
Online Virtual Links Resource Allocation in

Software-Defined Networks

Mikael Capelle∗†, Slim Abdellatif∗†, Marie-José Huguet∗† and Pascal Berthou∗†

∗ CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
† Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
‡ Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France

Abstract—Network virtualization is seen as a key networking
paradigm for building diverse network services and architec-
tures over a shared network infrastructure. Assigning network
resources to virtual links and, more generally to virtual network
topologies, efficiently and on-demand is one of the most challeng-
ing components of any network virtualization solution. This paper
addresses the problem of on-line resource allocation of multiple
virtual links on a Software Defined Network (SDN) infrastructure.
The application context that is targeted is primarily the on-
line provisioning of virtual overlay networks even if it can be
broadened to address more general virtual networks. Considering
an SDN physical infrastructure allows a complete freedom in
choosing the optimal physical paths and the associated resources
that support the virtual links with no interference from any other
network function (such as routing). However, for the time being,
forwarding in an SDN network is resource consuming with a
noticeable impact on the size of the flow tables. Hence, forwarding
(i.e. switching) resources should be carefully considered by the
network resource allocation algorithm. This paper proposes an
Integer-Linear formulation of the above cited problem by con-
sidering: (1) point-to-point as well as point-to-multipoint virtual
links, each with an associated bandwidth requirement and a
maximum transfer delay requirement, (2) two types of network
resources, namely network links’ bandwidth and nodes’ switching
resources, and (3) optionally, path splitting which allows a virtual
link to be established on multiple physical paths. We report
preliminary experimental results on a real network topology in an
overloaded scenario (bandwidth requests largely exceed network
capacity); they show that our algorithm outperforms shortest
path heuristics with a gain on the admission rate (of virtual
links requests) that ranges from 5 to 15% (compared to the most
efficient heuristic) and with a computation time less than a few
seconds.

I. INTRODUCTION

Network Virtualization enables the creation and coexistence
of multiple isolated and independent virtual networks over a
shared network infrastructure [1]. A virtual network is a logical
(opposed to physical) network with some of its elements
(nodes and links) being virtual. A virtual node is an abstraction
of a network device that is often hosted on a single physical
node. It executes network functions such as routing, forward-
ing, etc. by consuming part of the resources of the hosting
node. The resources allocated to a virtual network device are as
diverse as CPU, volatile memory, network interfaces, storage,
switching, etc. Similarly, a virtual link is an abstraction of a
network link that is established on one or multiple physical
links or physical paths. It consumes transmission resources
(i.e. physical links’ bandwidth) as well as switching resources
at the traversed physical nodes.

Network virtualisation is claimed to be an essential com-
ponent of future Internet architecture where elastic, potentially
programmable, virtual networks are provisioned on-demand
[3]. The virtual network can be a fully virtualised network
(with virtual nodes and links) or a simpler construct with vir-
tual links connecting end nodes (which can be virtual) known
as overlay networks. In data centres, these latter are considered
as the mean to provide network services to applications and
are gaining broad acceptance from academia and industry [9],
[5], [4].

Virtual link resource allocation is a key component of
an overlay network solution (and also of a fully virtualised
virtual network solution). It determines the physical paths and
the appropriate resources that are used to support a virtual
link with predefined characteristics. On legacy networks, it
is strongly coupled and dependent on the routing used by
the physical network infrastructure which imposes the route(s)
used to support the virtual link. With the advent of Software-
Defined Networking (SDN) [2], a virtual link resource allo-
cation method can be devised with no interference from any
other network function. Indeed, on a physical SDN network
infrastructure, flows and their forwarding behaviour can be
defined at will allowing the virtual link resource allocation
method to freely choose the physical paths to be used.

This paper proposes a Integer Linear Programming (ILP)
formulation of the problem of resource allocation of multiple
virtual links (that compose a virtual/overlay network) in SDN
network infrastructures. The proposed method addresses point-
to-point virtual links as well as point-to-multipoint virtual
links (typically useful when providing network services to
applications), each with an associated bandwidth requirement
and a maximum transfer delay requirement. Two types of
network resources are taken into account: classically, the links’
bandwidth but also the switching resources of nodes. This is
particularly important since, for the time being, switching in
an SDN enabled node is a resource consuming task (because
of the match operation (which allows the use of wildcards)
and the instructions to execute) and this limits the size of
the switching table to a few thousands of entries [6], [7]. A
last characteristic of our method is the optional support of
path splitting which allows a virtual link to be established
on multiple paths. This capability contributes to the objective
of the method which is: fairly spreading network load on
network links and nodes in order to improve the admissibility
of subsequent virtual network requests.
Even if virtual network resource allocation has recently at-
tracted lots of attention [10], to the best of our knowledge,

the resource allocation problem as described above has not
been investigated so far. Indeed, it is in the conjunction
of all the above-cited constraints that resides the originality
of the addressed problem (point-to-multipoint virtual links,
accounting for switching resources, delay requirements and
path splitting being the least considered in the literature).
Experimentations on a real network topology brought from
the GÉANT network [8] in an overloaded scenario (virtual
links requests largely exceed network capacity) show that our
method outperforms shortest path heuristics with a gain on the
admission rate that ranges from 5% up to 15% compared to
the most efficient heuristic (and much more compared to the
other heuristics). They also show that the computation time is
satisfactory (less than a second for point-to-point links and a
few seconds on average for point-to-multipoint virtual links)
and that the contribution of path splitting is limited (2 to 3%)
for the considered scenario.

This paper is organised as follows. Section II reviews previous
work from the literature that are related to virtual network
resource allocation. Then, section III describes the mathe-
matical formulation of the problem that we are addressing.
Section IV presents the performance analysis of the proposed
method and its comparaison to the considered shortest path
heuristics. Finally, section V concludes the paper and describes
the perspectives to this work.

II. RELATED WORK

Virtual network resource allocation (or embedding) has
attracted a lot of attention from the research community
during the last few years [10]. Several optimization approaches
were proposed, some follow an integrated strategy considering
simultaneously the resource embedding of virtual nodes and
links and, most, follow a split approach that considers sepa-
rately and successively the two resource embedding problems.
Whatever the approach, virtual link resource allocation is the
core component of any virtual network resource embedding
method.
Without being exhaustive, virtual link resource allocation
methods can be classified with respect to the following criteria.
Some are related to the characteristics of the virtual links being
considered, namely: the type which is usually point-to-point
but can also be point-to-multipoint, the Quality of Service
(QoS) requirements with possibly a bandwidth, a delay and/or
a loss rate requirement. The others are related to some features
of the methods such as: (1) the allocation process which can
be online or offline (the requests are fully known in advance);
(2) the general class to which a method belongs which can be
heuristic or exact; (3) the followed approach which leads either
to a stand-alone method exclusively concerned with virtual link
resource embedding or a more general method that integrates
and combines virtual node and virtual link resource allocation,
(4) the network resources that are concerned by the allocation
which can be the bandwidth of physical links and, possibly,
the switching resources of nodes1 (that are needed to forward
the packets that belong to a virtual link); and (5) the potential
support of techniques that contribute to improve the efficiency
of the methods, such as path splitting and/or migration which
allows the reallocation of resources to already admitted virtual

1other node resources (typically, CPU and RAM) may be allocated to virtual
nodes by the virtual node resource embedding algorithm

TABLE I: Classification of virtual link resource allocation
methods

VL VL allocation method network supported
type QoS process resources techniques

[15] P2P BW offline integrated link

[14] P2P
BW

online integrated link
delay

[16] P2P BW online stand-alone link
path-split
migration

[11]
P2P BW online stand-alone link

[12]

[17]
P2P

BW offline stand-alone link
P2M

[18] P2P BW online stand-alone link

[19]
P2P

BW offline stand-alone link
P2M

[21] P2P BW
online

integrated link path-split
offline

[13] P2P
BW

online integrated link
delay

[22] P2P BW
offline

integrated link
online

our P2P BW
online stand-alone

link
path-split

met. P2M delay node

links. Table I summarises the existing work according to these
criteria (where P2P, P2M, BW and ILP respectively stand
for point-to-point, point-to-multipoint, bandwidth and integer-
linear Programming). It also classifies the method that we are
proposing in this paper.

Among this list of papers, we point at the works of [13],
[22], [21] which address an allocation problem similar to the
one addressed in this paper while using the same class of
methods (based on an ILP or Mixed ILP formulation). In [13],
the authors proposed an integer linear model for solving the
on-line virtual network embedding problem (virtual nodes and
links). Several constraints were considered such as bandwidth,
delay, node load (CPU, RAM) and their method aimed at
minimizing the resource consumption. The proposed method
was compared with several heuristics approaches on theoretical
physical network topologies.
In [22], an integer-linear model was proposed to consider the
embedding of virtual network requests. The constraints taken
into account, and evaluated in their paper, are the capacity
of nodes, in terms of CPU, and the bandwidth on links.
Moreover, a virtualization request which is composed of a
set of subgraphs is considered to be satisfied if at least one
subgraph can be embedded in the physical network. The aim
is to maximize the revenue (which is dependent from the
allocated CPU) while minimizing resource consumption, i.e.
bandwith utilization. Their method can be either applied online
or offline as it can consider simultaneously a set of virtual
requests leading to better solutions.
In [21], the authors consider the embedding of virtual networks
on several physical network infrastructures. This problem is
solved in two steps. The first one focuses on the selection
of the physical network and the second step is dedicated to
the embedding of a virtual network (with virtual nodes and
links) on the selected physical network. A mixed integer linear
model is proposed that aims at minimizing the load on the
physical network. This model is evaluated for on-line virtual

requests and also for optimizing the embedding of a set of
virtual requests. The considered constraints are the capacity
of each node and the bandwidth of each link. To the best of
our knowledge, this is the first paper presenting an integrated
approach for the virtualization of both nodes and links. A
worth noting point is that the flow variables used in their model
are assumed to be real numbers leading to a relaxation of the
optimization problem.

III. PROBLEM FORMULATION

This section describes the ILP mathematical formulation
that we propose to solve the online virtual links resource
allocation problem. Requests arrive and are treated in sequence
with no information on future requests (i.e. online). Each
request gathers multiple concurrent virtual link sub-requests,
each concerning a point-to-point or point-to-multipoint virtual
link with bandwidth and delay requirements. The objective is
to distribute fairly network traffic and use efficiently network
resources (transmission and switching).
Below, the physical network and virtual links request models
are described; Then, the variables and problem constraints are
listed; Lastly, the considered objective function is defined.

A. Physical Network Model

The physical network is modelled by a bidirectional graph
G = (V,E) where V (|V |) is the set of physical nodes (SDN
switches) and E (|E| , E ⊆ V × V) the set of physical links
which operate in full-duplex mode. To each node i ∈ V is
associated a switching capacity Ui which is the maximum
number of entries (i.e. size limit) of its flow table. The
current size of node i flow table is denoted by U ′

i . Each
link (i, j), i, j ∈ V is weighted by its bandwidth Bij and
its propagation delay Dij . Links are assumed to exhibit the
same characteristics in both directions, i.e. Bij = Bji and
Dij = Dji. The bandwidth that is currently assigned at link
(i, j) by already admitted virtual links is denoted by B′

ij .

B. Virtual Links Requests Model

A virtual links request consists of a set of K virtual links.
Each virtual link k is characterised by:

• a source node sk ∈ V , and a set of destination nodes
Tk ⊆ V − {sk} (when |Tk| = 1, the virtual link is
point-to-point, otherwise it is point-to-multipoint);

• a bandwidth requirement of bk ∈ N
∗ and a maximum

transfer delay of dk ∈ N
∗;

• a maximum packet size of pk.

C. Resource-related assignment variables

The output of our assignment problem is the set of routes
(with the bandwidth allocations at each supporting physical
link and the number of flow table entries at each traversed
node) that support each of the virtual links that compose a
request. It is worth noting that since virtual links may be
point-to-multipoint, it is likely that resource allocations will
be mutualised close to the source and as we get closer to
destinations, they will tend to be more and more dedicated
to specific destinations. As a consequence, basic assignment

variables are related to a specific destination of a virtual link.
In our model, we distinguish the following variables :

• f t
k(i, j) is an integer variable that represents the band-

width allocated at link (i, j) to the packets of virtual
link k that are flowing from the origin node sk to a
destination node t. More generally, fk(i, j) refers to
the amount of bandwidth used on link (i, j) by the
virtual link k, whatever the destination. It is set to the
maximum of f t

k(i, j) for all k ∈ K.

• lk(i) is an integer variable that indicates the switching
resources consumed by virtual link k at node i. It is
expressed as the number of entries that are installed
in node i flow table to support virtual link k with
the assumption that all entries consume the same
amount of resources regardless of the complexity of
the match operation and the related instructions to
perform. The number of flow table entries is assumed
to be in proportion to the number of node i ports that
are receiving traffic from virtual link k (as given by
equation 1).

∀k ∈ K,∀i ∈ V : lk(i) =
∑

j∈V
(j,i)∈E

gk(j, i) (1)

where gk(i, j) is an intermediate boolean variable
that indicates if some bandwidth from link (i, j) is
assigned to virtual link k or not. It is derived from
another set of more focused intermediate variables
gtk(i, j) that reflects whether the flow of packets of
virtual link k destined to t is supported by the physical
link (i, j) (i.e. gtk(i, j) = 0 if f t

k(i, j) = 0 and
gtk(i, j) = 1 otherwise).

• dtk(i) which is an upper bound on the time needed for
a packet of virtual link k destined to t to reach node
i from its originating node sk.

• fmax which refers to maximum link utilization (when
considering all network links) after request acceptance
(i.e. by taking into account the bandwidth allocations
consumed by the virtual links that compose the re-
quest).

• umax which similarly refers to maximum flow table
utilization (when considering all network nodes) after
request acceptance.

D. Problem Constraints

The constraints on bandwidth allocations are described
hereafter in equations 2 to 8. Equation 2 reflects the lineari-
sation of the Max operator applied to variables f t

k(i, j) to get
fk(i, j). Equations 3 and 4 have a similar purpose and focus
respectively on fmax and umax which are minimized by the
objective function (as explained below).

∀k ∈ K,∀(i, j) ∈ E, ∀t ∈ Tk : f t
k(i, j) ≤ fk(i, j) (2)

∀(i, j) ∈ E :
1

Bij

∗

B′

ij +
∑

k∈K

fk(i, j)

 ≤ fmax (3)

∀i ∈ V :
1

Ui

∗

U ′

i +
∑

k∈K

lk(i)

 ≤ umax (4)

Equation 5 ensures that the bandwidth assigned to each virtual
link k at link (i, j) does not exceed the remaining bandwidth.
Equation 6 is the usual flow conservation constraints.

∀(i, j) ∈ E :
∑

k∈K

fk(i, j) ≤ Bij −B′

ij (5)

∀k ∈ K, ∀t ∈ Tk, ∀i ∈ V :

∑

j∈Γ(i)

(f t
k(i, j)− f t

k(j, i)) =

bk if i = sk

−bk if i = t

0 else

(6)

Equation 7 is a channeling constraint between integer and
boolean variables: fk(i, j) and gk(i, j). It also constrains the
virtual link k’s bandwidth assignment at a physical link to the
requested bandwidth bk. Equation 8 constrains the bandwidth
that is assigned to the flow of packets destined to a specific
virtual link’s end-point (or destination) within a range of
values, in addition to establishing a channeling constraints
between boolean and integer variables. The inequalty on the
right side ensures that the bandwidth requirement of the
virtual link is never exceeded. The inequalty on the left
side directs path-spliting and avoids the multiplication of
splits with low bandwidth allocations. Indeed, if active, path-
splitting is feasible only if the bandwidth allocated to the
splits respects a minimum threshold bmin

k . In practice, bmin
k

is a ratio of bk, bmin
k = PSratio ∗ bk with PSratio ∈ [0, 1]

(then, PSratio ≤ 0.5 when the path-splitting is allowed, and
PSratio = 1.0 when it is forbidden).

∀k ∈ K, ∀(i, j) ∈ E :

gk(i, j) ≤ fk(i, j) and fk(i, j) ≤ bk ∗ gk(i, j) (7)

∀k ∈ K, ∀(i, j) ∈ E :

bmin
k ∗ gtk(i, j) ≤ f t

k(i, j) and f t
k(i, j) ≤ bk ∗ gtk(i, j) (8)

The constraint related to switching resource allocations is given
by inequalty 9. It simply ensures that with the addition of flow
table entries needed by the virtual links composing the request,
the size of network nodes’ flow tables remains below their
maximum size.

∀i ∈ V :
∑

k∈K

lk(i) ≤ Ui − U ′

i (9)

Virtual links have end-to-end delay requirements. For point-
to-multipoint links, they hold and must be met for all of their
end-points (destinations). These requirements are taken into
account by inequalities 10 and 11 which establish a set of
constraints on variables dtk(i) (defined in section III-C as an
upper bound on the time needed for a packet of virtual link
k destined to t to reach node i from its originating node
sk). The expressions in 10 assure the initialisations at the
sources (of virtual links) and that the computed upper bounds
at the destinations meet the delay requirements. Inequaltiy 11
show how the upper bounds, computed at two subsequent
nodes along the route to a destination, are related to account
for packet transmission times and physical link propagation
delays. More clearly, let us consider the flow of packets
belonging to virtual link k destined to t and let us assume
that this flow of packets really goes through link (i, j). Then,

the expression in 11 simply states that the increment to the
upper bound on the packet transfer delay from sk to i in order
to get the upper bound at j must at least take into account : the
transmission time of a packet of maximum size pk at the lowest
possible bandwidth (i.e. bmin

k) and the propagation delay along
link (i, j). The last term of the left-side of inequality 11 is
a hint used to neutralise its effect in case link (i, j) is not
traversed by the flow of packets (Ψ being large).

∀k ∈ K, ∀t ∈ Tk : dtk(sk) = 0 and dtk(t) ≤ dk (10)

∀k ∈ K, ∀t ∈ Tk, ∀(i, j) ∈ E :

dtk(i) +
pk

bmin
k

+Dij −Ψ ∗ (1− gtk(i, j)) ≤ dtk(j) (11)

E. Objective function

The objective function aims at minimizing link and node
(switching) resource consumption but also at distributing the
consumed resources among nodes an links in order to reduce
the creation of bottlenecks. Both contribute to improve the
admissibility of forthcoming requests.
As shown in expression 12, it consists of four components,
each weighted with a parameter that controls the impact of
the component on the resolution process. The first two concern
bandwidth allocations and the last two are their analogue for
flow table entries (or switching) allocations. We focus hereafter
on the former expressions.

minimize α1 ∗
1

|E|
∗
∑

(i,j)∈E

(

1

Bij

∗

(

B′

ij +
∑

k∈K

fk(i, j)

))

+

α2 ∗ fmax+

β1 ∗
1

|V |
∗
∑

i∈V

(

1

Ui

∗

(

U ′

i +
∑

k∈K

lk(i)

))

+

β2 ∗ umax (12)

In the first term, the aspect that is minimized is the average
of utilization of network links after allocating bandwidth to
the considered request. In the second term, the aspect that is
minimized is the maximum of network links utilization. This
means that the allocations devoted to the request are distributed
over different links in such a way that links load disparity is
reduced. This is mainly (but not only) enabled by path-splitting
which often has as a side effect the increase of node and link
resource consumption.

IV. EXPERIMENTAL RESULTS

The main objectives of the experimental analysis are:

• evaluate the performance of our proposed method
from the point of view of network resource utilisation,
virtual links requests admissibility and convergence
(or computation) time.

• gain comprehension in the behaviour of our method
and more precisely, assess the effect of some of its
parameters: αi, βi, i : 1, 2 and path splitting (PSratio)

• compare its performance with respect to different vari-
ants of shortest path heuristics. Indeed, an objective

comparison with the work cited in section II is not
obvious because of the disparity of each solution’s
features (refer to table I).

A. Simulation model

1) Network model: We consider in this work a real network
topology taken from the European Research Network GEANT2

(January 2014) with 41 network nodes and 60 links that
connect the main European cities. We adopt the link capacities
that are given by GEANT. For some links the exact capacity
is not given, instead, an interval is provided. For those whose
capacity falls within the range of 1 to 10Gbps, the capacity
is set to 5Gbps. For those whose capacity ranges from 10 to
100Gbps, the capacity is set to the uppermost value. Link prop-
agation delays are derived from the geographic coordinates of
nodes assuming a straight line between the involved nodes and
light speed propagation. Finally, we assume that a flow table
size of 2000 entries is dedicated at each node to the considered
virtual links resource allocations.

2) Load model: The load model defines the types of virtual
links requests and their characteristics as well as their arrival
and lifte-time processes. Two types of virtual link requests are
considered :

• Unicast Requests which are made of one single point-
to-point virtual link request. The bandwidth (respec-
tively delay) requirement is randomly chosen between
7 and 12Gbps (resp. 50 to 80ms). Unicast Requests
target network service providers or virtual network
operators to answer the need to connect some of their
networking devices;

• Multicast Requests which are made of a set of multiple
point-to-multipoint virtual links. The number of virtual
links is randomly chosen between 4 and 6. Each point-
to-multipoint virtual link has from 4 to 6 endpoints.
The bandwidth requirements are fixed on a virtual
link basis and is chosen randomly from 200Mbps
to 3Gbps. Similarly to unicast requests, the delay
requirements range from 50 to 80ms. This kind of
requests target application service providers such as
over-the-top players or content distribution networks
to connect some of their elements (cache servers, etc.).

For both types of requests, source and destination selection is
performed on a random basis, the probability that a node is
chosen is proportional to its overall bandwidth capacity (i.e.
when considering all its incoming/outgoing links).
As for previous papers [11], [13], the request arrivals follow
a Poisson process with an arrival rate λ that is varied on
{0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 1.0}, i.e. the average num-
ber of requests varies from 4 to 10 requests each 100 units of
time (UT). The request life-time conforms to an exponential
distribution with an average of 1000 UT.
It is important to note that with this load model, our experimen-
tal analysis is considering an overloaded scenario where the
cumulative bandwidth requests exceed network capacity. For
instance, on average, the GÉANT edge nodes which are con-
nected to the backbone via physical links with a bandwidth less
than 10Gbps are fully saturated with no available bandwidth
by two hundreds point-to-multipoint virtual link requests.

2http://www.geant.net/

3) simulation settings: The Integer Linear model was im-
plemented in C++ with CPLEX−12.6 solver3. The experi-
ments were carried out on an Intel Core i7-4770, 3.4GHz, 8GB
of RAM and running Linux Ubuntu-12.04. The resolution time
is set to a maximum of 15 seconds. A gap of less than 5% to
the optimal solution is considered satisfactory.
The simulation horizon is fixed to 10000UT (this time period
is sufficient to have our method in the stationary regime).
Parameters α1 and α2 of the objective function are set to
1 (α1 = α2 = α = 1). Parameters β1 and β2 are merged
and are varied to tune the importance of minimizing and
distributing swichting resources consumption (and conversely
bandwidth) in the search of the optimal solution (β1 =
β2 = β ∈ {1, 50, 100, 150}). PSratio is also varied within
{10%, 33%, 45%} and 100% (path-splitting is inhibited).

4) Performance metrics: The following performance met-
rics are computed during simulation for performance analysis
purposes:

• Acceptance rate: the percentage of successful virtual
links requests out of all the requests that arrived during
the simulation time;

• Convergence time: the time needed by our method to
compute the optimal allocations associated to a virtual
links request. The average convergence time and the
maximum convergence time are computed over the
number of successful requests;

• Instantaneous link utilisation: the percentage of as-
signed bandwidth at a given link, computed at a time

instant t, i.e.
B′

ij

Bij
for link (i, j). The instantaneous

average link utilisation is averaged over the set of
network links as follows

1

|E|
∗

∑

(i,j)∈E

B′

ij

Bij

(13)

B. Preliminary results and analysis

1) Virtual Links assignment method general performance:
The goal is to give an insight into the general performance
of our proposed method by describing the evolution of the
requests acceptance rate and network resource utilisation when
varying the requests arrival rate and the request type (unicast,
multicast). Without any loss of generality, β and PSratio are
respectively set to 150 and 45%, the presented results are
representative of what we observed with different settings.

Figures 1 and 2 describe the instantaneous acceptance rate
as a function of time with different requests arrival rates (λ).
As explained above, we are considering an overloaded sce-
nario with cumulative bandwidth requests that exceed network
capacity. The effect is a request acceptance rate that falls
sharply away from full acceptance when the arrival rate λ is
increased. This is particularly noticeable for multicast requests.
The reason is that for a given arrival rate, the bandwidth
requirement of a multicast request is much more important than
its corresponding requirement for a unicast request. Indeed, a
multicast request is made of 4 to 6 point-to-multipoint virtual
links, each with 4 to 6 end-points while unicast requests

3http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

are made of one single point-to-point virtual link. Even if
the bandwidth requirement of a point-to-point virtual link is
more important than its corresponding in a point-to-multipoint
virtual link, the overall bandwidth requirement of a multicast
request measured at destination nodes is on average four times
as important. Another worth noting point is that a multicast
request is declined when the network resources needed by
at least one of its virtual links can not be afforded. In other
words, if one virtual link out of a set of six virtual links that
compose a multicast request can not be established, then the
whole request is refused. This is the reason why the acceptance
rate for multicast request falls down to 40% for some values
of λ.

0 2 000 4 000 6 000 8 000 10 000

80%

85%

90%

95%

100%

Time (UT)

A
cc

ep
ta

n
ce

ra
te

λ = 0.04
λ = 0.06
λ = 0.07
λ = 0.10

Fig. 1: Acceptance rate - Unicast Requests

0 2 000 4 000 6 000 8 000 10 000

40%

50%

60%

70%

80%

90%

100%

Time (UT)

A
cc

ep
ta

n
ce

ra
te

λ = 0.04
λ = 0.06
λ = 0.07
λ = 0.10

Fig. 2: Acceptance rate - Multicast Requests

Figures 3 and 4 respectively show the associated instantaneous
average link utilisation (of expression 13) for unicast and
multicast requests. Despite the overload, the average link

utilisation remains below 45% which is quite low in view of
the refusal rate. A more refined view is presented in figure
5 which shows the distribution function of instantaneous link
utilisations measured at the end of the simulation for multicast
requests. It clearly shows that most links have less than half of
their bandwidth assigned and that around 20% of links have
more than 80% of their bandwidth already assigned. A more
detailed analysis on the data sets shows that a few backbone
links have more than 95% of their bandwidth assigned. They
are the major cause of request refusals. These results brings
some evidence on the efficiency of the allocations in terms of
consumption and distribution although it may seem that our
method failed in avoiding the overload of some backbone links.
In fact, this must be tempered with the request loads scenario
(requirements >> network capacity) that we are considering
as well as with the network topology of GEANT which binds
most allocations to backbone links.

0 2 000 4 000 6 000 8 000 10 000

0

0.1

0.2

0.3

0.4

Time (UT)

A
v
er

ag
e

li
n

k
u

ti
li

sa
ti

o
n

λ = 0.04
λ = 0.06
λ = 0.07
λ = 0.10

Fig. 3: Average link utilization - Unicast Requests

0 2 000 4 000 6 000 8 000 10 000

0

0.1

0.2

0.3

0.4

Time (UT)

A
v
er

ag
e

L
in

k
U

ti
li

za
ti

o
n

λ = 0.04
λ = 0.06
λ = 0.07
λ = 0.10

Fig. 4: Average link utilization - Multicast Requests

2) convergence time: The goal is to evaluate the conver-
gence time of our method when treating a unicast or a multicast

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Utilization

C
u

m
u

la
ti

v
e

fr
ac

ti
o

n
o

f
li

n
k

s

λ = 0.04
λ = 0.06
λ = 0.07
λ = 0.10

Fig. 5: Link utilisations’ distribution function- Mulicast re-
quests

request and contrast it to its application scenario which is the
on-demand provisioning of virtual links or overlay networks.
We believe that a provisioning time that falls within a few
tens of seconds is a reasonable target. So is the target of
the convergence time of the resource allocation method that
precedes the real deployment of the virtual links.

Figure 6 shows the average convergence time of our method for
unicast requests as a function of requests arrival rates with and
without the use of path splitting. When path splitting is used,
the PSratio leading to the largest search space and hence to
the largest convergence time is chosen (i.e. PSratio = 10%).
Figure 6 also shows the maximum observed convergence time
for a successful request. These results are obtained with a
value of β = 100, but again, they are representative of what
was observed with other settings. For the considered network
and load model, the convergence times associated to unicast
requests fully meet the requirements described above. Indeed,
the average convergence time is below 100ms while the
maximum remains below 1s (more precisely, 200ms without
path splitting and 700ms with path splitting).

Figure 7 describes the results for multicast requests. The
observed convergence times are satisfactory since they remain
on average below 1s when path splitting is inhibited and
below 4s when path splitting is active. However, for some
very few requests, the convergence time exceeds the maximum
resolution time of 15s (refer to section IV-A3). At the time of
this writing, the network conditions and the request profiles
that lead to such convergence times are not identified yet.
Remakably, path splitting has a significant impact on the
convergence time of our method.

3) Path splitting and β parameter impact: The goal is
to evaluate the impact of parameters PSratio and β on the
behaviour of our method. To that end, parameters PSratio

and β are respectively varied over {10%, 33%, 45%, 100%}
and {1, 50, 100, 150} and the request acceptance rates are
measured both, for unicast and multicast requests.
No clear impact of parameter β is observed from the experi-
ments for unicast but also for multicast requests (as shown in

4 5 6 7 8 9 10

0

0.2

0.4

0.6

Requests arrival rate (λ ∗ 102)

A
v
er

ag
e

co
n
v
er

g
en

ce
ti

m
e

(s
ec

o
n

d
s)

No path splitting

Path splitting (PSratio = 10%)

Fig. 6: Convergence time - Unicast requests

4 5 6 7 8 9 10

0

5

10

15

20

Requests arrival rate (λ ∗ 102)

A
v
er

ag
e

co
n
v
er

g
en

ce
ti

m
e

(s
ec

o
n

d
s)

No path splitting

Path splitting (PSratio = 10%)

Fig. 7: Convergence time - Multicast requests

figures 8 and 9 for unicast requests with β = 1 and β = 150).
For space reasons, the results related to the other values of
β and to multicast requests are omitted, but the findings are
the same. In fact, the load model that is considered for the
experiments does not stress the switching resources and the
impact of β which weights the importance of the switching
resource in the selection of the optimal allocation remains
marginal. It is clear that additional experiments with different
load models are needed to have a clear understanding on the
impact of parameter β.

Path splitting does bring some gain in the admission rate even
if, for the considered overloaded scenario, the gains remain
within a few percents : 2 to 3% for unicast requests (Refer
again to figures 8 and 9) and 1 to 2% for multicast. In a
less loaded scenario, its impact on the performance would be
stronger. The choice of the most efficient PSratio is not clear
even if a PSratio = 10% often exhibit good admission rates.
The activation of path splitting is questioned for the considered

4 5 6 7 8 9 10

75%

80%

85%

90%

95%

100%

Requests arrival rate (λ ∗ 102)

R
eq

u
es

ts
ac

ce
p

ta
n

ce
ra

te
no path splitting

PSratio = 10%

PSratio = 33%

PSratio = 45%

Fig. 8: Unicast requests acceptance rate for β = 1

4 5 6 7 8 9 10
75%

80%

85%

90%

95%

100%

Requests arrival rate (λ ∗ 102)

R
eq

u
es

ts
ac

ce
p

ta
n

ce
ra

te

no path splitting

PSratio = 10%

PSratio = 33%

PSratio = 45%

Fig. 9: Unicast requests acceptance rate for β = 150

scenario since the limited gain it brings is balanced with the
increase in convergence time of the method as well as in flow
tables sizes. Moreover, it introduces desequencing of packet
transmissions. Additional experiments are needed to specify
the situations where path splitting deserves being activated.

4) Comparison with shortest path heuristics: The goal is
to compare the performance of our method with three Shortest
Path (SP) heuristics from a requests admissibility perspective.
SP heuristics use a cost function to assign a cost to each
physical link. For each couple of end-points that belong to
a virtual link, the physical path with the minimum cost (the
cost of a path being the sum of the costs of the traversed
links) is chosen. If the bandwidth available on the chosen path
is below the bandwidth requirement of the virtual link, the
corresponding request is not admitted. The three SP heuristics
differ in their cost function. The first heuristic SP1 uses a
unitary cost for each link meaning that path selection is based
on the lowest hop counts. In the second heuristic SP2, the cost
of a link is inversely proportional to its bandwidth meaning that

the selection favours paths with the highest bandwidth. Finally
in heuristic SP3, the link’s cost is inversely proportional to its
current capacity. Paths with the highest available bandwidth
are firstly chosen. It is worth noting that the three heuristics
do not care about switching resources. Hence, some of the
allocations derived from these heuristics may not be feasible
if the induced size of each flow table is taken into account.

Figures 10 and 11, present the acceptance rates respectively for
unicast and multicast requests. As expected our method have
the best admission rate. When compared to SP3, the gain
ranges from 3 to 15% (for multicast request when λ = 0, 04).
The gains are more important with SP2 and significantly
more important with SP1. We believe that under less loaded
scenarios, our method will exhibit much better performance.
Indeed, by increasing the load beyond a certain limit, more and
more request are declined whatever the allocation method. The
performance of these methods in terms of admission will tend
to get closer, to each other. This is exactly what we observe
in figures 10 and 11 when λ increases.

4 5 6 7 8 9 10

60%

65%

70%

75%

80%

85%

90%

95%

100%

Requests arrival rate (λ ∗ 102)

R
eq

u
es

ts
ac

ce
p

ta
n

ce
ra

te

Our method

SP3

SP2

SP1

Fig. 10: Comparison with SP heuristics - Unicast requests

V. CONCLUSION

In this paper, we developed an Integer-Linear programming
method for the resource allocation of multiple virtual links.
Compared to existing work from the literature, its contri-
bution lies in the conjunction of the following features: (1)
the support of point-to-multipoint virtual links in addition to
point-to-point virtual links, (2) the support of virtual links’
delay requirements in addition to bandwidth requirements, (3)
the consideration of switching resources in the allocation of
resources in addition to the bandwidth of links, and (4) the
support of path splitting.

Our method was evaluated on a real network topology under
high loads (which is not in favour of our method). The
analysis showed that our method achieve efficient resource
utilisation with a relative fair distribution of the load among
nodes and links. The convergence time of our method was
also assessed and it proved to be satisfactory. Our method
was also compared with three shortest path heuristics and it

4 5 6 7 8 9 10

10%

20%

30%

40%

50%

60%

70%

80%

Requests arrival rate (λ ∗ 102)

R
eq

u
es

ts
ac

ce
p

ta
n

ce
ra

te

Our method

SP3

SP2

SP1

Fig. 11: Comparison with SP heuristics - Multicast requests

exhibited better performance in terms of virtual links requests
admissibility.

Additional experiments are however needed to cover other
load models and other network topologies. This is necessary
to get a more exhaustive view on the performance of our
method and a more precise understanding on the impact of
path splitting and parameter β of the objective function. Other
perspectives to this work concern the extension of our ILP
model. A first direction is to devise a more precise modelling
of the switching resources consumed by each virtual link that
takes more precisely into account the resources consumed by
the SDN matching operations and the associated instructions.
A second direction is the inclusion of resource migration in our
model in order to have a more efficient and potentially adaptive
method. A last perspective concerns the implementation of our
method on a real SDN/Openflow network infrastructure.

ACKNOWLEDGMENT

This work was partially funded by the French National
Research Agency (ANR) and the French Defense Agency
(DGA) under the project ANR DGA ADN (ANR-13-ASTR-
0024).

REFERENCES

[1] Chowdhury, N.M.M.K. and Boutaba, R. Network virtualization: state of

the art and research challenges, IEEE Communications Magazine, vol.
47(7) , pp 20-26, July 2009.

[2] ONF Market Education Committe, Software-Defined Networking: The

New Norm for Networks, Open Networking Foundation, 2012

[3] Recommendation ITU-T Y.3011, Framework of network virtualization

for future networks, ITU, 2012

[4] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton, I.
Ganichev, J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S.-H.
Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker, A.
Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang,
Network virtualization in multi-tenant datacenters, in 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14), pp. 203-216, Apr. 2014.

[5] S. Racherla, D. Cain, S. Irwin, P. Ljungstrom, P. Patil, and A. M.
Tarenzio, Implementing IBM Software Defined Network for Virtual En-

vironments. IBM RedBooks, May 2014.

[6] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia
Obraczka, and Thierry Turletti A Survey of Software-Defined Networking:

Past, Present, and Future of Programmable Networks Communications
Surveys & Tutorials, IEEE vol. 16(3) 1617 - 1634, 2014

[7] Yossi Kanizo, David Hay, and Isaac Keslassy, Palette: Distributing tables

in software-defined networks, IEEE INFOCOM, 545-549, 2013

[8] GEANT: the pan-European research and education network, available
at : http://www.geant.net/Network/The Network/Pages/default.aspx. Ac-
cessed: 2014-11-22.

[9] Raj Jain and Subharthi Paul, Network Virtualization and Software Defined

Networking for Cloud Computing - A Survey, IEEE Communications
Managzine, pp. 24-31, Nov 2013.

[10] Abdeltouab Belbekkouche, Md. Mahmud Hasan, and Ahmed Karmouch
Resource Discovery and Allocation in Network Virtualization, IEEE
Communications Surveys and Tutorials 14(4):1114-1128, 2012

[11] Chowdhury, N.M.M.K. and Rahman, M.R. and Boutaba, R., Virtual

Network Embedding with Coordinated Node and Link Mapping, IEEE-
INFOCOM’09, pp. 783–791, April 2009.

[12] Chowdhury, N.M.M.K. and Rahman, M.R. and Boutaba, R. ViNEYard:

Virtual Network Embedding Algorithms With Coordinated Node and Link

Mapping IEEE/ACM Transactions on Networking, vol 20, pp. , 206-219,
2012.

[13] Melo, M. and Sargento, S. and Killat, U. and Timm-Giel, A and Cara-
pinha, J., Optimal Virtual Network Embedding: Node-Link Formulation,
IEEE Transactions on Network and Service Management, vol. 10(4), pp.
, 356–368, (2013).

[14] Lischka, Jens and Karl, Holger A Virtual Network Mapping Algorithm

Based on Subgraph Isomorphism Detection, ACM VISA’09, pp. 81–88,
2009

[15] J. Nogueira, M. Melo, J. Carapinha, and S. Sargento. Virtual network

mapping into heterogeneous substrate networks. In IEEE Symposium on
Computers and Communications (ISCC), pp. 438-444, June 2011

[16] Wu-Hsiao Hsu, Yuh-Pyng Shieh, Chia-Hui Wang, and Sheng-Cheng
Yeh. Virtual network mapping through path splitting and migration. In
26th International Conference on Advanced Information Networking and
Applications Workshops (WAINA), pp.1095-1100, March 2012.

[17] Christian Frei and Boi Faltings. Resource allocation in networks using

abstraction and constraint satisfaction techniques. In Principles and
Practice of Constraint Programming (CP’99), volume 1713 of Lecture
Notes in Computer Science, pp. 205-218, 1999

[18] Yongtao Wei, Jinkuan Wang, Cuirong Wang, and Xi Hu. Bandwidth

allocation in virtual network based on traffic prediction. In 6th Interna-
tional Conference on Wireless Communications Networking and Mobile
Computing (WiCOM), 2010

[19] Yufang Xi and E.M. Yeh. Distributed algorithms for minimum cost

multicast with network coding.IEEE/ACM Transactions on Networking,
18(2), pp. 379-392, April 2010.

[20] R. Trivisonno, I. Vaishnavi, R. Guerzoni, Z. Despotovic, A. Hecker,
S. Beker, and D. Soldani Virtual links mapping in future sdn-enabled

networks. In IEEE SDN for Future Networks and Services (SDN4FNS)

pp. 1-5, 2013.

[21] Ines Houidi, Wajdi Louati, Walid Ben-Ameur and Djamal Zeghlache.
Virtual network provisioning across multiple substrate networks, Com-
puter Networks, 55(4), pp. 1011-1023, 2011

[22] Guerzoni, R. Trivisonno, R., Vaishnavi, I., Despotovic, Z. A novel

approach to virtual networks embedding for SDN management and

orchestration IEEE Network Operations and Management Symposium
(NOMS), 2014

