
HAL Id: hal-01107720
https://hal.science/hal-01107720

Submitted on 25 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Indexing Evidential Data
Anouar Jammali, Mohamed Anis Bach Tobji, Arnaud Martin, Boutheina Ben

Yaghlane

To cite this version:
Anouar Jammali, Mohamed Anis Bach Tobji, Arnaud Martin, Boutheina Ben Yaghlane. Indexing
Evidential Data. Third World Conference on Complex Systems, Nov 2014, Marrakech, Morocco.
�hal-01107720�

https://hal.science/hal-01107720
https://hal.archives-ouvertes.fr


Indexing Evidential Data

Anouar Jammali∗, Mohamed Anis Bach Tobji†, Arnaud Martin‡ and Boutheina Ben Yaghlane§

∗LARODEC, University of Tunis, ISG, Tunisia

Email: jammali.anouar@gmail.com
†LARODEC, University of Manouba, ESEN, Tunisia

Email: anis.bach@isg.rnu.tn
‡IRISA, University of Rennes 1, IUT of Lannion, France

Email: arnaud.martin@univ-rennes1.fr
§LARODEC, University of Carthage, IHEC, Tunisia

Email: boutheina.yaghlane@ihec.rnu.tn

Abstract—Querying imperfect data received increasing at-
tention in the area of database management. The complexity
and the volume of imperfect data requires advanced techniques
for efficient access, and satisfying user-queries in a reasonable
response time. In this paper, we are particularly interested
in evidential databases, i.e., databases where imperfection is
represented through Dempster-Shafer theory. To answer user-
queries in such databases, we propose a new index system based
on a tree data structure (e-Tree) that is adapted to the complexity
of the evidential data. The experiments done on our solution
showed encouraging results.

Keywords—Dempster-Shafer theory, indexing data, evidential
database.

I. INTRODUCTION

Imperfect databases research field is receiving a quite
important attention from academic and industrial researchers
in the recent years. That is due to the need of database manage-
ment systems (DBMS) that handle different data natures and
support decision making process in presence of uncertainty.

Several real world applications suffer from data imper-
fection. For example, in medical applications, symptoms and
diagnosis data are infected with imperfection (be it uncertainty,
incompleteness or imprecision). Also, data collected from
sensors deal with imperfections. The sensors of a unique
system may have different precision levels, thus, the system
that manages these data should be as robust as possible to
correctly cope with data imperfection.

In this work, we are interested in imperfect data that are
modeled through Dempster-Shafer theory [9], [10], [15] called,
evidential data. Evidential database is the system that stores
and manages evidential data, with regarding to its complex
nature. Handling uncertainty and imprecision via evidential
database systems is an active research topic tackled in several
works such as [6], [7], [12], [4].

When we deal with huge volume of data [5], the cost of
accessing these data becomes problematic. A trivial solution
to minimize this cost is to use an indexing system. However,
conventional indexes used in traditional (perfect) databases
are unusable in evidential databases, because non adapted
to the structure of the evidential data. Even index structures
introduced in the uncertainty context, cope with probabilistic
databases [16], [11], [2], [13] rather than with evidential ones.

In this work, we introduce a new tree based data structure
as an indexing system adapted to the nature of data stored
in evidential databases. The introduced structure is a single
attribute index, i.e., an index based on a unique database
column. To validate our contribution, we implemented the
sequential access to the evidential database, which is the
trivial solution to answer user-queries, the Rid Lists structure,
introduced in [3] and adapted in this paper to index evidential
data, and finally the evidential tree, called e-Tree, introduced
in this article. Then we led experiments on these methods
to compare their efficiencies for various synthetic evidential
databases.

This paper is organized as follows:
In section 2, we present the background material of our work.
In subsection A, the basic notions of Dempster-Shafer theory
are introduced, to present then, in subsection B, the evidential
database concept which is based on the aforementioned the-
ory. In section 3, we present the indexes of evidential data.
Two solutions are presented; the RID Lists structure, initially
proposed in [3] for mining association rules, and the e-Tree
structure that is the contribution of this work. Finally, in section
4, we present the experiments conducted on our index systems
as well as the obtained results.

II. BACKGROUND MATERIAL

A. Dempster-Shafer (DS) Theory

A discernment frame is a set of mutually exclusive and
exhaustive hypotheses where one of these hypotheses is likely
to be the solution for the proposed problem. The uncertain
information representation can be expressed by the mass
function:

Let Ω be a frame of discernment, then, a function
m : 2Ω → [0, 1] is called a mass function whenever:

m(∅) = 0

∑

A⊆Ω

m(A) = 1 (1)

An element A of the set 2Ω is called a focal element
whenever m(A) 6= 0. The measure m(A) gives how much
is true the hypothesis A.



From this definition are derived the definitions of belief (bel)
and plausibility (pl).

The belief value of an attribute A, denoted by bel(A), is
the total mass of all subsets of A. It reflects the total belief
committed to A.

belΩ : 2Ω → [0, 1]

belΩ(A) =
∑

B⊆A

mΩ(B) (2)

The plausibility function is the dual function of belief. It
measures the maximum amount of belief that could be given
to a proposition A.
This function gives how much the given information enforces
the hypothesis A. It is defined on 2Ω → [0, 1] as follows:

plΩ(A) = 1− belΩ(Ā)

plΩ(A) =
∑

B∩A 6=∅

mΩ(B) (3)

where Ā is the complement hypothesis of A.

B. Evidential Database

An evidential database EDB is a database with X at-
tributes and Y lines where each attribute Ax (1 ≤ x ≤ X) has
a domain Ωx containing all the possible hypotheses, i.e., values
of Ax. Ωx is the frame of discernment of the xth attribute. The
value of the jth attribute in the ith line is called an evidential
value denoted by Vij . An evidential value is a basic belief
assignment (bba) defined through a mass function denoted by
mij .

Table 1 is an example of an evidential database, where
the attribute Disease stores the diagnosis of a patient. The
diagnosis of a patient may be precise and certain, as the
diagnosis of John. It may be uncertain, like the diagnosis of
Robert. Also, it may be imprecise, like for the patient Maria.
This evidential attribute may contain any imperfect information
that could be modeled through the DS theory.

Table I. Diagnosis: AN EXAMPLE OF EVIDENTIAL DATABASE

Id Patient Disease

1 Robert 0.7 flu, 0.3 anemia

2 Celina 0.7 (cancer,flu), 0.3 cancer

3 John flu

4 Maria (anemia,cancer)

In [14], the author introduced an interesting model of an
extended relational evidential database. The main contribution
of this work is a generalized relational algebra where five rela-
tional operators (projection, restriction, cross product, intersect
and join) are redefined.

In this paper, we are content with giving a simple example
of selection from one table. For more details, please refer to
the articles [14] and [6].

Assume we want to evaluate the following query:
SELECT * FROM diagnosis WHERE disease=’flu’

In a perfect database, the result of this query contains
every line whose attribute Diagnosis has the value flu. In

evidential databases, attributes contain evidential values rather
than precise values. Thus, the result contains the lines where
belief of flu is strictly positive in the bba of the Diagnosis
attribute (bel(flu) > 0). It is formally defined as follows:

tab<attribute=v> = {l ∈ edb/bell(v) > 0} (4)

where tab<attribute=v> is the restriction of the relation tab
according to condition attribute = v, and bell(v) is the belief
of v in the record l.

Note the pseudo-attribute Bel added to the resulted relation
(see Table 2). It represents the belief of the searched value (in
our example flu) in the resulted line.

In [14], the resulted lines are those where pl(flu) is strictly
positive (pl(flu) > 0). A pseudo-attribute called Confidence
Level (denoted by CL) is added to the returned relation. It is
an interval delimited by the belief and the plausibility of each
resulted line as shown in table 3.

Table II. Diagnosis<disease=′flu′>

Patient Disease Bel

Robert 0.7 flu, 0.3 anemia 0.7

John flu 1

Table III. Diagnosis<disease=′flu′> ACCORDING TO MODEL OF [14]

Patient Disease CL

Robert 0.7 flu, 0.3 anemia [0.7,0.7]

Celina 0.7(cancer,flu), 0.3 cancer [0,0.7]

John flu [1,1]

Thus, in the literature, there are two models for answering
user-queries in evidential databases. In the first one, we return
lines where believes of the searched value are positive. In the
second model, returned lines are those whose plausibilities of
the searched value are positive. In this paper, we focus only
on the first model.

III. INDEXING EVIDENTIAL DATABASES

Answering a query of the form table < attribute = V >
leads to computing the belief of the searched value (V ) in
each line of the database. The DBMS has not only to look
for the searched value, but also for the subsets of the searched
value (see the definition of the belief function in section 2,
subsection A). For example, assume that the searched value
is V = {cancer, flu}. The DBMS should find all lines
that deal with {cancer, flu}, but also with cancer and flu
values. If the searched value V has a size n, then the DBMS
must return each line that deals with any subset A ⊆ V
from the 2n possible focal elements in the database that are
subsets of V . Thus, answering queries in evidential databases is
much more costly than answering queries in perfect databases.
Consequently, it is obvious that efficient query processing
techniques are needed. Indexing remains a key technique to
this aim.

In this section, we will present two indexing techniques.
The first one is derived from the work [3], where RID Lists
are used to mine frequent itemsets in evidential data. And the
second one is introduced in this paper. It is a tree data structure
that represents evidential data in a manner that accelerate the
search operation.



A. The RID Lists structure

The RID Lists structure assigns to each focal element in the
indexed attribute a list of couples. Each couple that concerns
a focal element fe contains two information:

• The row identifier (ROWID) of the line that contains
fe.

• The mass of fe in that line.

The RID Lists corresponding to the diseases’ database (table
1) is presented in table 4. The construction algorithm of the
RID Lists structure, corresponding to an evidential database,
is detailed in [3].

To evaluate the query table<attribute=v>, the RID Lists
index is scanned, and every RID List related to a focal element
included in v, is returned. To accelerate the search, the RID
Lists is sorted in the construction phase.

Table IV. RID LISTS OF TABLE Diagnosis

Focal element Rid List

anemia (1,0.3)

{anemia,cancer} (4,1.0)

cancer (2,0.3)

{cancer,flu} (2,1.0)

flu (1,0.7)(3,1.0)

B. The Evidential Tree

The evidential tree, denoted by e-Tree, is a tree data
structure that stores the content of an evidential attribute A.
The root of the tree is the empty set. A node of the tree has
two information:

• A value x ∈ DA where DA is the domain of the
attribute A.

• A list of couples (rid,bel).

Each couple (rid, bel) informs about the belief of the focal
element fe in the line whose identifier is rid. fe is the focal
element that is composed of values of A in the path that starts
from the root, to the current node.
For example, in figure 1, see the node cancer(4/1.0). It means
that the focal element {anemia, cancer} (see the path that
starts from the root and ends in the cancer node) has a belief
equal to 1.0 in the line 4.
Note that e-Tree is sorted in breadth and in depth. It allows
us to accelerate the search operation. In the following, we
present two important algorithms. The first one is about the
construction of the e-Tree from an evidential database. The
second one deals with searching lines that cope with a search
value, from an e-Tree structure.

1) Construction of the e-Tree: The construction of e-Tree
is described in the pseudo-code of the algorithm 1. In each
line of the database, each focal element is inserted in depth
into the e-Tree. For example, to insert focal elements of the
line 2 in the database example (table 1), we begin by the
element {cancer, flu}. We look among the children of the
root if there is a node relative to the value cancer. If we
don’t find it, we create a node with the label cancer. Then,
we look among the children of this node for a node labeled

flu. If its exists, we update its RID Lists by adding the
couple (2, 1.0), and not the couple (2, 0.7) since belief of
{cancer, flu} in the line 4 is equal to 1 (bel({cancer, flu}) =
mass({cancer, flu}) +mass(cancer) = 1).
Then, we handle the second focal element in line 2, that is
cancer. We look for the node cancer in children’s root, and
we find it (it is just created). So we add the couple (2, 0.3)
to its RID Lists. Algorithm 1 presents the pseudo-code of
constructing the evidential tree from an evidential database.
Figure 1 illustrates the evidential tree corresponding to the
table Diagnosis.

∅

Anemia(1/0.3)

Cancer(4/1.0)

Cancer(2/0.3)

Flu(2/1.0)

Flu(1/0.7)(3/1.0)

Figure 1. e-Tree corresponding to the table Disease

2) Searching in the e-Tree: A user query may cope with a
precise or imprecise value. For example, a user may search for
lines with a precise diagnosis, such as flu. He also may look for
lines with imprecise diagnosis, like {anemia, cancer}. If the
searched value is precise, then e-Tree structure is scanned only
at its first level. The other levels are about imprecise values,
i.e., compound focal elements. That is an advantage relatively
to the RID Lists structure, where singleton focal elements are
not collected in a separate structure. In the e-Tree structure,
singleton focal elements are stored as the children of the root
node. If the searched value is precise, the search algorithm
scans only n elements, while in the RID Lists, it scans up
to 2n elements. In this case, we can apply dichotomic search
since nodes are sorted. Consequently, the complexity of the
search algorithm is log2(n).

When the searched value V is imprecise, like
{anemia, cancer}, the search algorithm looks for nodes
that correspond to anemia and cancer in the first level.
It also looks for the nodes that represent the focal element
{anemia, cancer} which is at the second level. To make
faster, when the searched value V is imprecise, each time
we visit a node relative to an element e belonging to V , a
depth-scan is performed to look for all children of e that
are included (subsets) in V . In our example, when we visit
the node anemia, we also scan its children, looking for the
node cancer. This node, that represents the focal element
{anemia, cancer} is also concerned by the search operation.
The search algorithm returns the line 1 (with the belief
0.3), and then returns the line 4 (with the belief 1). Depth
searching linked with the singleton anemia being complete,
the search algorithm go to the next singleton element of V ,
that is cancer. The same recursive operation done for the
node anemia is done for cancer.

A main advantage of e-Tree relatively to the RID Lists
index, is that the hypotheses composing the focal elements are
linked. Exploring a singleton value, leads directly to all nodes
it prefixes, and that are subsets in V . In the RID Lists structure,
subsets of V are separated, which necessitates more scan time.



Algorithm 2 is the general method to search a value V
in an e-Tree structure. The output is a set of lines (identified
by a rid) with the belief of V in each one (like in table 2).
Algorithm 3 is the procedure used recursively in the main
algorithm. The procedure SEARCH takes as input a node N
in e-Tree, The searched value V and k as the level where
the search will perform. It adds to the set of returned lines
the couples of (rid, bel) that satisfy the search criterion in the
level k. Note that in algorithms 1, 2 and 3, N.children[] is the
set of the nodes that are children of the node N ; subsets(V, k)
is the collection of all subsets of V whose sizes are equal to
k; PATH(c) returns the focal element that is composed of all
nodes’ elements that link the root node to the node c.

Algorithm 1: Construction of e-Tree

input : An evidential table edb
output: e-Tree
for each line l in edb do

for each focal element fe in l do
if fe is singleton then

if fe ∈ root.children[] then
Update the RID List of fe;

else
Add a node for fe;
Initialize Its RID List with the
couple(ridl, bell(fe));

end
else /* fe is not a singleton */

for each value v in fe do
scan e-Tree in depth to find the node
corresponding to v;
if v not found then

Create a node relative to v in the
corresponding level

end
end
Add the couple (ridl, bell(fe)) to the leaf
corresponding to fe ; /* It corresponds to

the last node visited for the last v in fe

*/

end
end

end

Algorithm 2: Searching a value V in e-Tree

input : e-Tree, V as the searched value
output: returned lines as a set of couples (rid, bel)
for each child c in root.children[] do

if c in subsets(V ,1) then
ADD c.ridlists TO returned lines;
SEARCH(c, V, 2, returned lines);

end
end

IV. EXPERIMENTS AND RESULTS

A. Generation of evidential databases

We present in this section the experiments made on several
synthetic evidential databases, in order to show the behavior
of our indexes when processing user queries on scalable
evidential data. Evidential databases are not abundant in real
world, thus, we generated synthetic data. We implemented a

Algorithm 3: The procedure SEARCH

input : N as a node in e-Tree, V as the searched value, k as
the searched level

output: returned lines as a set of couples (rid, bel)
for each child c in N.children[] do

if PATH(c) in subsets(V ,k) then
ADD c.ridlists TO returned lines;
SEARCH(c, V, k + 1, returned lines);

end
end

generator program that produces a database with only one
attribute. We recall that our indexes are single attribute based,
i.e., indexes based on a unique attribute, so we do not need
to databases with several attributes. The generation takes
into account several parameters that cope with the evidential
database nature.

The parameter D is the size of the database. It provides the
number of lines in the database. The parameter NFE is about
maximum number of focal elements in one bba. For example,
in the database of table 1, NFE is equal to 2, since the
maximum number of focal elements per line is 2 (see lines 1
and 2). The parameter SFE is the maximum size of compound
focal element. In our database example, SFE is also equal to 2
(see lines 2 and 4 that include composed focal elements). The
parameter CARD is the cardinality of the indexed attribute.
It is the size of the frame of discernment. In our example,
we have CARD = 3 because the diagnosis attribute has
three possible values: anemia, cancer and flu. Finally, the
parameter PCT IMP is about the rate of imperfect lines
in the database. It is the ratio (number of imperfect lines
×100)/(D). In our example, PCT IMP = 75%.

The generation program produces exactly D lines. In each
one, it generates n focal elements, where n is chosen in the
interval [1, NFE]. Then, for each focal element, it chooses
a value s ∈ [1, SFE], that is the size of the focal element.
Thus, content of a focal element is composed of s hypotheses.
Each one is generated such that value v of one element is taken
from the interval [1, CARD]. Finally the masses of the n focal
elements are chosen each one in the interval [0, 1] under the
condition

∑n

i=1
m(v) = 1. Values of n, s and v are computed

in their respective intervals through the uniform law.

B. Evaluating the access methods

We created several synthetic databases with various val-
ues of the parameters above, and we implemented three
access methods to evidential databases. The first access to the
database uses the e-Tree index, the second one uses the RID
Lists index, and the third one do not use any index system.

In the first experiment, we set the parameters NFE, SFE,
CARD and PCT IMP respectively to 3, 3, 12 and 75%, and
we varied the value of the parameter D from 300 to 1200.
The figure 2 shows that performing an access without index is
more expensive, in time execution, than an index based search.
This expected result is due to the fact that using an index
structure avoids scanning the whole of the database. Note that
when the size of the database increases, the execution time is
exponentially worse for the non-index method. Using indexes
is much more efficient when the size of the database increases



considerably. The e-Tree gives better results than the RID Lists
index since searched elements are linked. For example, in the
RID Lists, if the searched value is {A1, A2, A3}, then we have
to find and to visit separately the lists of the focal elements A1,
{A1, A2} and {A1, A2, A3}. With the e-Tree index, reading
the path A1 → A2 → A3 is sufficient to obtain the same
information, which is composed of the row identifiers of the
interesting lines, and also their believes in. This advantage is
very clear in the experiment of varying the SFE parameter
(see figure 3). In this experiment, we generate several databases
where parameters D, NFE, CARD and PCT IMP are set
respectively to 1000, 3, 12 and 75% with a variation of SFE
from 1 to 3. When SFE is set to 2, using the e-Tree is more
efficient than using RID Lists index. When SFE is set to 3,
the performance of RID Lists index decreases considerably,
contrary to the one of e-Tree that remains practically the
same. The difference between the two methods’ efficiencies is
more considerable when the size of the indexed focal elements
(SFE) increases as explained in the previous example.

Figure 2. Behavior of access methods when D varies

Figure 3. Behavior of access methods when SFE varies

Next experiment deals with the variation of the number
of focal elements (NFE) parameter. The results (see figure
4) show same behavior of the three methods. Note here
that if the number of focal elements per line increases, the
probability that we have several nested focal elements per line
also increases. Again, in that case, e-Tree outperforms widely
RID Lists as explained in the previous experiment.

We also generated several databases with various imperfec-
tion rates. Values of the parameter PCT IMP were varied
from 0% (all data are perfect) to 100% (all lines contain
evidential values). The experiment’s results are shown in figure

5. Note in this experiment that e-Tree and RID Lists give the
same performance for a null value of PCT IMP . This result
will be interpreted in subsection C.

Figure 4. Behavior of access methods when NFE varies

Figure 5. Behavior of access methods when imperfection rate varies

We performed another important experiment on variation of
the CARD parameter. D, NFE, SFE, and PCT IMP are
set respectively to 1000, 3, 3 and 75%, and the cardinality of
the indexed attribute were varied from 10 to 20. Note that when
the cardinality of the attribute is n, the total number of focal
elements may reach 2n. So when n is set to 20, the potential
number of focal elements in the database is theoretically 220.
Of course, in real situations, focal elements do not include a
great number of hypothesis especially when they are expressed
by human experts [8]. Thus, setting the maximum size of
focal elements to 3 is sufficient to mimic real bbas. In our
case, the number of potential focal elements in the whole of
the database, when CARD = 20 and SFE = 3 is equal to∑3

k=1
Ck

20 = 1350. In other words, even though the cardinality
of the indexed attribute is equal to 20, being imperfect, the
attribute may be affected until 1350 different focal elements
rather than 220 = 1048576, i.e., all subsets composed of 1, 2
or 3 elements of a total of 20 values. Figure 6 shows the results
of the experiment. Again, e-Tree benefits from its condensed
representation of compound focal elements.

C. The perfect and the probabilistic cases

In experiment related to the variation of the imperfection
rate (figure 5), we mentioned that accessing a perfect database
(PCT IMP = 0%) using the e-Tree index, or the RID Lists
index gives the same result in term of answer time. When



Figure 6. Behavior of access methods when CARD varies

compound focal elements are absent, then the two structures
are identical. In this case, the two structures consist in a
collection of RID Lists that store the rid couples of each
attribute’s value (that is singleton, with belief equal to one).

Moreover, even when SFE = 1 (see figure 3), for any
PCT IMP > 0% and NFE > 1, the two structures have
exactly the same behavior. That is, when the indexed attribute
has bbas with exclusively singleton focal elements (SFE = 1),
the two index structures are equivalent. Note here that with
these parameters the database is probabilistic.

D. Influence of queries’ types

In our experiments, we noted that efficiency of access
methods depends on the nature of the user-query. There is
an important difference between user-queries with simple
condition, and the ones with compound conditions. Query that
looks for the value A3 is much more simple than the one that
looks for the values A1 or A2 or A3. To answer to the second
query, we must verify 23 = 6 possible combinations in our
index. Consequently, we did an experiment on the behavior
of our three methods when performing a simple query, and
when performing a more complicated query, i.e., query with a
compound condition. In this experiment, the query’s condition
involves the search of three values. Table V shows execution
time for the three access methods relatively to the two queries.
Note that even for the simple query, e-Tree based method is
better than the RID Lists one. In fact, when we deal with
a simple condition query, the access method scans only the
nodes (in the e-Tree) and the lists (in the RID Lists) of the
singleton focal elements. Since singleton focal elements are
collected only in the first level of the e-Tree, the scan is done
on a maximum of CARD nodes. However in the RID Lists
index, singleton focal elements are stored with the compound
ones, and so search is more costly.

Table V. COMPARISON ACCORDING TO THE NATURE OF USER-QUERIES

Access method Simple condition query Compound condition query

e-Tree 101 msec 167 msec

RID Lists 161 msec 211 msec

Without index 307 msec 332 msec

V. CONCLUSION

In this paper, we introduced a new index data structure,
called e-Tree, used to accelerate searching operations in ev-

idential databases. The e-Tree structure stores for each focal
element in the database, the identifiers of the records where the
belief of the searched value is positive. A construction method,
and a search method were defined. The experiments we led to
evaluate this solution were promising.

REFERENCES

[1] Agarwal C.C. (2009) Managing and Mining Uncertain Data, Advances
in Database Systems, Springer.

[2] Agarwal C.C. ; Cheng S.W. ; Cuhk Y. T. ; Hkust K. Y. (2009) Indexing

Uncertain Data, Managing and Mining Uncertain Data, Advances in
Database Systems Vol 35, PROD’09, Rhode Island, USA, pp 1-26.

[3] Bach Tobji, M.A. ; Ben Yaghlane, B. ; Mellouli, K. (2008) A New

Algorithm for Mining Frequent Itemsets from Evidential Databases,
International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems, Malaga, Spain, pp 1535-
1542.

[4] Bach Tobji, M.A. ; Ben Yaghlane, B. (2011) Extraction des item-

sets frequents a partir de donnees evidentielles : application a une

base de donnees educationnelles, Revue des Nouvelles Technologies de
l’Information, vol RNTI-E-21, pp 211-232.

[5] Bayer R. ; McCreight E. (1972) Organization and Maintenance of Large

Ordered Indexes, Acta Informatica, vol 1, pp 173-189.

[6] Bell D.A. ; Guan J. W. ; Lee S.K. (1996) Generalized Union and Project

Operations for Pooling Uncertain and Imprecise Information, Data &
Knowledge Engineering, Vol 18, Issue 2, pp 89117.

[7] Ben Abdelaziz F. ; Pomerol J.C. ; Telmoudi A. (2002) The Evidential

Database Model, IEEE International Conference on Systems, Man and
Cybernetics, Yasmine Hammamet, Tunisia, pp 110-113.

[8] Denoeux T. ; Bjanger M.S. (2000) Induction of decision trees from

partially classified data using belief functions, IEEE International Con-
ference on Systems, Man, and Cybernetics, Nashville, US, pp 2923-2928.

[9] Dempster A.P. (1967) Upper and Lower Probability Function in a

Context of Uncertainty, Annals of math. statistics, vol 38, pp 325-339.

[10] Dempster A.P. (1968) A Generalization of Bayesian Inference, Jour. of
the Royal Statistical Society, vol 30, pp 205-247.

[11] Dong T. ; Xiao C. ; Guo X. ; Ishikawa. Y (2013) Processing Probabilis-

tic Range Queries over Gaussian-Based Uncertain Data, International
Symposium on Spatial and Temporal Databases, Munich, Germany, pp
410-428.

[12] Hewawasam K. ; Premaratne K. ; Shyu M. L. (2005) Rule Mining and

Classification in Imperfect Databases, In International Conference on
Information Fusion, Philadelphia, USA, pp 661-668.

[13] Huang Y. (2014) Indexing and querying moving objects with uncertain

speed and direction in spatiotemporal databases, Journal of Geographical
Systems, vol 16, issue 2, pp 139-160.

[14] Lee S.K. (1992) An Extended Relational Database Model For Uncertain

and Imprecise Information, University of Iowa, Iowa City, pp 211-220.

[15] Shafer G. (1976) A Mathematical Theory of Evidence, Princeton Uni-
versity Press, Princeton.

[16] Wang Y. ; Li. X ; Li. X ; Wang Y. (2013) A survey of queries over

uncertain data, Knowledge and Information Systems Vol 37, Issue 3, pp
485-530.


