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Abstract

Biogenic dissolution of carbonatéy microborers is one of the main destructive forces in coral reefssan
predicted to be enhanced by eutrophication and ocean acidification by 210€hlditughyteOstreobiumsp.,
the main agent of this process, has been reported to be one of threspossive of all microboring species to
those environmental factors. However, very little is known about iteuiteent, how it develops over
successions of microboring communities and how that influences ratb®genic dissolution. Thus, an
experiment with dead coral blocks exposed to colonization by microboeer<avried out on a reef in New
Caledonia over a year period. Each month, a few blocks were collected ytarstudboring communities and
the associated rates of biogenic dissolution. Our results showed a driftsticceimmunity species composition
between the % and 5" months of exposure, i.e. pioneer communities dominated by larg@ghjtes such as
Phaeophilasp. were replaced by mature communities dominate@dtyeobiumsp.. Prior the % month of
exposure, large chlorophytes were responsible of low rates of biogerdtutitss while during the community
shift, rates increased exponentially (x1After 6 months of exposure, rates slowed down and reached a ‘plateau’
with a mean of 0.98g of CaCQ dissolved per m2 of reef after 12 months of exposure. Here we thladb\a)
Ostreobiumsp. settled down in new dead substrates as soon as®theor&h of exposure but dominated
communities only after 5 months of exposure, and (b) microlBaeralynamics comprise 3 distinct steps which

fully depend on community development stage and grazing pressure
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Introduction

Coral reefs are highly diverse and complex marine ecosysteowdipg many services including commercial
fishing, tourism and coastal protection against storms (Knowlton et al..ZlHgl) maintenance results from the
delicate balance between constructive forces, mainly calcification of coralsyandteng coralline algae, and
destructive forces, mostly bioerosion processes (Scoffin et al, Té80llet & Golubic 2011). Unfortunately,
this equilibrium is increasingly threatened by anthropogenic andoenvental factors such as eutrophication,
overfishing, rising sea surface temperature and ocean acidificatomgli-Guldberg et al. 200Pandolfi et al.
2011, Huand 2012). To date, 20% of coral reefs have already disappear@®%nshow signs of imminent
extinction (Wilkinson 2008). Although both constructive and destrudtivees are affected by anthropogenic
and climatic stresses (Anthony et al. 2008bollet et al. 2009Chauvin et al. 201,1Carreiro-Silva et al. 2012
Andersson & Gledhill 201,3Jessen et al. 201%Visshak et al. 2014), much less attention has been given to

bioerosion than reef accretion.

Reef bioerosion results from the mechanical and/or chemical activity of lsiganisms (Neumann 1966)
comprising grazers (e.g. urchins and parrotfishes), macrob@grsbivalves and sponges) and microborers or
euendoliths (cyanobacteria, algae and fungi) (Glynn 186Bollet & Golubic 2011). Grazers abrade substrate
surfaces to feed on epilithic and euendolithic algae (Pari et al, T8B8llet & Golubic 2005) while macro- and
micro-borers penetrate actively by mechanical and/or chemical means int@t&sht® find a shelter (Lazar &
Loya 1991 Zundelevich et al. 20Q7Garcia-Pichel et al. 2010Tribollet & Golubic 2011). Previous studies
showed that microbioerosion in synergy with grazing is the main gsodeving reef bioerosion of dead
carbonates when exposed several months to three years to bioeraditygy (&hazottes et al. 199Fibollet &
Golubic 2005). Despite their microscopic size, euendoliths are probably the mate afjecef bioerosion as
they are able to colonize each available micrometer of carbonate surface areaarbonate sand to skeletons
of dead and live calcifiers such as corals, mollusks and crustose coralling atghare able to dissolve as much
as 1.1 kg of CaCQper linear m? of reef per year, which convert8bmmol CaCQ.m2.d* (value obtained
from the highest rate of microbioerosion quantified in coral reelsrecalculated using coral microdensity and
porosity; see Tribollet & Golubic 2005). Chazottes et al. (1995) and IEtib@008a) highlighted that the
highest rates of carbonate dissolution result mostly from the activitthefchlorophytes of the genus
Ostreobium Recently, experiments realized under controlled conditions or semaledtconditions over short
periods of time showed that ocean acidification and eutrophication enbimgesic dissolution by stimulating
the activity of chlorophytes such @streobiunsp., suggesting an acceleration of reef framework degradation in
the near future (Chazottes et al. 2008bollet et al. 2009Carreiro-Silva et al. 201Reyes-Nivia et al. 2013
Tribollet et al. 2014). These experiments strongly suggested the dependkenhe response of biogenic
dissolution on species composition of microboring communities (see alsuldir2008a). To better understand
dynamics of the biogenic dissolution process under various enviréaneenditions, it is therefore essential to
determine simultaneously species composition of microboring communfiags,successions over time and
their associated rates of biogenic dissolution under natural conditions. Intdyesitiese aspects have been
rarely studied limiting possibilities of modeling dynamics of the biogenmgsotution process for better

prediction of coral reef future.



81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

Very few studies have indeed investigated changes in euendolithic asssrdtlatifferent time scales and the
influence of such changes on rates of carbonate biogenic dissoluid@arpion-Alsumard (1975) was first to
report successions of euendolithic communities in exposed calcite spar inditerMaean Sea over a period of
one month. She showed that colonization of calcite by euendoliths start8 dfigs of exposure and that the
early colonizers are cyanobacteria suchMastigocoleus testaruntUnfortunately, she did not quantify rates of
carbonate dissolution. Later, Kiene et al. (19@ktidis (1999) and Vogel et al. (2000) reported successions of
euendolithic communities in various reef carbonate substrates after 1,13, 84 months and very scarce
information on rates of biogenic dissolution associated with those communitieg confirmed that pioneer
euendolithic communities, also calléghmature communities’, comprise short lived cyanobacteria suchvas
testarumand the chlorophgtPhaeophilasp., and that the long-lived euendolithic chlorophytreobiumsp.
appears lateto dominate communities after 1 or 2 years of exposunatre communities’). Chazottes et al.
(1995) Tribollet et al. (2006) and Tribollet (2008a) specified later that euendolithiencmities in coral reefs
become mature at least after 6-12 months of exposure. However, the eiattopeettiement oDstreobium
ard when it becomes dominant remain unknown. Among all thoséestuohly Chazottes et al. (199ahd
Tribollet (2008a) studied and reported simultaneously species cdioposf euendolithic communities and
rates of reef biogenic dissolution over time, i.e. after 2, 6, 12, @thw and 12 and 36 months, respectively.
They reported that biogenic dissolution does not vary linearly ngropiionally over time, however those
authors did not present the full dynamics of the process. Thusetter lunderstand dynamics of biogenic
dissolution of carbonates by euendoliths, we carried out an experimith a high temporal resolution on a reef
in New Caledonia. Experimental coral blocks were exposed to colonizatiorehgdiths and were recovered
every month over a year period. The experiment did not last longerotd ewlonization by macroboring
organisms (see review by Tribollet & Golub®911) but was long enough to report interactions between
euendoliths and grazers. The specific goals of the present studytavdetermine (1) whe@streobiumsp.
settles on dead carbonate substrates newly available, (2) when exactiyiriatds communities, (3) how
euendolithic communities succeed to each other over a year period withttdymesolution, and (4) how does
that influence biogenic dissolution. In addition we quantified grazieggure and how it influenced biogenic

dissolution. Then, the first model of the biogenic dissolution pratgssmics was developed.

Material and M ethods

Site and experimental design description

This study was carried out on the coral reef ofitiend ‘Ile aux Canards’ in New Caledonia (lat. 22°31°S, long.
166°43’E, Fig. 1a, b) located in the lagoon, a few hundred meters away from Nouméa city (South provindeof
Island Grande Terre). This site was selected because of its easy adseatfbym the laboratory (Center of the
Institut de Recherche pour le Développement), it presents a well developeshielefis relatively healthy
although it is impacted by anthropogenic activities such as tourism. Agitiajshe tide amplitude is low (~1.5
m) and seawater is weakly turbid over the year due to the hydrodgm occurring around the island. Local

currents resuspend regularly carbonate sediments and organic maiteredim seawater temperature during the
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hot season is 26 + 2 C° (November-April) and 23 + 1 C° dutiregcold season (May-October). Seawater
salinity varies between 35.1 and 35.8 over a year period (mantgdgurements with CTD sensors on the reef
during the experiment)

To determine successions of euendolithic communities and to quantify assodtagedid dissolution and
grazing rates, 60 experimental coral blocks were fixed on two steel(fjridsx 1 m) affixed on the reef at 3 m
depth on the 1%0f December 2010, i.e. during the austral summer seasori(figExperimental coral blocks
(~1.5 cm x 2 cm x 2 cm) were cut from the interior of a live icplof the massive cor&oritessp. using a band
saw. Porites skeletons have been used in several previous bioerosion studiesldnisg for comparison of
results (Kiene & Hutchings 199&€hazottes et al. 199%Pari et al. 1998Edinger et al. 20005chonberg 20Q1
Chazottes et al. 200Zribollet & Golubic 2005 Tribollet 2008a) Micro- and bulk density of the coral skeleton
were measured using the buoyant weight technique as described by 8uLiahdi998). Between January and
December 2011, 3 coral blocks were collected every month and were preiseavédffered 4% solution of

formaldehyde in seawater.

Sample analyses

Colonized blocks were cut in half perpendicular to the upper side. Théxdikss were used to estimate the
bioeroded surface area by euendoliths (if)an the upper side, by taking pictures under a Scanning Electronic
Microscope (SEM, Zeiss EVO LS15, Alizés Platform, IRD, Bondy, Francegntywpictures were taken per
coral block 6 = 60 per month) at panoramic magnification x1500, and were analyzegl tig software ImageJ
The second halves of blocks were used to prepare thin sections actortiagechnique described by Golubic

et al. (1970)and Tribollet et al. (2002). These thin sections were observed undett anligbscope (Nikon
Eclipse LV100) to allow the determination of (1) the species compositienearidolithic communities, (2) the
relative abundance (RA) of living filaments inside substrates {20 measurements per month) expresiseth

(+ the confidence interval), and (3) the mean depth of penetr@ignin cm at which 80%-90% of the living
euendolithic filaments could be observed inside coral blocks {20 measurements per month; see technique
description in Tribollet et al. 200970 complete the identification of euendoliths, small pieces of sample were
decalcified (HCI < 10%) allowing the observations of a few euendolithic difdsnat a time. Identification was
based on morphological criteria with the help of Stjepko Golubic, and accdaadBgrnet and Flahault (1889)
and Wisshak et al. (2011pnly species with relative abundance higher than 5% are presented in this paper
The quantity of carbonate dissolved per month, called here ‘biogenic dissolution’ (BD), was calculated using the

following equation (adapted from Tribollet et al. 2009):

Do Depth of penetration x Bioeroded surface area x Density
B Surface area of blocks

where ‘BD’ is expressed in g of CaCO3 dissolved per linear square meter of reef after a certain time of eégposu
(e.g. one month of exposure for blocks colonized by euendoliths during one month), ‘depth of penetration’ is Pg
in cm, ‘bioeroded surface area’ is the bioeroded surface area of block surfaces exposed to colonization by
euendoliths multiplied by (100 - (% of porosity of coral skeletorgrifi (here we considered only 5 sides per
block as the bottom side was exposed to a different light regime aositpovas 53% ‘density’ is the coral

skeleton microdensity (2.58 + 0.06 g:as filaments of euendoliths grow into the microstructure of the
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skeleton, not in its void spaces, and ‘surface area of block’ is the surface area of the 5 sides of each block
exposed to colonization (the bottom side was discarded). We assumed htre theasured bioeroded surface
area and f on the upper sides of blocks were representative of the 5 sides as bloekamaéirenough to be

exposed to the same light intensity.

By knowing the initial dimensions of coral blocks, it was also possibkstimate the percentage of carbonate
removed by grazers on each sample, by analyzing pictures ofetttiors taken by a high resolution Nikon
camera (Nikon Camera Digital D5100 with AF-S Micro Nikkor 60mm objectisgi)g the software imaged>

12 measurements per month). Grazing rates were then calculatedhgsfotidwing equation:

Percent of grazing x Volume of blocks x Density

Grazing = Surface area of blocks

where ‘grazing’ is expressed in g of CaCO; eroded per linear square meter of reef after a certain time of
exposure (i.e. xmonths), ‘volume of block’ is expressed in cm? (initial length x height x width)‘density’ is the
bulk density of the coral skeleton in g.énfl.86 + 0.1 g.ci) as grazers abrade simultaneously voids and

skeletonand ‘surface area of block’ is similar to that used for BD, in ctn

Statistical analysis

Statistical analyzes were performed under the R statistical framework (R. Deeakb@ore Team 2014). All
data sets were analyzed with non-parametric tests because homogeneity of \athnoemality distribution
were not met (Bartlett test and Shapiro test, respectively) even after data tratisfoldollander et al. 2014)
The KruskalWallis test (with o = 5 %) was used to determine if measured variables (i.e. relative abundance and
depth of penetration of euendolithic filaments, biogenic dissolution, emihg) varied significantly among the
different durations of exposure (from 1 month to 12 montA&)en the Kruskal-Wallis test was significant a
pairwise post-hoc analysis of Mann and Whitney was realized astogrection of Bonferroni (Hollander et al.
2014). To fit biogenic dissolution values and to obtain a rate of thgemic dissolution after 12 months of

exposure, we used a logistic growth model in R statistical frameworklvethls2 library (Grothendieck 2013):

A
(1+ eXt)/s

where ‘A’ is the maximum asymptotic value, ‘X’ is the time where A/2 is observed , ‘S’ is the maximum slope
and ‘t’ is the time of exposure. TO See possible correlation between grazing and biogenic dissoltit@n,
correlation of Spearman was used (Hollander et al. 2014). Finally to deteth@nmain variables driving
biogenic dissolution dynamics over a year period, a hierarchical clustersianalas performed based on
dissimilarity matrix using Bray-Curtis distances (Murtagh & Legen2014) A norn-metric multidimensional
scaling analysis (nMDS) was performed using this matrix as well asaadhignal cluster analysis to graphically

represent results (Faith et al. 1987).



197 Results

198

199 Euendolithic species

200 Euendoliths observed in the experimental coral blocks comprised (ipphiges includind®haeophilasp. (Fig.
201 2a), Eugomontiasp., (Fig. 2b) andstreobiumsp. (Fig. 2c), (ii) o cyanobacteria comprisinglastigocoleus
202 testarum(Fig. 2d) andPlectonema terebranFig. 2e), and (iii) unidentified fungi (Fig. 2f). Due to relative
203  morphological similarities betwedgBugomontiasp. andPhaeophilasp. and difficulties sometimes to distinguish
204  these two species from unidentified large chlorophytes, all these euendolithgireped in one category
205  named ‘unidentified chlorophytes’. Ostreobiumsp. was easily identified as this chlorophyte presents siphoneous
206 and polymorphic filaments.Plectonema terebranand fungi were als@rouped in one category named ‘thin
207 filaments’ as the diameter of their filaments did not exceed 1-2 um and celisria filaments oP. terebrans
208 were difficult to distinguish. Moreover perpendicular branches and deptive organs of fungi were usually
209 absent rendering difficult their differentiation frdPn terebrandilaments.

210

211  Successions of communities: abundance and distribution of euendoliths

212  After one month of exposure, euendolithic communities were mostly compdsauidentified chlorophytes
213 even though thin filaments and the cyanobacteriMintestarumwere observed (mean RA of 83% for
214  unidentified chlorophytes, Fig. 3a). FilamentsvbftestarumandP. terebransas well as fungi were observed in
215 all blocks during the overall duration of the experiment but their mean reddtivedance never exceeded 20%
216  (Fig. 3c,d). The cyanobacteriuHyella sp. was also observed in one month-old blocks but was very rare (R
217 0.5%). In 2 and 3 months-old blocks, the unidentified chlorophgt@sined dominant with a mean RA of 52%
218 (Fig. 3a). About 2% can be attributableNb testarum 0.5% to thin filaments and the rest@o quekettii The
219 unidentified chlorophytes never penetrated deeper than 0.5 mm intskeletbns (Fig. 3a). Similarly filaments
220  of M. testarumwere abundant beneath the surface of substrates although a feanfdacould be observed
221  down to 2 mm (their relative abundance at this depth was les@¥%aRig. 3d). Between 4 and 6 months, the
222  relative abundance of unidentified chlorophytes endjuekettiiwas inversely correlated (Spearman test, r = -
223 0.81, p<0.01), with RA of unidentified chlorophytes reaching leas % after 6 months of exposure (Fig. 3a)
224  and RA of O. quekettii42% (Fig. 3b). After more than 6 months of exposu®e, quekettii dominated
225  euendolithic communities. Its relative abundance was maximal (> 70%) afteorithsvof exposure (Fig. 3b).
226  The rest of the communities comprised thin filaments (13%) and rare filuigvit testarum(4%). O. quekettii
227  and thin filaments could penetrate deep into coral skeletons reaching sesngiire than 4 mm (Fig. 3b, €).
228  quekettiiwas the most abundant species between 0.5 mm and 4 mm belabgtate surface with a mean RA
229  of 43% (Fig. 3b).

230

231 Surface area bioeroded and depth of penetratigh (P

232  After one month of exposure, the mean surface area bioerodeskbgadiths was about 17.6% + 2.1%. During
233 the first four months of exposure, the surface area bioerodeshs®sat significantly (Mann and Whitney, p<0.01;
234  Table 1) and reached a mean value of 40%. After 4 months of egptse surface area bioeroded was 38% on

235 awerage, except between 7 and 9 months of exposure (lowest meifiepia28%).
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The mean depth of penetration of living euendolithic filamentg) (lAcreased slowly during the first four
months of exposure (Table 1). Between tfeafid 7' months of exposure,sfincreased exponentially and
reached a maximum mean value of 3.19 + 0.19 mm after 7 mafitbxposure. Finally, after 8 months of

exposure, depths of penetration tend to stabilize with a mean value af 2% mm.

Biogenic dissolution rates

The quantity of dissolved calcium carbonate by euendoliths increasedicsigiyf over time (Mann and
Whitney, p<0.001) but non-linearly (Fig. 4a). The dynamicthefbiogenic dissolution process presented indeed
3 steps. First, between 1 and 3 months of exposure, biogenituti@sincreased slowly reaching 66 + 0.8 g of
dissolved per square meter of reef after 3 months of exposuré@FigVithin this period of 2 months, the mean
rate of dissolved CaG@Qwas 30 g.m.mo’. Second, between 4 and 5 months of exposure, biogenic dissolutio
increased exponentially reaching a mean of 739 + 17 gfter 5 months of exposure. During this short period
of time, the mean rate of biogenic dissolution was 564°gmu’. Finally after 6 months of exposure, the
process slowed down dramatically. Biogenic dissolution reached a ‘plateau’ with a mean value varying between

742 and 1134 g.thafter 8 months and 11 months, respectively (Fig. 4a); the meaof faiegenic dissolution
was 23 g.rit.mo* for the period comprised between 7 and 12 months of ex@o$his process, as described
above, is typically a logistic growth model in three steps. A preliminagel was then developed to highlight
the process kinetics and to estimate the mean rate of biogeniautimsdbr a 12 months period (Fig. 5). The
expression of a logistic model growth was used in R to fit ourgnicgdissolution dataset. The asymptotic value
or the maximum value of biogenic dissolution was 0.91 + &@4n? half of the biogenic dissolution was
realized after 4.5 + 0.2 months and the maximum of slope w#&st@0315 kg.nf.mo™. The 3 steps-process was
confirmed by the non-metric multidimensional scaling (hnMDS) with the hikieal cluster analysis (Fig. 6).
The low value of stress indicates that the representation is reliable: the distameen studied months (circle)
correlate well with the dissimilarity of the three clusters (ellipsks)addition, the nMDS showed how the
different measured biological parameters influenced each step. The eadf Isiegenic dissolution appeared to
be driven by the abundance of unidentified chlorophytes while thexdestep seemed to be related to the shift
in community species composition. In contrast, the final step was cldavign by the abundance of the

chlorophyteOstreobium quekettand the intensity of grazing.

Grazing pressure

Based on observations of block surfaces under a binocular microscojeg grazes appeared to be due mostly
to parrotfishes, confirming a few situ observations during block collection. Between 1 and 7 months of
exposure, grazing increased almost linearly (from 35 + 11 %0361 g of CaC@eroded per square meter of
reef, respectively; Fig. 4b). Except for the two peaks at 8 amdatths of exposure (grazing rate > 600 §.m
after 7 months of exposure grazing rate values oscillated around theobtaered after 12 months of exposure,
i.e. 339 + 81 g.M (Fig. 4b). Biogenic dissolution and grazing were strongly negjgtcorrelated after 7 morgh

of exposure (Spearman correlation, r = -0.92, p <0.01).

Discussion
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The present study of euendolithic community successions with a imoeslution reveals the three main steps
in the colonization of newly available dead carbonate substrates: (i) an eamiyuody development stage
between 0 and 3 months where large chlorophytes suéthasophilasp. are dominant, (i) an intermediate
stage between 3 and 6 months where the chloropbgteeobiumsp. the main agent of biogenic dissolution,
starts to settle down and to dominate communities, and (iii) a final stagemaftethan 6 months of exposure,
whereOstreobiumsp. dominates largely microboring communities. The present work iwsntfirat colonization
by euendoliths of newly available carbonate substrates is rapid/ @efes or weeks) and is dominated by large
pioneer chlorophytes, especially the green dRfeeophilasp., and cyanobacteria such Bastigocoleus
testarum(see Chazottes et al. 199Gene et al. 1995L.e Campion-Alsumard et al. 1996ektidis 1999 Vogel

et al. 2000 Tribollet et al. 2006 Tribollet 2008b) Those comunities are characteristic of ‘immature
communities’ (Gektidis 1999). Here, the relative abundance of large unidentified phlges, comprising
mostly Phaeophilafilaments, was higher than 60% during the first 4 monthspbgure which is similar to the
findings of Kiene et al. (1995) and Vogel et al. (2000) in limestone irmB&n and Australian reefs. Although
Chazottes et al. (1995) also fouRtlaeophilain abundance in one-month old coral blocks in French Polynesia,
the relative abundance of this species in communities decreased rapidlyeaiecénd month of exposure. This
could result from the intense grazing quantified on blocks in Frengm@&ssh which certainly limited the
development of epiliths andhaeophila, and postponedOstreobium settlement (seen after 6 months of
exposure). In the present study, significant traces of grazingomgrebserved on blocks after a few months of
exposure suggesting that epilithic and euendolithic communities developdy slothe studied reef in New
Caledonia compared to those growing in French Polynesian reefs. Saazéndeed not attracted by substrates
until epilithic (mostly turfs) and euendolithic communities on whichytfeed, start to be well developed
(Bruggemann et al. 1994Interestingly in the present studstreobiumsp. startd settling on new dead coral
skeletons as soon as tH& Bonth of exposure (but represemtess than 5% of euendolithic communities). In
mollusc shells Carreiro-Silva et al. (2005) also obsef@stleobiunfilaments after 49 days. To the contrary of
what was suggested in previous studies, this green euendolithic alEmrsaipus as an early colonist of dead
carbonate substrates in shallow reefs. Most studies have indeed répenedsence ddstreobiumsp. in dead
substrates comprising limestone, calcite spar, mollusc shells and celetioek, only after more than1&-
months of exposure (Chazottes et al. 19dBne et al. 1995Le Campion-Alsumard et al. 1996ektidis 1999
Vogel et al. 2000Tribollet et al. 2006Tribollet 2008a).

All pioneer euendolithic species were located within the first few hunehietbmeters beneath the substrate
surface, with the exception of a few filamentshf testarumseen down to 2 mm below the surface. These
species are indeed known as photophile euendoliths which do not penetpairtdeabstrates as they require
high light intensities to insure photosynthesis (see review by Trib2lle8b). In contrastQstreobiumis a
sciaphile or oligophotic euendolith, i.e. that it is adapted to low light intensitiek &barkum 1989 Tribollet

et al. 2006), and thus, can penetrate deep inside substrates (max dapth after 6 months of exposure) and
presents a large bathymetric distribution (found down to 300 m depkhasl(@978)Kiene et al. (1995); Radtke
et al. 1996). It can also be easily photoinhibited by sudden impomgantritensities like in the case of a rapid

bleaching event in live corals (Fine et al. 2005). Its light regime remeints may thus explain why it was not
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observed on one month-old blocks. Like suggested by Vogel et al.)(2@@0strongly emphasize that
Ostreobiumcan only settle on substrates once they are colonized by epilithic orgdbisfiims, and then turfs

at the early stages) and pioneer euendoliths, which provide shadds(s&adtke et al. 1996). As soon as those
conditions were met in the present experim@streobiumstarted rapidly to dominate communities. The shift in
euendolithic community species composition in favoubsfreobiumoccurred between thd'4and %' months of
exposure. Although such shift was suggested previously laydies et al. (1995) and Kiene et al. (1995), its
period of occurrence was not highlighted due to the temporal resolution sefeeteth experiment (2-3 months
and then, 6 months or more). Here, after 6 months of expdhereelative abundance @streobiumreached
more than 45% while that of large unidentified chlorophytes (md&tlgeophila dropped down to 1%. The
outcompetition betwee@streobiumandPhaeophilawas first reported by Le Campion-Alsumard et al. (1995) in
shallow waters where light intensity is high. The other species observed methent study after 6 months of
exposure were essentially the cyanobactefurterebransand fungi. The presence of these species in addition
to Ostreobiumcharacterizes ‘mature communitiés(Chazottes et al. 199Kiene et al. 1995Gektidis 1999
Vogel et al. 2000 Tribollet 2008a). Such community species composition seems to be maintéered2a
months of exposure (Chazottes et al. 1998ne et al. 1995Tribollet 2008a) unless a major event occurs. An
extreme grazing pressure for instance, can modify dramaticaityncoity assemblages by removing most of
settled euendolithic filaments in substrates allowing more light to penetrate insidarbonate structure. The
remaining filaments can then grow inside substrates until they rdsah riew depth of compensation
(photosynthesis = respiration) while new pioneer euendoliths colonis&ratgbsurfaces (Schneider & Torunski
1983 Chazottes et al. 1995). In general, grazers do not remove all euenddéithients inside coral skeleton
allowing Ostreobiunto remain the dominant species in substrates exposed more tharnt® neocolonization,
but are sufficient to offer new surfaces available to colonization by cyaeoiaasuch asdyella sp. andM.
testarum This is why these pioneer species are often observed within matuneuodias, but in relatively low
abundance (less than 0.5% Hyellasp. and 20% foM. Testarumhere; see also Chazottes et al. 199ollet

et al. 2006and Tribollet 2008a).

With a monthly resolution, we highlight how much the dynamics ohaolthic communities and grazing
pressure controlled the process of biogenic dissolution over a yead.péiist of all, pioneer communities
within the first 3 months of exposure drove a slow procéssogenic dissolution with a mean rate 38 g.m
2mo’ although the amount of dissolved CaC#ter 3 months of exposure wé8 g.nm?, which is similar to
what found Chazottes et al. (199%nd Peyrot-Clausade et al. (1995) in 2 momtldsblocks in French
Polynesia (~73 g.th after recalculation with a microdensity fBorites coral skeletorof 2.58 g.cri’ and a
porosity of 53%). This was due to the low depth of penetraticguendolithic filaments at this early stage of
community development (< 400 um), and not to the colonizationrfdcas which was already important (>
30% like in Chazottes et al. 1995) and the large diameter of pioneer euenditdithénfs (> 10 pm). Carbonate
biogenic dissolution became a very efficient process during the coitynshift with a mean rate @64 g.m
2mo* (rate obtained the™and %' month of exposure). The rate of the biogenic dissolution increased
exponentially during this short period of time (one month)wasd multiplied by a factor 10. This resulted from
the 3D network development @streobiumfilaments within substrates (increase of filament abundance and

depth of penetration) as described above. O@s&eobiums population became stable after 6 months of
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exposure, -i.eOstreobiumfilaments reached their depth of compensation (about 4 mm whgihnilar to that
found by Tribollet 2008a)-, the mean rate of biagetissolution slowed down and reached a ‘plateau’ (23 g.m

2 mo™). Interestingly the estimated average rate of biogenic dissolution prdwoibe model after 12 months of
exposure (0.91 kg fy!) was of the same order to rates estimated on offshore redfie @reat Barrier Reef
after one year of exposure, although those reefs where more agtléy oceanic conditions than the present
studied site (0.5 to 1.1 kg hy ™ after recalculation with microdensity and porosityPafritesskeletons, Tribollet

& Golubic 2005). Those rates are comparable as the same techniques wei tiseid quantification (SEM
picture analysis and thin sections; see Tribollet 2008ebollet (2008a) methodology, although it prevents
from confounding initial microbioerosion like in Chazottes et al. (129) avoids subjective estimations like in
Vogel et al. (2000) and Carreiro-Silva et al. (2005), allows only the digatitin of the amount of CaGO
dissolved by euendoliths alive at the time of collection. It is dikénstantaneous ‘snap shot’ of a community
activity at a given time. It cannot provide the cumulative effects ofdmligimc communities on carbonate
substrates over a given time period and does not reflect the potential longnpeaot of abiotic factors. The
survey of biogenic dissolution rates at different periods of time ihkéhe present study allows however,
determining the possible impacts of biotic and abiotic factors on the prétayes biogenic dissolution variation
within the last 7 months of the experiment resulted from grazitigtg@s a strong inverse correlation between
the two processes was found during this period. Grazing was espétipbfiytant after 8 and 10 months of
exposure reducing biogenic dissolution by about 3 fesidual biogenic dissolution’ was thus measured; see
definition in Chazottes et al. 1995). This synergy between grazersusmdioliths has first been well described
by Schneider and Torunski (1983) in the Adriatic Sea and later by Chazodle$1&95) in coral reefs. It has
been reported as the main bioerosion process in dead substrates aftéhamat2 months by Tribollet and
Golubic (2005) Here, it also appears as the main bioerosion process on dead carbonated 6xpdl2 months

to colonization.

In conclusion, the present experiment revealed the 3 Biej® process of biogenic dissolution over a year
period confirming that it is a neither linear, nor proportional process time. It also suggested that rates
estimated after 12 months of exposure should be considered as consaatatv(probably minimum values).
This is the first time that such pattern is highlighted under natural condititim® moderate grazing pressure.
Due to the experimental design, temporal resolution, and biotic conditideasgngrazing), Chazottes et al.
(1995) could only report part of the kinetics of the process.pFégent study also highlights that the biogenic
dissolution process is particularly efficient during the communitit sletween the % and the % month of
exposure and after a grazing episode (similar slogedpok indeed about one month for the remaining
Ostreobiumfilaments to reach again their depth of compensation as the amaaitiom carbonate dissolved
per square meter after a high grazing episode (e.g. 8 months)f wees same order to that estimated prior to
grazing (Fig. 7). This fast growth in depth inside substratestreafe result of the avoidance of an increased
light intensity byOstreobiumfilaments as epiliths and euendoliths near the surface have been sa#pped
grazers. This reinforces the idea that the chloropBgteeobiumis a very efficient bioeroding microorganism in
coral reef systems. It should be noticed here however, that euendddithiounity dynamics over 12 months
were studied starting in the summer season (December). Biofilmeplitdic covers may develop slowly in

winter due to reduce light intensity and seawater temperature, anchétyuslow down euendolith settlement
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(especially that oOstreobiun), successions and therefore, biogenic dissolution. This sheultestigated over
several years to highlight possible seasonal and inter-annual variatichsd&a would definitely improve our
capacity to better predict the response of biogenic dissolution to climatic ihib@ogenic factors, and

therefore to better evaluate coral reef future by 2100.
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Table 1 Mean bioeroded surface area and mean depth of penetrgdion €uendoliths in dead coral blocks over

a 12 months period.

TABLES

Time of exposure

Bioeroded surface area

Depth of penetration

(Months) (% + SEm) (mm + SEm)
1 17.62£2.10 0.08 £0.02
2 28.64 £ 2.60 0.10+0.01
3 32.22£2.40 0.19 £0.02
4 40.55 + 2.40 0.42 £0.04
5 39.44 £ 3.80 1.63+0.12
6 33.76 £ 2.40 2.12+0.15
7 27.91+£2.00 3.19+0.19
8 25.61+2.10 2.66 +0.22
9 29.20x2.20 2.77+£0.22
10 36.32£2.80 2.35+0.22
11 38.43 +2.60 2.69+0.18
12 39.70 + 2.60 2.29+0.24
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FIGURES

Fig. 1 The area of study. a - Position of New Caledonia in the SouthwesicFOcean; b Study site at “Ile aux
Canards” in New Caledonia; ¢ - Two experimental exposure grids with 60 experimental corekblfixed on the

reef at 3 m-depth

Fig. 2 Euendolithic filaments or borings observed on colored thin secticeiften decalcification under light
microscopy, or under SEM. APhaeophilasp. filament (Chlorophyta, on thin section): Eugomontiasp.
filament with a few cells (Chlorophyta, after decalcification); ©streobiunsp. filaments (Chlorophyta, on thin
section) with the white arrow indicating the typical shape of this algaharalack arrow highlighting filaments
of fungi; d— Mastigocoleus testaruifiilaments (Cyanobacteria, after decalcification) with heterocystous cells
(black arrow); e- Plectonema terebrarfdaments (Cyanobacteria, after decalcification)};Borings of

unidentified euendolithic fungi (under SEM). Scale bare = 20 um

Fig. 3 Mean relative abundance (RA) of euendolithic species as a function dfriimenths) and their depth of
penetration in substrates (in mm). a - Unidentified chlorophyte®fizeophilasp. +Eugomontiasp. +
unidentified species); b - The chloroph@streobiunmsp., c¢; Thin filaments (i.€?lectonema terebrans fungi);

d - The cyanobacteriurilastigocoleus testarum

Fig. 4 Bioerosion by euendoliths (a) and grazers (b) as a function ofRates are expressatkg of CaCQ

dissolved per linear frof reef (Mean + standard error)

Fig. 5 Preliminary logistic growth model of the process of biogenic disisolin kg of CaCQ dissolved per
linear m2 of reef as a function of time. Solid line relates to fitted valudsjatted lines show the confidence

interval of fitted values

Fig. 6 Non-metric multidimensional scaling (nMDS) realized after clustering the relativelahce of

euendolithic species, biogenic dissolution (BD), and grazing over the dusétioe experiment

Fig. 7 Graphic representation of temporal dynamics of the process of biatigsitution of carbonates by

euendoliths and interaction with grazers
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