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The energy spectral density E(k), where k is the spatial wave number, is a well-known diagnostic of
homogeneous turbulence and magnetohydrodynamic turbulence. However, in most of the curves plotted by
different authors, some systematic kinks can be observed at k = 9, 15, and 19. We claim that these kinks have no
physical meaning and are in fact the signature of the method that is used to estimate E(k) from a three-dimensional
spatial grid. In this paper we give another method in order to get rid of the spurious kinks and to estimate E (k)

much more accurately.
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I. MOTIVATION

Assuming isotropic and homogeneous hydrodynamic tur-
bulence, Kolmogorov predicted that the kinetic energy spectral
density should have a universal power scaling of k=3 [1],
where k is the spatial wave number. Since then, the energy
spectral density has become a useful diagnostic tool for various
configurations, including anisotropic and magnetohydrody-
namic turbulence. The definition of the spectral density E (k)
is given by [2]

E(k) = / E(K)dK/, (1)
K |=k

where E(K') is the Fourier transform of the autocorrelation of
a scalar field or the trace of the autocorrelation tensor of a
vector field, e.g., velocity or magnetic field [3].

We look at definition (1) from the point of view of
turbulence in a computational box. In practice, the numerical
implementation of (1) for EXK) given on a regular grid
of mesh is not discussed. However, some common features
can be distinguished in the results. As an example, a com-
pilation of curves corresponding to kinetic, magnetic, and
passive-scalar energy spectra obtained in hydrodynamic or
magnetohydrodynamic turbulence is plotted in Fig. 1. Though
these spectra have been obtained by various authors [4—13],
using various methods, forcing, and degrees of resolution, we
note a systematic bump at the scale k = 9, followed by two
holes at scales k = 15 and 19. Bumpy spectra are familiar
in the context of wave turbulence, usually interpreted as the
signature of traveling modes [14], but they are found in time
frequency only. Here, however, it is difficult to imagine any
physical ground for the systematic £k =9, 15, and 19 kinks
appearing in the inertial range. It is fair to say that usually
these kinks are just ignored in discussions of physical or even
numerical aspects of the results [15,16], even if the bump at
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k =9 has already been interpreted as a physical effect [12].
Another hole at k = 3 might be found, but it is usually hidden
by the forcing scales.

In Sec. II we show that, in fact, these kinks are produced
by a systematic bias coming from the standard approach to
estimating E(k) on a spatial grid. In Sec. III we present a
method to estimate E(k) in order to circumvent this bias.
Since such a bias is more striking in three-dimensional (3D)
turbulence than in 2D turbulence, in this paper we consider
only the case of 3D data sets. An alternative definition for the
2D case is, however, given in Sec. IV. In 1D models, such
as eddy-damped quasinormal Markovian models [17] or shell
models [18] of turbulence, this bias does not exist.

II. WHERE DOES THE BIAS COME FROM?

The standard approach to estimating the continuous quan-
tity E (k) from a set of Fourier modes given on a regular grid of
mesh dk is to divide the Fourier space in shells S,, of thickness
Ak. Then the spectral density E, can be defined as [2]

OB — a
Ey=—o k; EK), )

with
S, ={k € R®: nAk — Ak/2 < |K'| < nAk + Ak/2}. (3)

Usually it is natural to take Ak = §k = 1, leading to a unity
prefactor in (2). The wave number k, corresponding to shell
S, is usually taken to obey an arithmetic progression. Then it
is defined as

k, = nAk. “4)

The problem is that the number M, of wave vectors k'
belonging to S, is not exactly proportional to the shell volume,
as depicted in Fig. 2 for Ak = §k. The density of M, even
reaches local extrema at k, =9, 15, and 19, which clearly
explains the kinks appearing in Fig. 1. Changing the value of
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HD, EK Comp, Pseud 256, Ref. [4]
= MHD, EK Comp, FinDiff 512, Ref. [5]
e HD, EK Comp, FinDiff 1024, Ref. [6]
== HD, EK Comp, Pseud 2048, Ref. [7]
e MHD, EM, Pseud 128, Ref. [8]
e MHD, EM, Pseud 512, Ref. [9]
= MHD, EK, Pseud 512, Ref. [9]
= MHD, EK, Pseud 512, Ref. [10]

e Scal, EZ, Pseud 512, Ref. [11]

=== MHD, k.EM, Pseud 1024, Ref. [12]

= Strat, EK, Pseud 512, Ref. [13]
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FIG. 1. (Color online) Energy spectra calculated by different authors, with different codes, different resolutions, and for different quantities.
The denotations HD, MHD, and Scal stand for hydrodynamic, magnetohydrodynamic, and passive-scalar problems, respectively. The
denotations EK, EM, and EZ stand for kinetic, magnetic, and passive-scalar energies, respectively. Pseud and FinDiff stand for pseudospectral
and finite-difference resolution methods, respectively, and the numbers 128, 512, 1024, and 2048 correspond to the spatial resolution. The
vertical grid lines k = 9 and 15 are highlighted as solid lines. The legend is kept in the same order as the curves from top to bottom at k = 9.

Ak would not help. For Ak < §k the number of local extrema
is getting larger, while taking Ak > &k leads to a spurious
power law as the result of an overaveraging procedure. In
Fig. 2 we note another bump at k = 5, which presumably is
also responsible for the peaks at k = 5 visible in several spectra
of Fig. 1, like the one calculated by Ponty er al. [8].
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FIG. 2. Density of the number of vectors belonging to shell S,
versus k, for Ak = 5k.

III. HOW TO CIRCUMVENT THE BIAS

Starting from (1), we note that E(k) is a surface integral,
over |kK'| = k. Keeping in mind that the surface of a shell of
radius |k'| is equal to 47 |K’|?, we then introduce the following
definition for the spectral density in shell S,, now denoted E7,
in the form

V% N
i > EX)IKP, )
k'es,

Ef =

where again M, is the number of vectors k' belonging to
shell S,,.

Similarly, in order to estimate the mean wave number in
shell S,, we suggest to simply average all wave numbers
belonging to S,. This average wave number, now denoted by
ky,is given by

1

*_
kn_

> IK. (6)

T yges,

Finally, as we are looking for an energy spectral density
satisfying some power law, it makes sense to use a geometric
progression, instead of an arithmetic one, for k,. Then the
shells are logarithmically spaced (n « logk,), instead of being
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FIG. 3. (Color online) Compensated spectral density k>/>E,, ver-
sus k, for (a) linearly spaced shells S, and (b) logarithmically spaced
shells S,l,0 €. (a) The four curves correspond to k =k, or k} and
E,=E,or E7. (b) The curves corresponds to E, = = E} and k, = k,
ork;.

linearly spaced (n o k,). Then we define the new shells as

Sloe = (k' e R® : M8k < |K'| < A"T18k}, (7

where A is some scalar value larger than unity.

In order to test our definitions & and E, we consider
a synthetic set of data with spectral coefficients E(K') =
= |K'| 7173 Tt corresponds to the exact spectral density E (k) =
k=373,

In Fig. 3 we consider two cases depending on whether the
shells are linearly spaced [Fig. 3(a)] or logarithmically spaced
[Fig. 3(b)]. For linearly spaced shells, the curves depend on the
definitions taken for the wave number and the spectral density.
We immediately see that taking E, for the spectral energy
density leads to noisy results. The best result is obtained taking
ky and E. Now taking k and E with logarithmically spaced
shells [Fig. 3(b)] leads to a result very close to the theoretical
k=33 curve. Though the choice of the logarithmically shell
spacing A is arbitrary, we suggest to take 1 = 1.21 because it
is the minimum value of A for which we found no empty shell.

Finally, in Fig. 4 we consider data from a 2563 direct
numerical simulation (DNS) of homogeneous isotropic turbu-
lence with a random forcing [11]. The kinetic energy spectral
density E(k), compensated by k=/3, is plotted with three
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FIG. 4. (Color online) Compensated spectral density k>/*E, ver-
sus k, from hydrodynamic turbulent DNS data. Two curves corre-
spond to k, =k,andE, = E,or E »and linearly spaced shells and the
third curve corresponds to &, = k* and E, = E; and logarithmically
spaced shells. The inset shows the spectral density at low wave
numbers in the range of forcing scales.

kinds of estimates: k, and E, (linearly spaced shells), k; and
EY (linearly spaced shells), and & and E (logarithmically
spaced shells with A = 1.21). As can be seen, the curves
are remarkably smooth using k; and E;. In the inset the
spectral density E(k) is plotted for low values of k (without
compensation). Using E, k), and logarithmically spaced
shells (black curve), the almost constant plateau around k = 2
corresponds indeed to the forcing scales in which the energy
power has been applied in the DNS.

IV. CONCLUSION

The goal of this paper was to understand why some
systematic artificial kinks appear in plots of energy spectral
density issued from various DNSs of 3D turbulence. We
showed that they are the consequence of a non-self-similar
distribution of Fourier modes in the spherical shells used to
calculate the energy spectral density. We gave definitions (5)
and (6) for calculating the mean energy spectral density and
mean wave number in each shell. These definitions can be
applied to either linearly or logarithmically spaced shells, the
second one being more precise and providing a better result at
low wave numbers. The same definitions can be generalized
to other scalar quantities of interest, such as enstrophy, kinetic
helicity in hydrodynamics, magnetic helicity, and cross helicity
in magnetohydrodynamics. Finally, similar definitions can be
derived for 2D problems, S, being rings instead of shells. In
this case the definition of the wave number in ring S, is still
given by (6), but the definition of spectral energy density (5)
must be replaced by
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