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Computing the Rank Profile Matrix∗

Jean-Guillaume Dumas† Clément Pernet‡ Ziad Sultan§

January 21, 2015

Abstract

The row (resp. column) rank profile of a matrix describes the stair-
case shape of its row (resp. column) echelon form. In an ISSAC’13 paper,
we proposed a recursive Gaussian elimination that can compute simulta-
neously the row and column rank profiles of a matrix as well as those of all
of its leading sub-matrices, in the same time as state of the art Gaussian
elimination algorithms. Here we first study the conditions making a Gaus-
sian elimination algorithm reveal this information. Therefore, we propose
the definition of a new matrix invariant, the rank profile matrix, summa-
rizing all information on the row and column rank profiles of all the leading
sub-matrices. We also explore the conditions for a Gaussian elimination
algorithm to compute all or part of this invariant, through the correspond-
ing PLUQ decomposition. As a consequence, we show that the classical
iterative CUP decomposition algorithm can actually be adapted to com-
pute the rank profile matrix. Used, in a Crout variant, as a base-case
to our ISSAC’13 implementation, it delivers a significant improvement in
efficiency. Second, the row (resp. column) echelon form of a matrix are
usually computed via different dedicated triangular decompositions. We
show here that, from some PLUQ decompositions, it is possible to recover
the row and column echelon forms of a matrix and of any of its leading
sub-matrices thanks to an elementary post-processing algorithm.

1 Introduction

Triangular matrix decompositions are widely used in computational linear
algebra. Besides solving linear systems of equations, it is also used to
compute other objects more specific to exact arithmetic: computing the
rank, sampling a vector from the null-space, computing echelon forms and
rank profiles.
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The row rank profile (resp. column rank profile) of an m × n matrix
A with rank r, denoted by RowRP(A) (resp. ColRP(A)), is the lexico-
graphically smallest sequence of r indices of linearly independent rows
(resp. columns) of A. An m × n matrix has generic row (resp. column)
rank profile if its row (resp. column) rank profile is (1, .., r). Lastly, an
m×n matrix has generic rank profile if its r first leading principal minors
are non zero. Note that if a matrix has generic rank profile, then its row
and column rank profiles are generic, but the converse is false: the matrix[

0 1
1 0

]

does not have generic rank profile even if its row and column rank

profiles are generic. The row support (resp. column support) of a matrix
A, denoted by RowSupp(A) (resp. ColSupp(A)), is the subset of indices
of its non zero rows (resp. columns).

We recall that the row echelon form of an m × n matrix A is an
upper triangular matrix E = T A, for a non-singular matrix T , with the
zero rows of E at the bottom and the non-zero rows in stair-case shape:
min{j : ai,j 6= 0} < min{j : ai+1,j 6= 0}. As U is non singular, the column
rank profile of A is that of E, and therefore corresponds to the column
indices of the leading elements in the staircase. Similarly the row rank
profile of A is composed of the row indices of the leading elements in the
staircase of the column echelon form of A.

Rank profile and triangular matrix decompositions The rank
profiles of a matrix and the triangular matrix decomposition obtained by
Gaussian elimination are strongly related. The elimination of matrices
with arbitrary rank profiles gives rise to several matrix factorizations and
many algorithmic variants. The PLUQ decomposition is well known in
numerical linear algebra. The LSP and LQUP decompositions of [8] are
used to reduce the complexity rank deficient Gaussian elimination to that
of matrix multiplication. Many other algorithmic variants exist allowing
fraction free computations [10], in-place computations [4, 9] or sub-cubic
rank-sensitive time complexity [13, 9]. In [5] we proposed a Gaussian
elimination algorithm with a recursive splitting of both row and column
dimensions, and replacing row and column transpositions by rotations.
This elimination can compute simultaneously the row and column rank
profile while preserving the sub-cubic rank-sensitive time complexity and
keeping the computation in-place.

In this manuscript we first study at which conditions does a PLUQ
decomposition algorithm reveal the rank profile structure of a matrix. We
introduce in section 2 the rank profile matrix RA, a normal form sum-
marizing all rank profile information of a matrix and of all its leading
sub-matrices. We then decompose, in section 3, the pivoting strategy of
any PLUQ algorithm into two types of operations: the search of the pivot
and the permutation used to move it to the main diagonal. We propose a
new search and a new permutation strategy and show what rank profiles
are computed using any possible combination of these operations and the
previously used searches and permutations. In particular we show three
new pivoting strategy combinations that compute the rank profile matrix
and use one of them, an iterative Crout CUP with rotations, to improve
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the base case and thus the overall performance of exact Gaussian elimi-
nation. Second, we show that preserving both the row and column rank
profiles, together with ensuring a monotonicity of the associated permu-
tations, allows us to compute faster several other matrix decompositions,
such as the LEU and Bruhat decompositions, and echelon forms.

In the following, 0m×n denotes the m×n zero matrix and Ai..j,k..l de-
notes the sub-matrix of A of rows between i and j and columns between
k and l. To a permutation σ : {1, . . . , n} → {1, . . . , n} we define the asso-
ciated permutation matrix Pσ, permuting rows by left multiplication: the
rows of PσA are that of A permuted by σ. Reciprocally, for a permutation
matrix P , we denote by σP the associated permutation.

2 The rank profile matrix

We start by introducing in Theorem 1 the rank profile matrix, that we
will use throughout this document to summarize all information on the
rank profiles of a matrix. In this section we just need a notion of rank (for
instance, it could be McCoy’s rank, the number of invertible determinantal
divisor; Smith’s rank, the number of non-zero determinantal divisor; the
spanning rank, smallest r such that the m× n matrix A = BC, where B
is m× r and C is r× n; . . . all reducing to the classical rank over a field)
and it is thus valid over a commutative ring with identity, R. For the sake
of simplicity, we hereafter choose McCoy’s rank.

Definition 1. An r-sub-permutation matrix is a matrix of rank r with
only r non-zero entries equal to one.

Lemma 1. An m×n r-sub-permutation matrix has at most one non-zero

entry per row and per column, and can be written P

[
Ir

0(m−r)×(n−r)

]

Q

where P and Q are permutation matrices.

Theorem 1. Let A ∈ Rm×n. There exist a unique m × n rank(A)-sub-
permutation matrix RA of which every leading sub-matrix has the same
rank as the corresponding leading sub-matrix of A. This sub-permutation
matrix is called the rank profile matrix of A.

Proof. We prove existence by induction on the row dimension of the lead-
ing submatrices.

If A1,1..n = 01×n, setting R(1) = 01×n satisfies the defining condition.
Otherwise, let j be the index of the leftmost invertible element in A1,1..n

and set R(1) = eT
j the j-th n-dimensional row canonical vector, which

satisfies the defining condition.
Now for a given i ∈ {1, . . . , m}, suppose that there is a unique i × n

rank profile matrix R(i) such that rank(A1..i,1..j) = rank(R1..i,1..j) for
every j ∈ {1..n}. If rank(A1..i+1,1..n) = rank(A1..i,1..n), then R(i+1) =
[

R(i)

01×n

]

. Otherwise, consider k, the smallest column index such that

rank(A1..i+1,1..k) = rank(A1..i,1..k) + 1 and set R(i+1) =

[

R(i)

eT
k

]

. Any

leading sub-matrix of R(i+1) has the same rank as the corresponding

3



leading sub-matrix of A. Laslty we need to prove that R(i+1) is a ri+1-

sub-permutation matrix. Define

[
B u
vT x

]

= A1..i+1,1..k, where u, v are

vectors and x is a scalar. We claim that u is linearly dependent with the
columns of B: otherwise, rank(

[
B u

]
) = rank(B) + 1 but from the defini-

tion of k we then have rank(

[
B u
vT x

]

) = rank(
[
B u

]
) + 1 = rank(B) + 2 =

rank(

[
B
vT

]

) + 2 which is absurd. Consequently, the k-th column of R(i)

is all zero, and R(i+1) is a r-sub-permutation matrix.
To prove uniqueness, suppose that there exists two distinct rank pro-

file matrices R(1) and R(2) for a given matrix A and let (i, j) be some

coordinates where we have that: R
(1)
1..i,1..j 6= R

(2)
1..i,1..j and R

(1)
1..i−1,1..j−1 =

R
(2)
1..i−1,1..j−1. Then, rank(A1..i,1..j) = rank(R

(1)
1..i,1..j) 6= rank(R

(2)
1..i,1..j) =

rank(A1..i,1..j) which is absurd.

Example 1. A =






2 0 3 0
1 0 0 0
0 0 4 0
0 2 0 1




 has RA =






1 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0




 for rank profile matrix

over Q.

Remark 1. The matrix E introduced in Malaschonok’s LEU decompo-
sition [12, Theorem 1], is in fact the rank profile matrix. There, the
existence of this decomposition was only shown for m = n = 2k, and no
connection was made to the relation with ranks and rank profiles. This
connection was made in [5, Corollary 1], and the existence of E general-
ized to arbitrary dimensions m and n. Finally, after proving its uniqueness
here, we propose this definition as a new matrix normal form.

The rank profile matrix has the following properties:

Lemma 2. Let A be a matrix.
1. RA is diagonal if A has generic rank profile.
2. RA is a permutation matrix if A is invertible
3. RowRP(A) = RowSupp(RA); ColRP(A) = ColSupp(RA).
4. RowRP(A1..i,1..j) = RowSupp((RA)1..i,1..j)
5. ColRP(A1..i,1..j) = ColSupp((RA)1..i,1..j),

These properties show how to recover the row and column rank profiles
of A and of any of its leading sub-matrix.

3 Ingredients of a PLUQ decomposition

algorithm

From now on, matrices are over a field K and a valid pivot is a non-zero
element. Gaussian elimination of matrices with arbitrary rank profile
requires permutations of both rows and columns, hence generalizing the
classical LU decomposition to the PLUQ decomposition, P and Q are per-
mutation matrices. However such PLUQ decompositions are not unique
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and not all of them will necessarily reveal rank profiles and echelon forms.
We will characterize the conditions for a PLUQ decomposition algorithm
to reveal the row or column rank profile or the rank profile matrix.

We consider the four types of operations of a Gaussian elimination
algorithm in the processing of the k-th pivot:
Pivot search: finding an element to be used as a pivot,
Pivot permutation: moving the pivot in diagonal position (k, k) by col-

umn and/or row permutations,
Update: applying the elimination at position (i, j):

ai,j ← ai,j − ai,ka−1
k,kak,j ,

Normalization: dividing the k-th row (resp. column) by the pivot.
Choosing how each of these operation is done, and when they are sched-
uled results in an elimination algorithm. Conversely, any Gaussian elimi-
nation algorithm computing a PLUQ decomposition can be viewed as a set
of specializations of each of these operations together with a scheduling.

The choice of doing the normalization on rows or columns only de-
termines which of U or L will be unit triangular. The scheduling of the
updates vary depending on the type of algorithm used: iterative, recur-
sive, slab or tiled block splitting, with right-looking, left-looking or Crout
variants [2]. None of these two parameters impacts the capacity to re-
veal rank profiles and we will thus now focus on the pivot search and the
permutations.

Choosing a search and a permutation strategy fixes the matrices P and
Q of the PLUQ decoposition obtained and, as we will see, determines the
ability to recover information on the rank profiles. Once these matrices
are fixed, the L and the U factors are unique. We introduce the pivoting
matrix.

Definition 2. The pivoting matrix of a PLUQ decomposition A = P LUQ
of rank r is the r-sub-permutation matrix

ΠP,Q = P

[
Ir

0(m−r)×(n−r)

]

Q.

The r non-zero elements of ΠP,Q are located at the initial positions of
the pivots in the matrix A. Thus ΠP,Q summarizes the choices made in
the search and permutation operations.

Pivot search The search operation vastly differs depending on the field
of application. In numerical dense linear algebra, numerical stability is
the main criterion for the selection of the pivot. In sparse linear algebra,
the pivot is chosen so as to reduce the fill-in produced by the update
operation. In order to reveal some information on the rank profiles, a
notion of precedence has to be used: a usual way to compute the row rank
profile is to search in a given row for a pivot and only move to the next
row if the current row was found to be all zeros. This guarantees that each
pivot will be on the first linearly independent row, and therefore the row
support of ΠP,Q will be the row rank profile. The precedence here is that
the pivot’s coordinates must minimize the order for the first coordinate
(the row index). As a generalization, we consider all pre-orders of the set
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{1, . . . m} × {1, . . . n} and describe the corresponding search strategies,
minimizing this pre-order:
Row order: (i1, j1) �row (i2, j2) iff i1 ≤ i2: search for any invertible

element in the first non zero row.
Column order: (i1, j1) �col (i2, j2) iff j1 ≤ j2. search for any invertible

element in the first non zero column.
Lexicographic order: (i1, j1) ≤ (i2, j2) iff i1 < i2 or i1 = i2 and j1 ≤ j2:

search for the leftmost non-zero element of the first non-zero row.
Reverse lexicographic order: (i1, j1) ≤ (i2, j2) iff j1 < j2 or j1 = j2

and i1 ≤ i2: search for the topmost non-zero element of the first non
zero column.

Product order: (i1, j1) ≤ (i2, j2) iff i1 ≤ i2 and j1 ≤ j2: search for
any non-zero element at position (i, j) being the only non-zero of the
leading (i, j) sub-matrix.

Reflexive closure of the product of strict orders:

(i1, j1) ≤ (i2, j2) iff (i1 < i2 and j1 < j2) or (i1 = i2 and j1 = j2):
search for any non-zero element at position (i, j) such that leading
(i− 1, j − 1) sub-matrix is all zeros.

Example 2. Consider the matrix






0 0 0 a b
0 c d e f
g h i j k
l m n o p




, where each litteral is a

non-zero element. The minimum non-zero elements for each preorder are
the following:

Row order a, b
Column order g, l
Lexicographic order a
Reverse lexic. order g
Product order a, c, g
Ref. closure of prod. of strict orders a, b, c, d, e, g, h, l.

Note that the reflexive closure of the product of strict orders allows
to choose pivots, such as the element e, with no precedence with row or
column elements, and thus revealing neither row nor column rank profiles.
We will therefore not consider it in the rest of the study.

Pivot permutation The pivot permutation moves a pivot from its
initial position to the leading diagonal. Besides this constraint all pos-
sible choices are left for the remaining values of the permutation. Most
often, it is done by row or column transpositions, as it clearly involves
a small amount of data movement. However, these transpositions can
break the precedence relations in the set of rows or columns, and can
therefore prevent the recovery a the rank profile information. A pivot
permutation that leaves the precedence relations unchanged will be called
k-monotonically increasing.

Definition 3. A permutation of σ ∈ Sn is called k-monotonically increas-
ing if its last n− k values form a monotonically increasing sequence.

In particular, the last n − k rows of the associated row-permutation
matrix Pσ are in row echelon form. For example, the cyclic shift between
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indices k and i, with k < i defined as Rk,i = (1, . . . , k−1, i, k, k+1, . . . , i−
1, i + 1, . . . , n), that we will call a (k, i)-rotation, is an elementary k-
monotonically increasing permutation.

Example 3.

1. The (1, 4)-rotation R1,4 = (4, 1, 2, 3) is a 1-monotonically increasing

permutation. Its row permutation matrix is





0 1
1

1
1 0



.

2. Any (k, i)-rotation is a k-monotonically increasing permutation.

Monotonically increasing permutations can be composed as stated in
Lemma 3.

Lemma 3. If σ1 ∈ Sn is a k1-monotonically increasing permutation and
σ2 ∈ Sk1

×Sn−k1
a k2-monotonically increasing permutation with k1 < k2

then the permutation σ2◦σ1 is a k2-monotonically increasing permutation.

Proof. The last n−k2 values of σ2 ◦σ1 are the image of a sub-sequence of
n− k2 values from the last n− k1 values of σ1 through the monotonically
increasing function σ2.

Therefore an iterative algorithm, using rotations as elementary pivot
permutations, maintains the property that the permutation matrices P
and Q at any step k are k-monotonically increasing. A similar property
also applies with recursive algorithms.

4 How to reveal rank profiles

A PLUQ decomposition reveals the row (resp. column) rank profile if it
can be read from the first r values of the permutation matrix P (resp.
Q). Equivalently, by Lemma 2, this means that the row (resp. column)
support of the pivoting matrix ΠP,Q equals that of the rank profile matrix.

Definition 4. The PLUQ decomposition A = P LUQ reveals
1. the row rank profile if RowSupp(ΠP,Q) = RowSupp(RA),
2. the col. rank profile if ColSupp(ΠP,Q) = ColSupp(RA),
3. the rank profile matrix if ΠP,Q = RA.

Example 4. A =






2 0 3 0
1 0 0 0
0 0 4 0
0 2 0 1




 has RA =






1 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0




 for rank profile matrix

over Q. Now the pivoting matrix obtained from a PLUQ decomposition
with a pivot search operation following the row order (any column, first

non zero row) could be the matrix ΠP,Q =






0 0 1 0
1 0 0 0
0 0 0 0
0 1 0 0




. As these matrices

share the same row support, the matrix ΠP,Q reveals the row rank profile
of A.
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Remark 2. Example 4, suggests that a pivot search strategy minimizing
row and column indices could be a sufficient condition to recover both row
and column rank profiles at the same time, regardless the pivot permuta-
tion. However, this is unfortunately not the case. Consider for example
a search based on the lexicographic order (first non zero column of the
first non zero row) with transposition permutations, run on the matrix:

A =

[
0 0 1
2 3 0

]

. Its rank profile matrix is RA =

[
0 0 1
1 0 0

]

whereas the piv-

oting matrix could be ΠP,Q =

[
0 0 1
0 1 0

]

, which does not reveal the column

rank profile. This is due to the fact that the column transposition per-
formed for the first pivot changes the order in which the columns will be
inspected in the search for the second pivot.

We will show that if the pivot permutations preserve the order in which
the still unprocessed columns or rows appear, then the pivoting matrix
may equal the rank profile matrix. This is achieved by the monotonically
increasing permutations.

Theorem 2 shows how the ability of a PLUQ decomposition algorithm
to recover the rank profile information relates to the use of monotonically
increasing permutations. More precisely, it considers an arbtrary step in
a PLUQ decomposition where k pivots have been found in the elimination
of an ℓ× p leading sub-matrix A1 of the input matrix A.

Theorem 2. Consider a partial PLUQ decomposition of an m×n matrix
A:

A = P1

[
L1

M1 Im−k

] [
U1 V1

H

]

Q1

where

[
L1

M1

]

is m × k lower triangular and
[
U1 V1

]
is k × n upper tri-

angular, and let A1 be some ℓ × p leading sub-matrix of A, for ℓ, p ≥ k.
Let H = P2L2U2Q2 be a PLUQ decomposition of H. Consider the PLUQ
decomposition

A = P1

[
Ik

P2

]

︸ ︷︷ ︸

P

[
L1

P T
2 M1 L2

]

︸ ︷︷ ︸

L

[

U1 V1QT
2

U2

]

︸ ︷︷ ︸

U

[
Ik

Q2

]

Q1

︸ ︷︷ ︸

Q

.

Consider the following clauses:
(i) RowRP(A1) = RowSupp(ΠP1,Q1

)
(ii) ColRP(A1) = ColSupp(ΠP1,Q1

)
(iii) RA1

= ΠP1,Q1

(iv) RowRP(H) = RowSupp(ΠP2,Q2
)

(v) ColRP(H) = ColSupp(ΠP2,Q2
)

(vi) RH = ΠP2,Q2

(vii) P T
1 is k-monotonically increasing or (P T

1 is ℓ-monotonically increas-
ing and p = n)

(viii) QT
1 is k-monotonically increasing or (QT

1 is p-monotonically in-
creasing and ℓ = m)

Then,

8



(a) if (i) or (ii) or (iii) then H =

[
0(ℓ−k)×(p−k) ∗

∗ ∗

]

(b) if (vii) then ((i) and (iv)) ⇒ RowRP(A) = RowSupp(ΠP,Q);
(c) if (viii) then ((ii) and (v)) ⇒ ColRP(A) = ColSupp(ΠP,Q);
(d) if (vii) and (viii) then (iii) and (vi) ⇒RA = ΠP,Q.

Proof. Let P1 =
[
P11 E1

]
and Q1 =

[
Q11

F1

]

where E1 is m× (m− k) and

F1 is (n− k)× n. On one hand we have

A =
[
P11 E1

]
[

L1

M1

]
[
U1 V1

]
[

Q11

F1

]

︸ ︷︷ ︸

B

+E1HF1. (1)

On the other hand,

ΠP,Q = P1

[
Ik

P2

] [
Ir

0(m−r)×(n−r)

] [
Ik

Q2

]

Q1

= P1

[
Ik

ΠP2,Q2

]

Q1

= ΠP1,Q1
+ E1ΠP2,Q2

F1. (2)

Let A1 =

[
A1 0
0 0(m−ℓ)×(n−p)

]

and denote by B1 the ℓ× p leading sub-

matrix of B.
(a) The clause (i) or (ii) or (iii) implies that all k pivots of the partial elim-

ination were found within the ℓ×p sub-matrix A1. Hence rank(A1) =

k and we can write P1 =

[
P11

0(m−ℓ)×k
E1

]

and Q1 =

[
Q11 0k×(n−p)

F1

]

,

and the matrix A1 writes

A1 =
[
Iℓ 0

]
A

[
Ip

0

]

= B1 +
[
Iℓ 0

]
E1HF1

[
Ip

0

]

. (3)

Now rank(B1) = k as a sub-matrix of B of rank k and since

B1 =
[
P11

[
Iℓ 0

]
· E1

]
[

L1

M1

]
[
U1 V1

]





Q11

F1 ·

[
Ip

0

]





= P11L1U1Q11 +
[
Iℓ 0

]
E1M1

[
U1 V1

]
Q1

[
Ip

0

]

where the first term, P11L1U1Q11, has rank k and the second term
has a disjoint row support.

Finally, consider the term
[
Iℓ 0

]
E1HF1

[
Ip

0

]

of equation (3). As its

row support is disjoint with that of the pivot rows of B1, it has to
be composed of rows linearly dependent with the pivot rows of B1

to ensure that rank(A1) = k. As its column support is disjoint with
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that of the pivot columns of B1, we conclude that it must be the zero
matrix. Therefore the leading (ℓ− k)× (p− k) sub-matrix of E1HF1

is zero.
(b) From (a) we know that A1 = B1. Thus RowRP(B) = RowRP(A1).

Recall that A = B + E1HF1. No pivot row of B can be made linearly
dependent by adding rows of E1HF1, as the column position of the
pivot is always zero in the latter matrix. For the same reason, no
pivot row of E1HF1 can be made linearly dependent by adding rows
of B. From (i), the set of pivot rows of B is RowRP(A1), which shows
that

RowRP(A) = RowRP(A1) ∪ RowRP(E1HF1). (4)

Let σE1
: {1..m − k} → {1..m} be the map representing the sub-

permutation E1 (i.e. such that E1[σE1
(i), i] = 1 ∀i). If P T

1 is k-
monotonically increasing, the matrix E1 has full column rank and is
in column echelon form, which implies that

RowRP(E1HF1) = σE1
(RowRP(HF1))

= σE1
(RowRP(H)), (5)

since F1 has full row rank. If P T
1 is ℓ monotonically increasing, we can

write E1 =
[
E11 E12

]
, where the m× (m−ℓ) matrix E12 is in column

echelon form. If p = n, the matrix H writes H =

[
0(ℓ−k)×(n−k)

H2

]

.

Hence we have E1HF1 = E12H2F1 which also implies

RowRP(E1HF1) = σE1
(RowRP(H)).

From equation (2), the row support of ΠP,Q is that of ΠP1,Q1
+

E1ΠP2,Q2
F1, which is the union of the row support of these two

terms as they are disjoint. Under the conditions of point (b), this
row support is the union of RowRP(A1) and σE1

(RowRP(H)), which
is, from (5) and (4), RowRP(A).

(c) Similarly as for point (b).
(d) From (a) we have still A1 = B1. Now since rank(B) = rank(B1) =

rank(A1) = k, there is no other non-zero element in RB than those in
R

A1
and RB = R

A1
. The row and column support of RB and that

of E1HF1 are disjoint. Hence

RA = R
A1

+RE1HF1
. (6)

If both P T
1 and QT

1 are k-monotonically increasing, the matrix E1

is in column echelon form and the matrix F1 in row echelon form.
Consequently, the matrix E1HF1 is a copy of the matrix H with k
zero-rows and k zero-columns interleaved, which does not impact the
linear dependency relations between the non-zero rows and columns.
As a consequence

RE1HF1
= E1RHF1. (7)

Now if QT
1 is k-monotonically increasing, P T

1 is ℓ-monotonically in-
creasing and p = n, then, using notations of point (b), E1HF1 =
E12H2F1 where E12 is in column echelon form. Thus RE1HF1

=
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E1RHF1 for the same reason. The symmetric case where QT
1 is

p-monotonically increasing and ℓ = m works similarly. Combining
equations (2), (6) and (7) gives RA = ΠP,Q.

5 Algorithms for rank profiles

Using Theorem 2, we deduce what rank profile information is revealed by
a PLUQ algorithm by the way the Search and the Permutation operations
are done. Table 1 summarizes these results, and points to instances known
in the literature, implementing the corresponding type of elimination.
More precisely, we first distinguish in this table the ability to compute the
row or column rank profile or the rank profile matrix, but we also indicate
whether the resulting PLUQ decomposition preserves the monotonicity of
the rows or columns. Indeed some algorithm may compute the rank profile
matrix, but break the precedence relation between the linearly dependent
rows or columns, making it unusable as a base case for a block algorithm
of higher level.

Search Row Perm. Col. Perm. Reveals Monotonicity Instance

Row order Transposition Transposition RowRP [8, 9]
Col. order Transposition Transposition ColRP [11, 9]

Lexicographic
Transposition Transposition RowRP [13]
Transposition Rotation RowRP, ColRP, R Col. here
Rotation Rotation RowRP, ColRP, R Row, Col. here

Rev. lexico.
Transposition Transposition ColRP [13]
Rotation Transposition RowRP, ColRP, R Row here
Rotation Rotation RowRP, ColRP, R Row, Col. here

Product
Rotation Transposition RowRP Row here
Transposition Rotation ColRP Col here
Rotation Rotation RowRP, ColRP, R Row, Col. [5]

Table 1: Pivoting Strategies revealing rank profiles

5.1 Iterative algorithms

We start with iterative algorithms, where each iteration handles one pivot
at a time. Here Theorem 2 is applied with k = 1, and the partial elimi-
nation represents how one pivot is being treated. The elimination of H is
done by induction.

Row and Column order Search The row order pivot search op-
eration is of the form: any non zero element in the first non zero row.
Each row is inspected in order, and a new row is considered only when
the previous row is all zeros. With the notations of Theorem 2, this means
that A1 is the leading ℓ× n sub-matrix of A, where ℓ is the index of the
first non zero row of A. When permutations P1 and Q1, moving the pivot

11



from position (ℓ, j) to (k, k) are transpositions, the matrix ΠP1,Q1
is the

element Eℓ,j of the canonical basis. Its row rank profile is (ℓ) which is
that of the ℓ × n leading sub-matrix A1. Finally, the permutation P1

is ℓ-monotonically increasing, and Theorem 2 case (b) can be applied to
prove by induction that any such algorithm will reveal the row rank pro-
file: RowRP(A) = RowSupp(ΠP,Q). The case of the column order search
is similar.

Lexicographic order based pivot search In this case the Pivot
Search operation is of the form: first non zero element in the first non zero
row. The lexicographic order being compatible with the row order, the
above results hold when transpositions are used and the row rank profile
is revealed. If in addition column rotations are used, Q1 = R1,j which is
1-monotonically increasing. Now ΠP1,Q1

= Eℓ,j which is the rank profile
matrix of the ℓ× n leading sub-matrix A1 of A. Theorem 2 case (d) can
be applied to prove by induction that any such algorithm will reveal the
rank profile matrix: RA = ΠP,Q. Laslty, the use of row rotations, ensures
that the order of the linearly dependent rows will be preserved as well.
Algorithm 1 is an instance of Gaussian elimination with a lexicographic
order search and rotations for row and column permutations.

The case of the reverse lexicographic order search is similar. As an
example, the algorithm in [13, Algorithm 2.14] is based on a reverse lexi-
cographic order search but with transpositions for the row permutations.
Hence it only reveals the column rank profile.

Product order based pivot search The search here consists in
finding any non zero element Aℓ,p such that the ℓ×p leading sub-matrix A1

of A is all zeros except this coefficient. If the row and column permutations
are the rotations R1,ℓ and R1,p, we have ΠP1,Q1

= Eℓ,p = RA1
. Theorem 2

case (d) can be applied to prove by induction that any such algorithm
will reveal the rank profile matrix: RA = ΠP,Q. An instance of such an
algorithm is given in [5, Algorithm 2]. If P1 (resp. Q1) is a transposition,
then Theorem 2 case (c) (resp. case (b)) applies to show by induction
that the columns (resp. row) rank profile is revealed.

5.2 Recursive algorithms

A recursive Gaussian elimination algorithm can either split one of the row
or column dimension, cutting the matrix in wide or tall rectangular slabs,
or split both dimensions, leading to a decomposition into tiles.

Slab recursive algorihtms Most algorithms computing rank profiles
are slab recursive [8, 11, 13, 9]. When the row dimension is split, this
means that the search space for pivots is the whole set of columns, and
Theorem 2 applies with p = n. This corresponds to a either a row or a
lexicographic order. From case( b), one shows that, with transpositions,
the algorithm recovers the row rank profile, provided that the base case
does. If in addition, the elementary column permutations are rotations,
then case (d) applies and the rank profile matrix is recovered. Finally, if
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rows are also permuted by monotonically increasing permutations, then
the PLUQ decomposition also respects the monotonicity of the linearly
dependent rows and columns. The same reasoning holds when splitting
the column dimension.

Tile recursive algorihtms Tile recursive Gaussian elimination algo-
rithms [5, 12, 6] are more involved, especially when dealing with rank defi-
ciencies, and we refer to [5] for a detailed description of such an algorithm.
Here, the search area A1 has arbitrary dimensions ℓ× p, often specialized
as m/2× n/2. As a consequence, the pivot search can not satisfy neither
row, column, lexicographic or reverse lexicographic orders. Now, if the
pivots selected in the elimination of A1 minimizes the product order, then
they necessarily also respect this order as pivots of the whole matrix A.

Now, from (a), the remaining matrix H writes H =

[
0(ℓ−k)×(p−k) H12

H21 H22

]

and its elimination is done by two independent eliminations on the blocks
H12 and H21, followed by some update of H22 and a last elimination on it.
Here again, pivots minimizing the row order on H21 and H12 are also piv-
ots minimizing this order for H, and so are those of the fourth elimination.
Now the block row and column permutations used in [5, Algorithm 1] to
form the PLUQ decomposition are r-monotonically increasing. Hence,
from case (d), the algorithm computes the rank profile matrix and pre-
serves the monotonicity. If only one of the row or column permutations
are rotations, then case (b) or (c) applies to show that either the row or
the column rank profile is computed.

6 Rank profile matrix based triangular-

izations

6.1 LEU decomposition

The LEU decomposition introduced in [12] involves a lower triangular
matrix L, an upper triangular matrix U and a r-subpermutation matrix
E.

Theorem 3. Let A = P LUQ be a PLUQ decomposition revealing the
rank profile matrix (ΠP,Q = RA). Then an LEU decomposition of A with
E = RA is obtained as follows (only using row and column permutations):

A = P
[
L 0m×(n−r)

]
P T

︸ ︷︷ ︸

L

P

[
Ir

0

]

Q

︸ ︷︷ ︸

E

QT

[
U

0(n−r)×n

]

Q

︸ ︷︷ ︸

U

(8)

Proof. First E = P

[
Ir

0

]

Q = ΠP,Q = RA. Then there only needs

to show that L is lower triangular and U is upper triangular. Sup-
pose that L is not lower triangular, let i be the first row index such
that Li,j 6= 0 for some i < j. First j ∈ RowRP(A) since the non-zero
columns in L are placed according to the first r values of P . Remarking
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that A = P
[
L 0m×(n−r)

]
[

U
0 In−r

]

Q, and since right multiplication by

a non-singular matrix does not change row rank profiles, we deduce that
RowRP(ΠP,Q) = RowRP(A) = RowRP(L). If i /∈ RowRP(A), then the
i-th row of L is linearly dependent with the previous rows, but none of
them has a non zero element in column j > i. Hence i ∈ RowRP(A).

Let (a, b) be the position of the coefficient Li,j in L, that is a =
σ−1

P (i), b = σ−1
P (j). Let also s = σQ(a) and t = σQ(b) so that the pivots

at diagonal position a and b in L respectively correspond to ones in RA

at positions (i, s) and (j, t). Consider the ℓ × p leading sub-matrices A1

of A where ℓ = maxx=1..a−1(σP (x)) and p = maxx=1..a−1(σQ(x)). On
one hand (j, t) is an index position in A1 but not (i, s), since otherwise
rank(A1) = b. Therefore, (i, s) ⊀prod (j, t), and s > t as i < j. As
coefficients (j, t) and (i, s) are pivots in RA and i < j and t < s, there
can not be a non zero element above (j, t) at row i when it is chosen as
a pivot. Hence Li,j = 0 and L is lower triangular. The same reasoning
applies to show that U is upper triangular.

Remark 3. Note that the LEU decomposition with E = RA is not unique,
even for invertible matrices. As a counter-example, the following decom-
position holds for any a ∈ K:

[
0 1
1 0

]

=

[
1 0
a 1

] [
0 1
1 0

] [
1 −a
0 1

]

(9)

6.2 Bruhat decomposition

The Bruhat decomposition, that has inspired Malaschonok’s LEU decom-
position [12], is another decomposition with a central permutation ma-
trix [1, 7].

Theorem 4 ([1]). Any invertible matrix A can be written as A = V P U
for V and U uppper triangular invertible matrices and P a permutation
matrix. The latter decomposition is called the Bruhat decomposition of
A.

It was then naturally extended to singular square matrices by [7].
Corollary 1 generalizes it to matrices with arbitrary dimensions, and re-
lates it to the PLUQ decomposition.

Corollary 1. Any m × n matrix of rank r has a V P U decomposition,
where V and U are upper triangular matrices, and P is a r-subpermutation
matrix.

Proof. Let Jn be the unit antidiagonal matrix. From the LEU decomposi-
tion of JnA, we have A = JnLJn

︸ ︷︷ ︸

V

JnE
︸︷︷︸

P

U where V is upper triangular.

6.3 Relation to LUP and PLU decompositions

The LUP decomposition A = LUP only exists for matrices with generic
row rank profile (including matrices with full row rank). Corollary 2 shows
upon which condition the permutation matrix P equals the rank profile
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matrix RA. Note that although the rank profile A is trivial in such cases,
the matrix RA still carries important information on the row and column
rank profiles of all leading sub-matrices of A.

Corollary 2. Let A be an m× n matrix.
If A has generic column rank profile, then any PLU decomposition A =

P LU computed using reverse lexicographic order search and row rotations

is such that RA = P

[
Ir

0

]

. In particular, P = RA if r = m.

If A has generic row rank profile, then any LUP decomposition A =
LUP computed using lexicographic order search and column rotations is

such that RA =

[
Ir

0

]

P . In particular, P = RA if r = n.

Proof. Consider A has generic column rank profile. From table 1, any
PLUQ decomposition algorithm with a reverse lexicographic order based

search and rotation based row permutation is such that ΠP,Q = P

[
Ir

]

Q =

RA. Since the search follows the reverse lexicographic order and the ma-
trix has generic column rank profile, no column will be permuted in this
elimination, and therefore Q = In. The same reasoning hold for when A
has generic row rank profile.

Note that the L and U factors in a PLU decomposition are uniquely
determined by the permutation P . Hence, when the matrix has full row
rank, P = RA and the decomposition A = RALU is unique. Similarly
the decomposition A = LURA is unique when the matrix has full column
rank. Now when the matrix is rank deficient with generic row rank profile,
there is no longer a unique PLU decomposition revealing the rank profile
matrix: any permutation applied to the last m− r columns of P and the

last m− r rows of L yields a PLU decomposition where RA = P

[
Ir

]

.

Lastly, we remark that the only situation where the rank profile matrix
RA can be read directly as a sub-matrix of P or Q is as in corollary 2,
when the matrix A has generic row or column rank profile. Consider
a PLUQ decomposition A = P LUQ revealing the rank profile matrix

(RA = P

[
Ir

]

Q) such that RA is a sub-matrix of P . This means that

P = RA + S where S has disjoint row and column support with RA. We

have RA = (RA + S)

[
Ir

]

Q = (RA + S)

[
Q1

0(n−r)×n

]

. Hence RA(In −
[

Q1

0(n−r)×n

]

) = S

[
Q1

0(n−r)×n

]

but the row support of these matrices are

disjoint, hence RA

[
0

In−r

]

= 0 which implies that A has generic column

rank profile. Similarly, one shows that RA can be a sub-matrix of Q only
if A has a generic row rank profile.
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7 Improvements in practice

In our previous contribution [5], we identified the ability to recover the
rank profile matrix via the use of the product order search and of rota-
tions. Hence we proposed an implementation combining a tile recursive
algorithm and an iterative base case, using these search and permutation
strategies.

The analysis of sections 4 and 5 shows that other pivoting strate-
gies can be used to compute the rank profile matrix, and preserve the
monotonicity. We present here a new base case algorithm and its imple-
mentation over a finite field that we wrote in the FFLAS-FFPACK library1.
It is based on a lexicographic order search and row and column rotations.
Moreover, the schedule of the update operations is that of a Crout elimi-
nation, for it reduces the number of modular reductions, as shown in [3,
§ 3.1]. Algorithm 1 summarizes this variant.

Algorithm 1 Crout variant of PLUQ with lexicographic search and column
rotations

1: k ← 1
2: for i = 1 . . . m do

3: Ai,k..n ← Ai,k..n −Ai,1..k−1 ×A1..k−1,k..n

4: if Ai,k..n = 0 then

5: Loop to next iteration
6: end if

7: Let Ai,s be the left-most non-zero element of row i.
8: Ai+1..m,s ← Ai+1..m,s −Ai+1..m,1..k−1 ×A1..k−1,s

9: Ai+1..m,s ← Ai+1..m,s/Ai,s

10: Bring A∗,s to A∗,k by column rotation
11: Bring Ai,∗ to Ak,∗ by row rotation
12: k ← k + 1
13: end for

Figure 1 shows its computation speed (3), compared to that of the
pure recursive algorithm (6), and to our previous base case algorithm, us-
ing a product order search, and either a left-looking (4) or a right-looking
(5) schedule. Laslty we also show the speed of the final implementation,
formed by the tile recursive algorithm cascading to either the Crout base
case (1) or the left-looking one (2). We used n × n matrices with rank
r = n/2 and whose row and column rank profile are chosen uniformly at
random. The effective speed is obtained by dividing an estimate of the
arithmetic cost (2mnr + 2/3r3 − r2(m + n)) by the computation time.
At n = 200, the left-looking variant (4) improves over the right looking
variant (5) by a factor of about 2.14 as it performs fewer modular reduc-
tions. Then, the Crout variant (3) again improves variant (4) by a factor
of about 3.15.

1FFLAS-FFPACK revision 1193, http://linalg.org/projects/fflas-ffpack, linked

against OpenBLAS-v0.2.8.
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Figure 1: Computation speed of PLUQ decomposition base cases.

8 Computing Echelon forms

Usual algorithms computing an echelon form [13, 9] use a slab block de-
composition (with row or lexicographic order search), which implies that
pivots appear in the order of the echelon form. The column echelon form
is simply obtained as C = P L from the PLUQ decomposition. Using
product order search, this is no longer true, and the order of the columns
in L may not be that of the echelon form. Algorithm 2 shows how to
recover the echelon form in such cases. Note that both the row and the

Algorithm 2 Echelon form from a PLUQ decomposition

Input: P, L, U, Q, a PLUQ decomp. of A with RA = ΠP,Q

Output: C: the column echelon form of A
1: C ← PL
2: (p1, .., pr) = Sort(σP (1), .., σP (r))
3: for i = 1..r do

4: τ = (σ−1

P (p1), .., σ−1

P (pr), r + 1, .., m)
5: end for

6: C ← CPτ

column echelon forms can thus be computed from the same PLUQ decom-
position. Lastly, the column echelon form of the i× j leading sub-matrix,
is computed by removing rows of P L below index i and filtering out the
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pivots of column index greater than j. The latter is achieved by replacing
line 2 by (p1, .., ps) = Sort({σP (i) : σQ(i) ≤ j}).
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[1] N. Bourbaki. Groupes et Algègres de Lie. Number Chapters 4–6 in
Elements of mathematics. Springer, 2008.

[2] J. J. Dongarra, L. S. Duff, D. C. Sorensen, and H. A. V. Vorst.
Numerical Linear Algebra for High Performance Computers. SIAM,
1998.

[3] J.-G. Dumas, T. Gautier, C. Pernet, and Z. Sultan. Parallel computa-
tion of echelon forms. In Euro-Par 2014 Parallel Proc., LNCS (8632),
pages 499–510. Springer, 2014. doi:10.1007/978-3-319-09873-9_

42.

[4] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over
prime fields. ACM TOMS, 35(3):1–42, Nov. 2008. doi:10.1145/

1391989.1391992.

[5] J.-G. Dumas, C. Pernet, and Z. Sultan. Simultaneous computation
of the row and column rank profiles. In M. Kauers, editor, Proc. IS-
SAC’13. ACM Press, 2013. URL: http://hal.archives-ouvertes.

fr/hal-00778136, doi:10.1145/2465506.2465517.

[6] J.-G. Dumas and J.-L. Roch. On parallel block algorithms for exact
triangularizations. Parallel Computing, 28(11):1531–1548, Nov. 2002.
doi:10.1016/S0167-8191(02)00161-8.

[7] D. Y. Grigor’ev. Analogy of Bruhat decomposition for the closure
of a cone of Chevalley group of a classical serie. Soviet Mathematics
Doklady, 23(2):393–397, 1981.

[8] O. H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP
matrix decomposition algorithm and applications. J. of Algorithms,
3(1):45–56, 1982. doi:10.1016/0196-6774(82)90007-4.

[9] C.-P. Jeannerod, C. Pernet, and A. Storjohann. Rank-profile reveal-
ing Gaussian elimination and the CUP matrix decomposition. J.
Symbolic Comput., 56:46–68, 2013. URL: http://dx.doi.org/10.

1016/j.jsc.2013.04.004, doi:10.1016/j.jsc.2013.04.004.

[10] D. J. Jeffrey. LU factoring of non-invertible matrices. ACM
Comm. Comp. Algebra, 44(1/2):1–8, July 2010. URL: http://www.

apmaths.uwo.ca/˜djeffrey/Offprints/David-Jeffrey-LU.pdf,
doi:10.1145/1838599.1838602.

[11] W. Keller-Gehrig. Fast algorithms for the characteristic polynomial.
Th. Comp. Science, 36:309–317, 1985. doi:10.1016/0304-3975(85)

90049-0.

[12] G. I. Malaschonok. Fast generalized Bruhat decomposition. In
CASC’10, volume 6244 of LNCS, pages 194–202. Springer-Verlag,
Berlin, Heidelberg, 2010.

18

http://dx.doi.org/10.1007/978-3-319-09873-9_42
http://dx.doi.org/10.1007/978-3-319-09873-9_42
http://dx.doi.org/10.1145/1391989.1391992
http://dx.doi.org/10.1145/1391989.1391992
http://hal.archives-ouvertes.fr/hal-00778136
http://hal.archives-ouvertes.fr/hal-00778136
http://dx.doi.org/10.1145/2465506.2465517
http://dx.doi.org/10.1016/S0167-8191(02)00161-8
http://dx.doi.org/10.1016/0196-6774(82)90007-4
http://dx.doi.org/10.1016/j.jsc.2013.04.004
http://dx.doi.org/10.1016/j.jsc.2013.04.004
http://dx.doi.org/10.1016/j.jsc.2013.04.004
http://www.apmaths.uwo.ca/~djeffrey/Offprints/David-Jeffrey-LU.pdf
http://www.apmaths.uwo.ca/~djeffrey/Offprints/David-Jeffrey-LU.pdf
http://dx.doi.org/10.1145/1838599.1838602
http://dx.doi.org/10.1016/0304-3975(85)90049-0
http://dx.doi.org/10.1016/0304-3975(85)90049-0


[13] A. Storjohann. Algorithms for Matrix Canonical Forms. PhD the-
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