R g(x + y) -g(x) -yg ′ (x)1 |y|≤1 ν(dy) , (3.12) 
with the domain D L α,β . Also denote (T t ) t≥0 the semi-group associated to the operator L α,β (or to the process V ). We collect in the following lemma some useful properties of the process V .

Lemma 3.3.

1. The domain D L α,β contains the space of bounded twice differentiable functions C 2 b (R). 2. For all p ≥ 1, T t is a contraction semi-group on L p (m α,β ) and for each f ∈ L p (m α,β ),

lim t→0 T t f -f L p (m α,β ) = 0. (3.13)
Proof.

To prove the first point, we fix f ∈ C 2 b (R) and we show that

(L α,β f )(x) < ∞. First, -sgn(x)|x| β f ′ (x) is well defined for all x ∈ R. Since f ∈ C 2 b (R), ∀y ∈ [-1, 1], f (x + y) -f (x) -yf ′ (x) ≤ y 2 sup z∈[x-1,x+1] |f ′′ (z)| < ∞,
and we find

|y|≤1 f (x + y) -f (x) -yf ′ (x) ν(dy) ≤ sup z∈[x-1,x+1] |f ′′ (z)| |y|≤1 y 2 ν(dy) < ∞.
Since f is bounded, we have

|y|>1 f (x + y) -f (x) ν(dy) ≤ 2||f || ∞ |y|>1 ν(dy) < ∞ , hence f ∈ D L α,β .
We proceed with the proof of the second point. Fix f ∈ L p (m α,β ) and we show first that

T t f L p (m α,β ) ≤ f L p (m α,β ) . Since T t f p L p (m α,β ) = R |T t f (x)| p m α,β (dx) = R |E x (f ( Vt ))| p m α,β (dx),
by the Jensen inequality (p ≥ 1), we get

T t f p p ≤ R E x (|f ( Vt )| p )m α,β (dx) = E m α,β (|f ( Vt )| p ) = ||f || p L p (m α,β ) .
Finally, we prove (3.13). Since

C 2 b (R) is dense in L p (m α,β ), there exists f η ∈ C 2 b (R) such that ||f -f η || L p (m α,β ) ≤ η /3.
Since T t is a contraction semi-group and m α,β is a probability measure, we get

T t f -f L p (m α,β ) ≤ 2 f -f η L p (m α,β ) + T t f η -f η ∞ ≤ (2η) /3 + T t f η -f η ∞ .
Since T t is a Feller semi-group (see for instance, [START_REF] Applebaum | Lévy Processes and Stochastic Calculus[END_REF], p. 151), for t small enough, we have T t f η -f η ∞ ≤ η /3 and we deduce (3.13). The proof is complete.

Convergence in probability

The main result of this section concerns the behaviour of the speed process which is described by using a Lyapunov function.

Proposition 3.4. Suppose that β + α 2 > 2 and let p and γ such that Then, as ε → 0, {ε αθ /2 h p,γ (ε -θ V ε t ) : t ≥ 0} converges to 0 in probability uniformly on each compact time interval. More precisely, there exists q > 2 such that, for any fixed T > 0,

p > 1, pγ > 2, 2 -β < γ < α 2 . ( 3 
lim ε→0 E sup t∈[0,T ] ε αθ 2 h p,γ ε -θ V ε t q = E sup t∈[0,T ] ε αθ 2 h p,γ Vt ε -αθ q = 0. (3.16)
In order to prove this result, we need the following lemma whose proof is postponed to the Appendix.

Lemma 3.5.

1. If pγ > 2, h p,γ is a twice differentiable function and there exists a positive constant k such that for all

(x, y) ∈ R 2 , -if |x| < 1 then |h p,γ (x + y) -h p,γ (x)| ≤ k(|y|1 {|y|≤1} + |y| γ 1 {|y|>1} ); -if |x| ≥ 1 then |h p,γ (x + y) -h p,γ (x)| ≤ k(|y||x| γ-1 1 {|y|≤i(x)} + |y| γ 1 {i(x)<|y|} ),
where i(x) := (2|x| pγ + 1) 1 /pγ -|x|.

2. Assume that pγ > 2 and 2 -β < γ < α. There exist a continuous function f p,α,β,γ , a compact set K and a constant d (depending only on p, α, β, γ) such that

∀x ∈ R, f p,α,β,γ (x) ≥ 1 + |x|, f p,α,β,γ (x) ∼ |x|→∞ γ|x| γ+β-1 , (3.17) and (L α,β h p,γ )(x) ≤ -f p,α,β,γ (x) + d1 K . (3.18)
Proof of Proposition 3.4. By (1.6 2 ), we can write

ε αθ 2 h p,γ V ε t ε θ = ε αθ 2 h p,γ Vt ε -αθ (3.19)
and the first equality in (3.16) is clear. Since 2 -β < α 2 and β > 1, we can fix q such that 2 p ∨ (2 -β) < γ < 2γ < qγ < α and 2 < q < β-1 α + 2. By noting that h p,γ (x) q = h p q ,qγ (x), we can write

E sup t∈[0,T ] ε αθ 2 h p,γ Vt ε -αθ q = ε q αθ 2 E sup t∈[0,T ] h p q ,qγ Vt ε -αθ .
Employing Itô's formula with h p q ,qγ , we get

h p q ,qγ ( Vt ) -h p q ,qγ ( V0 ) = R t + t 0 (L α,β h p q ,qγ )( Vs )ds, (3.20) 
where

R t := t 0 R
h p q ,qγ ( Vs + y) -h p q ,qγ ( Vs ) Ñ (dy, ds).

By Lemma 3.5 applied to the function h p q ,qγ , we see that there exists c > 0 such that, for all t ∈ [0, T ],

t 0 (L α,β h p q ,qγ )( Vs )ds ≤ ct.
Moreover, let us note that h p q ,qγ is continuous and that h p q ,qγ (x) ∼ |x| qγ , as |x| → ∞. Hence, by the choice of q, we have h p q ,qγ ∈ L 1 (m α,β ). Replacing in (3.20), we obtain

ε q αθ 2 E sup t∈[0,T ] h p q ,qγ Vt ε -αθ ≤ ε q αθ 2 h p q ,qγ L 1 (m α,β ) + ε (q-2) αθ 2 cT + ε q αθ 2 E sup t∈[0,T ] R t ε -αθ .
Since q > 2, the first and the second term converge toward 0. For the last term, we use Kunita's first inequality (see for instance [START_REF] Applebaum | Lévy Processes and Stochastic Calculus[END_REF], p. 265): since V0 ∼ m α,β , then for all t, Vt ∼ m α,β and there exists a positive constant C such that

E sup t∈[0,T ] R t ε -αθ ≤ E sup t∈[0,T ] R 2 t ε -αθ 1 /2 ≤ C √ T ε -αθ 2 R 2
h p q ,qγ (x + y) -h p q ,qγ (x) 2 ν(dy)m α,β (dx).

It is sufficient to show that

R 2 h p q ,qγ (x + y) -h p q ,qγ (x) 2 ν(dy)m α,β (dx) < ∞. (3.21) 
This fact is obtained by using Lemma 3.5. If |x| ≥ 1,

h p q ,qγ (x + y) -h p q ,qγ (x) 2 ≤ k 2 (|y| 2 |x| 2qγ-2 1 {|y|≤i(x)} + |y| 2qγ 1 {i(x)<|y|} ), hence R h p q ,qγ (x + y) -h p q ,qγ (x) 2 ν(dy) = O(|x| 2qγ-α ), as |x| → +∞,
and, since q < β-1 α + 2, we get (3.21). If |x| < 1,

h p q ,qγ (x + y) -h p q ,qγ (x) 2 ≤ k 2 (|y| 2 1 {|y|≤1} + |y| 2qγ 1 {|y|>1} )
and R 2 h p q ,qγ (x + y) -h p q ,qγ (x) 2 ν(dy) is finite independently of x. Since m α,β is a probability measure, (3.21) is verified again. The proof is complete except for Lemma 3.5.

The position process X ε

We are ready to prove our main result concerning the behaviour of the position process. Recall that, thanks to Lemma 3.2, we assume that V is starting with m α,β as an initial distribution.

Proof of Theorem 1.1 for the case α ∈ (0, 2). Thanks to (3.17), Theorem 3.2, p. 924 in [START_REF] Glynn | A Liapounov bound for solutions of the Poisson equation[END_REF] applies and we deduce that the Poisson equation Lg = id admits a solution ĝ satisfying |ĝ| ≤ c(h p,γ + 1), with c a positive constant. Applying Itô-Levy's formula with ĝ, we get

ĝ( Vt ) -ĝ( V0 ) = t 0 Vs ds + M t , (3.22) 
where

M t := t 0 R [ĝ(z + Vs ) -ĝ( Vs )] Ñ (ds, dz). (3.23) 
Step 1) We prove that M given by the latter formula is a square integrable true martingale. On one hand we have

E[ĝ( Vt ) 2 ] = E[ĝ(V 0 ) 2 ] = R ĝ(x) 2 m α,β (dx) < ∞.
Indeed, recall that h 2 p,γ is continuous and it behaves as |x| 2γ in the neighbourhood of the infinity. Recalling that γ was chosen such that 4 p ∨ (4 -2β) < 2γ < α, by using (3.9), we see that

R h p,γ (x) 2 m α,β (dx) < ∞.
On the other hand, we can write Applying again Theorem 3.2, p. 924 in [START_REF] Glynn | A Liapounov bound for solutions of the Poisson equation[END_REF], we deduce that the Poisson equation L α,β g = |id| admits a solution g satisfying |g| ≤ c ′ (h p,γ + 1) with c ′ a positive constant. Moreover

s 0 T u |id|( V0 )du = T s g( V0 ) -g( V0 ).
Replacing in the latter inequality

E t 0 Vs ds 2 ≤ 2 t 0 E | V0 ||T s g( V0 ) -g( V0 )| ds = 2 t 0 ds R |x||T s g(x) -g(x)|m α,β (dx).
At this level, we need to apply the Hölder inequality to conclude that

E t 0 Vs ds 2 < ∞. (3.24) First, if β < 2 then we choose γ close enough to 2 -β such that g ∈ L (3-β) /(2-β) (m α,β ). Since 3-β 2-β > 1, using the second part of Lemma 3.3, we get T s g -g L (3-β) /(2-β) (m α,β ) ≤ 2 g L (3-β) /(2-β) (m α,β ) .
By the Hölder inequality and the fact that |id| ∈ L 3-β (m α,β ), we get (3.24). Second, if β ≥ 2, we choose γ < 1 close enough to 0 such that |id| ∈ L 1 /(1-γ) (m α,β ). Since g ∈ L 1 /γ (m α,β ), using again Lemma 3.3, we get

T t g -g L 1 /γ (m α,β ) ≤ 2 g L 1 /γ (m α,β ) . Since |id| ∈ L 1 /(1-γ) (m α,β
), we can apply the Hölder inequality and get (3.24) again. We conclude that M given by (3.23) is a square integrable true martingale. Moreover, we can compute its quadratic variation

M t = t 0 R [ĝ(y + Vs ) -ĝ( Vs )] 2 ν(dy)ds, (3.25) 
hence

E[ M t ] = t R 2 [ĝ(x + y) -ĝ(x)] 2 ν(dy)m α,β (dx) < ∞. (3.26)
Step 2) Performing a simple time change in (3.22), we see that the process in (1.8) can be written

ε θ(β+ α 2 -2) X ε t = ε αθ 2 ĝ Vt ε -αθ -ĝ( V0 ) -ε αθ 2 M t ε -αθ . (3.27)
In this step, we show that the martingale term on the right hand side of the latter equality converges to a Brownian motion by using Whitt's theorem (see Theorem 2.1 (ii) in [START_REF] Whitt | Proofs of the martingale FCLT[END_REF], pp. 270-271). We need to verify the hypotheses of this result. In order, since the function

x → R [ĝ(x + y) -ĝ(x)] 2 ν(dy) ∈ L 1 (m α,β ),
by using (3.25) and the ergodic theorem (3.10), we deduce that

lim ε→0 ε αθ 2 M • ε -αθ t = lim ε→0 ε αθ 2 tε -αθ 0 R [ĝ(y + Vs ) -ĝ( Vs )] 2 ν(dy)ds = t R 2
[ĝ(x + y) -ĝ(x)] 2 ν(dy)m α,β (dx).

The condition [START_REF] Fournier | On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes[END_REF] in [START_REF] Whitt | Proofs of the martingale FCLT[END_REF], p. 271 is fulfilled. Again by (3.25), we see that M has no jump, hence the condition (4) in [START_REF] Whitt | Proofs of the martingale FCLT[END_REF], p. 270 is trivial. Let us note also that, by (3.22), the jumps of the martingale M t are J(M t ) := ĝ( Vt ) -ĝ( Vt-). Therefore we deduce that the jumps of the martingale term on the right hand side of (3.27) are

J ε αθ 2 M t ε -αθ := ε αθ 2 ĝ Vε -αθ t -ĝ Vε -αθ t-≤ c ε αθ 2 h p,γ Vε -αθ t + h p,γ Vε -αθ t-+ 2 ≤ 2c ε αθ 2 sup t∈[0,T ] h p,γ ε -θ V ε t + 1 ,
by using the fact that |ĝ| ≤ c(h p,γ + 1) and (3.19). By Proposition 3.4,

lim ε→0 E sup t∈[0,T ] J ε αθ 2 M t ε -αθ 2 = 0.
Therefore we can apply Whitt's theorem to deduce that ε (αθ) /2 M t ε -αθ : t ≥ 0 converges in distribution (as a process) toward κ (3.28)

The constant κ α,β is positive by noting that ν is absolutely continuous with respect to the Lebesgue measure, that m α,β has a non-empty support, and that ĝ could not be a constant function, since Lĝ = id.

Step 3) By using that |ĝ| ≤ c(h p,γ + 1), we get

ĝ Vt ε -αθ -ĝ( V0 ) 2 ≤ 4c 2 h p,γ Vt ε -αθ 2 + h p,γ ( V0 ) 2 + 2
hence, using Proposition 3.4,

lim ε→0 E ε αθ sup t∈[0,T ] ĝ Vt ε -αθ -ĝ( V0 ) 2 = 0
hence ε (αθ) /2 ĝ Vt ε -αθ -ĝ( V0 ) : t ≥ 0 converges in probability toward 0, uniformly on compact sets.

Step 4) Our processes are valued in the Skorokhod space of càdlàg functions D([0, ∞)) endowed with J 1 (or simple) Skorokhod topology (see [START_REF] Whitt | Stochastic-process limits: an introduction to stochastic process limits and their applications to queues[END_REF], §3.3). It is not difficult to see that a sequence which converges in probability toward 0, uniformly on compact sets, is also convergent in probability for J 1 metric, hence in distribution in J 1 topology. Recall that in the Skorokhod space, the addition is not a continuous map (see for instance [START_REF] Whitt | Stochastic-process limits: an introduction to stochastic process limits and their applications to queues[END_REF], p. 84). In our case, the limits of the terms on the right hand side of equality (3.27) are, respectively 0 and a Brownian motion which have continuous paths. By using the joint convergence theorem (Theorem 11.4.5, p. 379 in [START_REF] Whitt | Stochastic-process limits: an introduction to stochastic process limits and their applications to queues[END_REF]) and the continuous-mapping theorem (Theorem 3.4.3, p. 86 in [START_REF] Whitt | Stochastic-process limits: an introduction to stochastic process limits and their applications to queues[END_REF]), we obtain the conclusion of Theorem 1.1. The first term on the right hand side of (3.30) can be written :

E ĝ Vε αθ -ĝ( V0 ) 2 = 2 ĝ(x) 2 m α,β (dx) -2E ĝ V0 )ĝ( Vε αθ = 2 ĝ(x) 2 m α,β (dx) -2E ĝ( V0 )E ĝ Vε αθ | V0 = 2 ĝ(x) 2 m α,β (dx) -2E ĝ( V0 ) T ε αθ ĝ ( V0 ) = 2 ĝ(x) 2 m α,β (dx) -2E ĝ( V0 ) ĝ( V0 ) + ε αθ 0 (T s id)( V0 )ds = -2E ĝ( V0 ) ε αθ 0 (T s id)( V0 )ds = -2 ĝ(x) m α,β (dx) ε αθ 0 (T s id)(x)ds = -2 ε αθ xĝ(x)m α,β (dx) -2 ĝ(x) m α,β (dx) ε αθ 0 (T s id) -id (x)ds.
By using the Hölder inequality, we prove that,

E ĝ Vε αθ -ĝ( V0 ) 2 ∼ -2 ε αθ xĝ(x)m α,β (dx), as ε → 0. (3.31) Indeed, if 2 -α 2 < β < 2, ĝ ∈ L 3-β /2-β (m α,β ) and lim s→0 (T s id) -id L 3-β (m α,β ) = 0, and if β ≥ 2, ĝ ∈ L 1 γ (m α,β ) and lim s→0 (T s id) -id L 1 /(1-γ) (m α,β ) = 0.
By using (3.24) and Fubini's theorem, the second term on the right hand side of (3.30) can be written

E ε αθ 0 Vs ds 2 = ε αθ 0 ds s 0 E Vs Vu du = ε αθ 0 ds s 0 E Vs-u V0 du = ε αθ 0 ds s 0 E V0 (T s-u id)( V0 ) du = ε αθ 0 du E V0 ε αθ u (T s-u id)( V0 ) ds = ε αθ 0 du E V0 T ε αθ -u ĝ ( V0 ) -ĝ( V0 ) = ε αθ 0 du x T ε αθ -u ĝ -ĝ (x)m α,β (dx).
Once again by the Hölder inequality, we prove that

E ε αθ 0 Vs ds 2 = o(ε αθ ), as ε → 0. (3.32) Indeed, if 2 -α 2 < β < 2 then id ∈ L 3-β (m α,β ), we can see that lim ε→0 sup 0≤u≤ε αθ (T ε αθ -u ĝ) -ĝ L 3-β /2-β (m α,β ) = 0. Similarly, if β ≥ 2 then id ∈ L 1 /(1-γ) (m α,β ), we see that lim ε→0 sup 0≤u≤ε αθ T ε αθ -u ĝ) -ĝ L 1 γ (m α,β ) = 0.
Finally, the third term in (3.30) is analysed by using the Cauchy-Schwartz inequality and the behaviour of the other terms. We get that and the result is proved.

-2 E ĝ Vε αθ -ĝ( V0 ) ε αθ 0 Vs ds = o(ε αθ ), as ε → 0. ( 3 

Appendix

Proof of Lemma 2.3. Note that g β is an odd function. Introduce

ϕ β (x) = - +∞ x 2ye c β (y) dy. By the continuity of g β on [0, 1], it is sufficient to prove (2.3) for x > 1. Assume β ∈ [1, ∞), then, since x > 1, ϕ β (x) = +∞ x z 1-β -2z β e -2 β+1 z β+1 dz ≥ +∞ x -2z β e -2 β+1 z β+1 dz = -e -2 β+1 x β+1 , hence x 1 e 2 β+1 y β+1 ϕ β (y)dy ≥ 1 -x,
and (2.3) is true in this case. If β ∈ [0, 1), by integration by parts, 

ϕ β (x) = +∞ x z 1-β -2z β e -2 β+1 z β+1 dz = -x 1-β e -2 β+1 x β+1 + 1 -β 2 +∞ x z -2β -2z β e -2 β+1 z β+1 dz ≥ -x 1-β e -2 β+1 x β+1 - 1 -β 2 x -2β e -2 β+1 x β+1 , hence, x 1 e 2 β+1 y β+1 ϕ β (y)dy ≥ x 1 -y 1-β - 1 -β 2 y -2β
k := 2 -k k-1 j=0 ((1 -β) -j(1 + β)), for k ≥ 1 integer.
By the choice of n, we can see that d n > 0. If we iterate n times the integration by parts, we get:

ϕ β (x) = - n k=0 d k x (1-β)-k(1+β) e -2 β+1 x β+1 + d n +∞ x z (1-β)-(n+1)(β+1) (-2z β e -2 β+1 z β+1 )dz.
Since (1 -β) -(n + 1)(β + 1) ≤ 0 we can write

ϕ β (x) ≥ - n k=0 d k x (1-β)-k(1+β) + d n x (1-β)-(n+1)(β+1) e -2 β+1 x β+1 .
By integrating, we have

x 1 e 2 β+1 y β+1 ϕ β (y)dy ≥ x 1 n k=0 d k y (1-β)-k(1+β) + d n y (1-β)-(n+1)(β+1) dy,
and we easily deduce (2.3). The proof of (2.3) is complete for all β ∈ (-1, ∞).

Proof of Lemma 3.5. Recall that h p,γ (x) = (1 + |x| pγ ) 1 /p and assume firstly that |x| < 1. Since h p,γ is continuously differentiable and equivalent to |x| γ at infinity, there exists k > 0 such that The desired inequality is then clear. Secondly, assume that |x| ≥ 1. It is a simple computation to see that for all z ≥ 0 and r > 0, there exists c r > 0, such that

(1 + z) r -1 ≤ c r z1 {z≤1} + z r 1 {z>1} .
We deduce that, for all (u, v) ∈ [0, ∞) × [0, ∞), there exist k r > 0 such that Since |x| ≥ 1, i(x) /|x| is bounded, and since p > 1, ( 1 /|x| pγ + 1) (1-p) /p ≤ 1. Using that pγ > 2 and the fact that |y| /|x| is bounded, we have the existence of a k ′ > 0 such that

1 + |y| |x| pγ -1 ≤ k ′ |y| |x| .
Taking k = max(k1 /p k pγ , k1 /p k ′ ), we get the second inequality in the first part of Lemma 3.5.

We proceed with the second part and we note that, since pγ > 2, h p,γ is twice differentiable with h ′′ p,γ (x) = γ |x| pγ-2 (γ -1)|x| pγ + pγ -1 (1 + |x| pγ ) 1 /p-2 .

Moreover, since γ < α < 2, h ′′ p,γ ∈ L ∞ . We split (L α,β h p,γ )(x) into three terms The first term on the right hand side is equivalent to -γ|x| γ+β-1 at infinity, while for the second term, since |y| ≤ 1, we have 

Remark 2 . 4 .

 24 Let us note that if β = 1 (Ornstein-Uhlenbeck case), g β (x) = -x, κ 2,β = 1 and the result of Theorem 1.1 coincides with the result of Proposition 2.1, p. 268, in[START_REF] Hintze | Small noise asymptotics and first passage times integrated Ornstein-Uhlenbeck process driven by α-stable Lévy process[END_REF].

. 14 )

 14 Introduce the Lyapunov functionh p,γ (x) := (1 + |x| pγ ) 1/p .(3.15)

0 T

 0 Vu || Vs |. Using Markov's property and that Vu and V0 follow the invariant law, we get, for u < s, E | Vs || Vu | = E | Vs-u || V0 | . Therefore E u |id|( V0 )du .

1 / 2 α 2 [

 122 ,β B, where B is a standard Brownian motion andκ α,β := R ĝ(x + y) -ĝ(x)] 2 ν(dy)m α,β (dx) > 0.

Proposition 3 . 6 . 2 R 2 = 2 -0

 36222 The constant κ α,β in Theorem 1.1 given in (3.28) satisfiesκ α,β = -xĝ(x)m α,β (dx) > 0.(3.29)Proof. Since, by (3.26) and (3.28), κ α,β = 1 t E M 2 t , for all t > 0, by taking t = ε αθ and using Itô's formula, we getκ α,β = ε -αθ E ĝ Vε αθ -ĝ( V0 ) -ε -αθ E ĝ Vε αθ -ĝ( V0 ) 2E ĝ Vε αθ -ĝ( V0 ) ε αθVs ds .(3.30) 

  .33) Putting together (3.30)-(3.32), we obtain that κ α,β = -2 xĝ(x)m α,β (dx) + o(1), as ε → 0.

  |h p,γ (x + y) -h p,γ (x)| ≤ |y| sup z∈[-2,2] |h ′ p,γ (z)|1 {|y|≤1} + k|y| γ 1 {|y|>1} .

(r- 1 ≤- 1 p 1

 111 u + v) r -u r = u r 1 + v u k r vu r-1 1 {v≤u} + v r 1 {u<v} . (3.34) Since x = 0, |h p,γ (x + y) -h p,γ (x)| = |x| γ 1 |x| pγ + 1 + 34) with u = 1 |x| pγ + 1, v = 1 + y x pγ and r = 1 p , we obtain |h p,γ (x + y) -h p,γ (x)| ≤ k1 /p |x| γ {|y|<i(x)} .Since i(x) > |x|, we can use again (3.34) to estimate the first term in the bracket on the right hand of the latter inequality. We let u = 1, v = y x and r = pγ and we get|h p,γ (x + y) -h p,γ (x)| ≤ k1 /p k pγ |y| γ 1 {i(x)≤|y|} + k1 /p |x| γ 1 + y x pγ -1 1 |x| pγ + 1 1-p p 1 {|y|<i(x)} .

L

  α,β h p,γ (x) = -γ |x| pγ+β-1 (1 + |x| pγ ) 1-1 /p + |y|≤1 h p,γ (x + y) -h p,γ (x) -yh ′ p,γ (x) ν(dy) + |y|>1h p,γ (x + y) -h p,γ (x) ν(dy).

  h p,γ (x + y) -h p,γ (x) -yh ′ p,γ (x) ≤ y 2 sup |z|≤1 |h ′′ p,γ (x + z)| ≤ y 2 h ′′ p,γ ∞ . Hence |y|≤1 h p,γ (x + y) -h p,γ (x) -yh ′ p,γ (x) ν(dy) ≤ c α h ′′ p,γ ∞ ,where c α := |y|≤1 y 2 ν(dy). We use the first part of the lemma to estimate the third term on the right hand side. There are two situations : if |x| ≥ 1, we geth p,γ (x + y) -h p,γ (x) ≤ k(|y||x| γ-1 1 {|y|≤i(x)} + |y| γ 1 {i(x)<|y|} ). Hence |y|>1 h p,γ (x + y) -h p,γ (x) ν(dy) ≤ k|x| γ-1 {i(x)≥|y|>1} |y|ν(dy) + k {max(1,i(x))≤|y|} |y| γ ν(dy) ≤ k|x| γ-1 {i(x)≥|y|>1} |y|ν(dy) + kc ′ α,γ , where c ′ α,γ := {|y|>1} |y| γ ν(dy). Since i(x) = O(|x|), as |x| → ∞, k|x| γ-1 {i(x)≥|y|>1} |y|ν(dy) = O(|x| γ-1 ) + O(|x| γ-α ), as |x| → ∞. If |x| < 1, since |y| > 1, |h p,γ (x + y) -h p,γ (x)| ≤ k|y| γ , so |y|>1 h p,γ (x + y) -h p,γ(x) ν(dy) ≤ |y|>1 |y| γ ν(dy) < +∞. Denote by u the continuous function -L α,β h p,γ . Putting together the previous estimates, since β > 1 and 2 p < γ < α, we obtain that u(x) ∼ |x| γ+β-1 , as |x| → ∞, and since γ > 2 -β, 1 + |x| = o(u(x)), as |x| → ∞.

  Girsanov's theorem gives the existence of a weak solution to equation (2.2 2 ). For both situations, the solution is defined until an explosion time τ e , but it is no difficult to prove that τ e = ∞ a.s. by using Theorem 10.2.1, p. 254, in[START_REF] Stroock | Multidimensional Diffusion Processes[END_REF] and a convenient Lyapunov function (for instance h(x) = 1 + x 2 for all |x| ≥ 1, h(x) = 1 for all |x| ≤ 1/2 and h ≥ 1 ). Introduce the scale function and the speed measure associated to the diffusion

	whereas if -1 < β < 1, s β (x) :=
	2.1.1 Existence and uniqueness
	If β ≥ 1, the drift coefficient in (2.2 2 ) is a locally Lipschitz function hence by well known results (see, for instance, Theorem 12.1, p. 132 in [12]), we get a pathwise unique strong solution V to equation (2.2 2 ),

  dy, and (2.3) follows. More generally, assume β ∈ [-n n+2 , 1-n n+1 ), for an integer n ≥ 0. Set d 0 = 1 and d
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Then relations (3.17)-(3.18) hold true and the proof is complete.