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Abstract  17 

Biogenic dissolution of carbonates by microborers is one of the main destructive forces in coral reefs and is 18 

predicted to be enhanced by eutrophication and ocean acidification by 2100. The chlorophyte Ostreobium sp., 19 

the main agent of this process, has been reported to be one of the most responsive of all microboring species to 20 

those environmental factors. However, very little is known about its recruitment, how it develops over 21 

successions of microboring communities and how that influences rates of biogenic dissolution. Thus, an 22 

experiment with dead coral blocks exposed to colonization by microborers was carried out on a reef in New 23 

Caledonia over a year period. Each month, a few blocks were collected to study microboring communities and 24 

the associated rates of biogenic dissolution. Our results showed a drastic shift in community species composition 25 

between the 4th and 5th months of exposure, i.e. pioneer communities dominated by large chlorophytes such as 26 

Phaeophila sp. were replaced by mature communities dominated by Ostreobium sp.. Prior the 4th month of 27 

exposure, large chlorophytes were responsible of low rates of biogenic dissolution while during the community 28 

shift, rates increased exponentially (x10). After 6 months of exposure, rates slowed down and reached a ‘plateau’ 29 

with a mean of 0.93 kg of CaCO3 dissolved per m² of reef after 12 months of exposure. Here we show that (a) 30 

Ostreobium sp. settled down in new dead substrates as soon as the 3rd month of exposure but dominated 31 

communities only after 5 months of exposure, and (b) microbioerosion dynamics comprise 3 distinct steps which 32 

fully depend on community development stage and grazing pressure.  33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 
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Introduction  41 

 42 

Coral reefs are highly diverse and complex marine ecosystems, providing many services including commercial 43 

fishing, tourism and coastal protection against storms (Knowlton et al. 2010). Their maintenance results from the 44 

delicate balance between constructive forces, mainly calcification of corals and encrusting coralline algae, and 45 

destructive forces, mostly bioerosion processes (Scoffin et al. 1980, Tribollet & Golubic 2011). Unfortunately, 46 

this equilibrium is increasingly threatened by anthropogenic and environmental factors such as eutrophication, 47 

overfishing, rising sea surface temperature and ocean acidification (Hoegh-Guldberg et al. 2007, Pandolfi et al. 48 

2011, Huand 2012). To date, 20% of coral reefs have already disappeared and 20% show signs of imminent 49 

extinction (Wilkinson 2008). Although both constructive and destructive forces are affected by anthropogenic 50 

and climatic stresses (Anthony et al. 2008, Tribollet et al. 2009, Chauvin et al. 2011, Carreiro-Silva et al. 2012, 51 

Andersson & Gledhill 2013, Jessen et al. 2014, Wisshak et al. 2014), much less attention has been given to 52 

bioerosion than reef accretion.  53 

 54 

Reef bioerosion results from the mechanical and/or chemical activity of living organisms (Neumann 1966) 55 

comprising grazers (e.g. urchins and parrotfishes), macroborers (e.g. bivalves and sponges) and microborers or 56 

euendoliths (cyanobacteria, algae and fungi) (Glynn 1997, Tribollet & Golubic 2011). Grazers abrade substrate 57 

surfaces to feed on epilithic and euendolithic algae (Pari et al. 1998, Tribollet & Golubic 2005) while macro- and 58 

micro-borers penetrate actively by mechanical and/or chemical means into substrates to find a shelter (Lazar & 59 

Loya 1991, Zundelevich et al. 2007, Garcia-Pichel et al. 2010, Tribollet & Golubic 2011). Previous studies 60 

showed that microbioerosion in synergy with grazing is the main process driving reef bioerosion of dead 61 

carbonates when exposed several months to three years to bioeroding agents (Chazottes et al. 1995, Tribollet & 62 

Golubic 2005). Despite their microscopic size, euendoliths are probably the main agents of reef bioerosion as 63 

they are able to colonize each available micrometer of carbonate surface area, -from carbonate sand to skeletons 64 

of dead and live calcifiers such as corals, mollusks and crustose coralline algae-, and are able to dissolve as much 65 

as 1.1 kg of CaCO3 per linear m² of reef per year, which converts to 30 mmol CaCO3.m
-².d-1 (value obtained 66 

from the highest rate of microbioerosion quantified in coral reefs and recalculated using coral microdensity and 67 

porosity; see Tribollet & Golubic 2005). Chazottes et al. (1995) and Tribollet (2008a) highlighted that the 68 

highest rates of carbonate dissolution result mostly from the activity of the chlorophytes of the genus 69 

Ostreobium. Recently, experiments realized under controlled conditions or semi-controlled conditions over short 70 

periods of time showed that ocean acidification and eutrophication enhance biogenic dissolution by stimulating 71 

the activity of chlorophytes such as Ostreobium sp., suggesting an acceleration of reef framework degradation in 72 

the near future (Chazottes et al. 2002, Tribollet et al. 2009, Carreiro-Silva et al. 2012, Reyes-Nivia et al. 2013, 73 

Tribollet et al. 2014). These experiments strongly suggested the dependence of the response of biogenic 74 

dissolution on species composition of microboring communities (see also Tribollet 2008a). To better understand 75 

dynamics of the biogenic dissolution process under various environmental conditions, it is therefore essential to 76 

determine simultaneously species composition of microboring communities, their successions over time and 77 

their associated rates of biogenic dissolution under natural conditions. Interestingly these aspects have been 78 

rarely studied limiting possibilities of modeling dynamics of the biogenic dissolution process for better 79 

prediction of coral reef future.  80 
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 81 

Very few studies have indeed investigated changes in euendolithic assemblages at different time scales and the 82 

influence of such changes on rates of carbonate biogenic dissolution. Le Campion-Alsumard (1975) was first to 83 

report successions of euendolithic communities in exposed calcite spar in the Mediterranean Sea over a period of 84 

one month. She showed that colonization of calcite by euendoliths starts after 8 days of exposure and that the 85 

early colonizers are cyanobacteria such as Mastigocoleus testarum. Unfortunately, she did not quantify rates of 86 

carbonate dissolution. Later, Kiene et al. (1995), Gektidis (1999) and Vogel et al. (2000) reported successions of 87 

euendolithic communities in various reef carbonate substrates after 1, 3, 6, 12, 24 months and very scarce 88 

information on rates of biogenic dissolution associated with those communities. They confirmed that pioneer 89 

euendolithic communities, also called ‘immature communities’, comprise short lived cyanobacteria such as M. 90 

testarum and the chlorophyte Phaeophila sp., and that the long-lived euendolithic chlorophyte Ostreobium sp. 91 

appears later to dominate communities after 1 or 2 years of exposure (‘mature communities’). Chazottes et al. 92 

(1995), Tribollet et al. (2006) and Tribollet (2008a) specified later that euendolithic communities in coral reefs 93 

become mature at least after 6-12 months of exposure. However, the exact period of settlement of Ostreobium 94 

and when it becomes dominant remain unknown. Among all those studies, only Chazottes et al. (1995) and 95 

Tribollet (2008a) studied and reported simultaneously species composition of euendolithic communities and 96 

rates of reef biogenic dissolution over time, i.e. after 2, 6, 12, 24 months and 12 and 36 months, respectively. 97 

They reported that biogenic dissolution does not vary linearly nor proportionally over time, however those 98 

authors did not present the full dynamics of the process. Thus, to better understand dynamics of biogenic 99 

dissolution of carbonates by euendoliths, we carried out an experiment with a high temporal resolution on a reef 100 

in New Caledonia. Experimental coral blocks were exposed to colonization by euendoliths and were recovered 101 

every month over a year period. The experiment did not last longer to avoid colonization by macroboring 102 

organisms (see review by Tribollet & Golubic 2011) but was long enough to report interactions between 103 

euendoliths and grazers. The specific goals of the present study were to determine (1) when Ostreobium sp. 104 

settles on dead carbonate substrates newly available, (2) when exactly it dominates communities, (3) how 105 

euendolithic communities succeed to each other over a year period with a monthly resolution, and (4) how does 106 

that influence biogenic dissolution. In addition we quantified grazing pressure and how it influenced biogenic 107 

dissolution. Then, the first model of the biogenic dissolution process dynamics was developed.  108 

 109 

 110 

Material and Methods 111 

 112 

Site and experimental design description 113 

This study was carried out on the coral reef of the Island ‘Ile aux Canards’ in New Caledonia (lat. 22°31’S, long. 114 

166°43’E, Fig. 1a, b) located in the lagoon, a few hundred meters away from Nouméa city (South province of the 115 

Island Grande Terre). This site was selected because of its easy access by boat from the laboratory (Center of the 116 

Institut de Recherche pour le Développement), it presents a well developed reef which is relatively healthy 117 

although it is impacted by anthropogenic activities such as tourism. At this site, the tide amplitude is low (~1.5 118 

m) and seawater is weakly turbid over the year due to the hydrodynamism occurring around the island. Local 119 

currents resuspend regularly carbonate sediments and organic matter. The mean seawater temperature during the 120 
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hot season is 26 ± 2 C° (November-April) and 23 ± 1 C° during the cold season (May-October). Seawater 121 

salinity varies between 35.1 and 35.8 over a year period (monthly measurements with CTD sensors on the reef 122 

during the experiment).  123 

To determine successions of euendolithic communities and to quantify associated biogenic dissolution and 124 

grazing rates, 60 experimental coral blocks were fixed on two steel grids (1 m x 1 m) affixed on the reef at 3 m 125 

depth on the 15th of December 2010, i.e. during the austral summer season (Fig. 1c). Experimental coral blocks 126 

(~1.5 cm x 2 cm x 2 cm) were cut from the interior of a live colony of the massive coral Porites sp. using a band 127 

saw. Porites skeletons have been used in several previous bioerosion studies thus allowing for comparison of 128 

results (Kiene & Hutchings 1994, Chazottes et al. 1995, Pari et al. 1998, Edinger et al. 2000, Schonberg 2001, 129 

Chazottes et al. 2002, Tribollet & Golubic 2005, Tribollet 2008a). Micro- and bulk density of the coral skeleton 130 

were measured using the buoyant weight technique as described by Bucher et al. (1998). Between January and 131 

December 2011, 3 coral blocks were collected every month and were preserved in a buffered 4% solution of 132 

formaldehyde in seawater.  133 

 134 

Sample analyses 135 

Colonized blocks were cut in half perpendicular to the upper side. The first halves were used to estimate the 136 

bioeroded surface area by euendoliths (in cm2) on the upper side, by taking pictures under a Scanning Electronic 137 

Microscope (SEM, Zeiss EVO LS15, Alizés Platform, IRD, Bondy, France). Twenty pictures were taken per 138 

coral block (n = 60 per month) at panoramic magnification x1500, and were analyzed using the software ImageJ. 139 

The second halves of blocks were used to prepare thin sections according to the technique described by Golubic 140 

et al. (1970), and Tribollet et al. (2002). These thin sections were observed under a light microscope (Nikon 141 

Eclipse LV100) to allow the determination of (1) the species composition of euendolithic communities, (2) the 142 

relative abundance (RA) of living filaments inside substrates (n > 120 measurements per month) expressed in % 143 

(± the confidence interval), and (3) the mean depth of penetration (P80) in cm at which 80%-90% of the living 144 

euendolithic filaments could be observed inside coral blocks (n > 120 measurements per month; see technique 145 

description in Tribollet et al. 2009). To complete the identification of euendoliths, small pieces of sample were 146 

decalcified (HCl < 10%) allowing the observations of a few euendolithic filaments at a time. Identification was 147 

based on morphological criteria with the help of Stjepko Golubic, and according to Bornet and Flahault (1889) 148 

and Wisshak et al. (2011). Only species with relative abundance higher than 5% are presented in this paper.  149 

The quantity of carbonate dissolved per month, called here ‘biogenic dissolution’ (BD), was calculated using the 150 

following equation (adapted from Tribollet et al. 2009): 151 

 152                                                                                   

 153 

where ‘BD’ is expressed in g of CaCO3 dissolved per linear square meter of reef after a certain time of exposure 154 

(e.g. one month of exposure for blocks colonized by euendoliths during one month), ‘depth of penetration’ is P80 155 

in cm, ‘bioeroded surface area’ is the bioeroded surface area of  block surfaces exposed to colonization by 156 

euendoliths multiplied by (100 - (% of porosity of coral skeleton) in cm2 (here we considered only 5 sides per 157 

block as the bottom side was exposed to a different light regime and porosity was 53%), ‘density’ is the coral 158 

skeleton microdensity (2.58 ± 0.06 g.cm-3) as filaments of euendoliths grow into the microstructure of the 159 
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skeleton, not in its void spaces, and ‘surface area of block’ is the surface area of the 5 sides of each block 160 

exposed to colonization (the bottom side was discarded). We assumed here that the measured bioeroded surface 161 

area and P80 on the upper sides of blocks were representative of the 5 sides as blocks were small enough to be 162 

exposed to the same light intensity. 163 

 164 

By knowing the initial dimensions of coral blocks, it was also possible to estimate the percentage of carbonate 165 

removed by grazers on each sample, by analyzing pictures of thin sections taken by a high resolution Nikon 166 

camera (Nikon Camera Digital D5100 with AF-S Micro Nikkor 60mm objective) using the software imageJ (n> 167 

12 measurements per month). Grazing rates were then calculated using the following equation: 168 

 169                                                                               

 170 

where ‘grazing’ is expressed in g of CaCO3 eroded per linear square meter of reef after a certain time of 171 

exposure (i.e. xx months), ‘volume of block’ is expressed in cm3 (initial length x height x width), ‘density’ is the 172 

bulk density of the coral skeleton in g.cm-3 (1.86 ± 0.1 g.cm-3) as grazers abrade simultaneously voids and 173 

skeleton, and ‘surface area of block’ is similar to that used for BD, in cm2.  174 

 175 

Statistical analysis 176 

Statistical analyzes were performed under the R statistical framework (R. Development Core Team 2014). All 177 

data sets were analyzed with non-parametric tests because homogeneity of variance and normality distribution 178 

were not met (Bartlett test and Shapiro test, respectively) even after data transformation (Hollander et al. 2014). 179 

The Kruskal-Wallis test (with α = 5 %) was used to determine if measured variables (i.e. relative abundance and 180 

depth of penetration of euendolithic filaments, biogenic dissolution, and grazing) varied significantly among the 181 

different durations of exposure (from 1 month to 12 months). When the Kruskal-Wallis test was significant a 182 

pairwise post-hoc analysis of Mann and Whitney was realized using a correction of Bonferroni (Hollander et al. 183 

2014). To fit biogenic dissolution values and to obtain a rate of the biogenic dissolution after 12 months of 184 

exposure, we used a logistic growth model in R statistical framework with the nls2 library (Grothendieck 2013): 185 

 186              

 187 

where ‘A’ is the maximum asymptotic value, ‘X’ is the time where A/2 is observed , ‘S’ is the maximum slope 188 

and ‘t’ is the time of exposure. To see possible correlation between grazing and biogenic dissolution, the 189 

correlation of Spearman was used (Hollander et al. 2014). Finally to determine the main variables driving 190 

biogenic dissolution dynamics over a year period, a hierarchical cluster analysis was performed based on 191 

dissimilarity matrix using Bray-Curtis distances (Murtagh & Legendre 2014). A non-metric multidimensional 192 

scaling analysis (nMDS) was performed using this matrix as well as a hierarchical cluster analysis to graphically 193 

represent results (Faith et al. 1987).  194 

 195 

 196 
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Results 197 

 198 

Euendolithic species  199 

Euendoliths observed in the experimental coral blocks comprised (i) chlorophytes including Phaeophila sp. (Fig. 200 

2a), Eugomontia sp., (Fig. 2b) and Ostreobium sp. (Fig. 2c), (ii) two cyanobacteria comprising Mastigocoleus 201 

testarum (Fig. 2d) and Plectonema terebrans (Fig. 2e), and (iii) unidentified fungi (Fig. 2f). Due to relative 202 

morphological similarities between Eugomontia sp. and Phaeophila sp. and difficulties sometimes to distinguish 203 

these two species from unidentified large chlorophytes, all these euendoliths were grouped in one category 204 

named ‘unidentified chlorophytes’. Ostreobium sp. was easily identified as this chlorophyte presents siphoneous 205 

and polymorphic filaments.  Plectonema terebrans and fungi were also grouped in one category named ‘thin 206 

filaments’ as the diameter of their filaments did not exceed 1-2 µm and cells in some filaments of P. terebrans 207 

were difficult to distinguish. Moreover perpendicular branches and reproductive organs of fungi were usually 208 

absent rendering difficult their differentiation from P. terebrans filaments.  209 

 210 

Successions of communities: abundance and distribution of euendoliths 211 

After one month of exposure, euendolithic communities were mostly composed of unidentified chlorophytes 212 

even though thin filaments and the cyanobacterium M. testarum were observed (mean RA of 83% for 213 

unidentified chlorophytes, Fig. 3a). Filaments of M. testarum and P. terebrans as well as fungi were observed in 214 

all blocks during the overall duration of the experiment but their mean relative abundance never exceeded 20% 215 

(Fig. 3c,d). The cyanobacterium Hyella sp. was also observed in one month-old blocks but was very rare (RA < 216 

0.5%). In 2 and 3 months-old blocks, the unidentified chlorophytes remained dominant with a mean RA of 52% 217 

(Fig. 3a). About 2% can be attributable to M. testarum, 0.5% to thin filaments and the rest to O. quekettii. The 218 

unidentified chlorophytes never penetrated deeper than 0.5 mm into coral skeletons (Fig. 3a). Similarly filaments 219 

of M. testarum were abundant beneath the surface of substrates although a few filaments could be observed 220 

down to 2 mm (their relative abundance at this depth was less than 2%; Fig. 3d). Between 4 and 6 months, the 221 

relative abundance of unidentified chlorophytes and O. quekettii was inversely correlated (Spearman test, r = -222 

0.81, p<0.01), with RA of unidentified chlorophytes reaching less than 1% after 6 months of exposure (Fig. 3a) 223 

and RA of O. quekettii 42% (Fig. 3b). After more than 6 months of exposure, O. quekettii dominated 224 

euendolithic communities. Its relative abundance was maximal (> 70%) after 11 months of exposure (Fig. 3b). 225 

The rest of the communities comprised thin filaments (13%) and rare filaments of M. testarum (4%). O. quekettii 226 

and thin filaments could penetrate deep into coral skeletons reaching sometimes more than 4 mm (Fig. 3b, c). O. 227 

quekettii was the most abundant species between 0.5 mm and 4 mm below the substrate surface with a mean RA 228 

of 43% (Fig. 3b). 229 

 230 

Surface area bioeroded and depth of penetration (P80) 231 

After one month of exposure, the mean surface area bioeroded by euendoliths was about 17.6% ± 2.1%. During 232 

the first four months of exposure, the surface area bioeroded increased significantly (Mann and Whitney, p<0.01; 233 

Table 1) and reached a mean value of 40%. After 4 months of exposure, the surface area bioeroded was 38% on 234 

average, except between 7 and 9 months of exposure (lowest mean quantified, 28%).  235 
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The mean depth of penetration of living euendolithic filaments (P80) increased slowly during the first four 236 

months of exposure (Table 1). Between the 4th and 7th months of exposure, P80 increased exponentially and 237 

reached a maximum mean value of 3.19 ± 0.19 mm after 7 months of exposure. Finally, after 8 months of 238 

exposure, depths of penetration tend to stabilize with a mean value of 2.55 ± 0.20 mm. 239 

 240 

Biogenic dissolution rates 241 

The quantity of dissolved calcium carbonate by euendoliths increased significantly over time (Mann and 242 

Whitney, p<0.001) but non-linearly (Fig. 4a). The dynamics of the biogenic dissolution process presented indeed 243 

3 steps. First, between 1 and 3 months of exposure, biogenic dissolution increased slowly reaching 66 ± 0.8 g of 244 

dissolved per square meter of reef after 3 months of exposure (Fig. 4a). Within this period of 2 months, the mean 245 

rate of dissolved CaCO3 was 30 g.m-2.mo-1. Second, between 4 and 5 months of exposure, biogenic dissolution 246 

increased exponentially reaching a mean of 739 ± 11 g.m-2 after 5 months of exposure. During this short period 247 

of time, the mean rate of biogenic dissolution was 564 g.m-2.mo-1. Finally after 6 months of exposure, the 248 

process slowed down dramatically. Biogenic dissolution reached a ‘plateau’ with a mean value varying between 249 

742 and 1134 g.m-2 after 8 months and 11 months, respectively (Fig. 4a); the mean rate of biogenic dissolution  250 

was 23 g.m-2.mo-1 for the period comprised between 7 and 12 months of exposure. This process, as described 251 

above, is typically a logistic growth model in three steps. A preliminary model was then developed to highlight 252 

the process kinetics and to estimate the mean rate of biogenic dissolution for a 12 months period (Fig. 5). The 253 

expression of a logistic model growth was used in R to fit our biogenic dissolution dataset. The asymptotic value 254 

or the maximum value of biogenic dissolution was 0.91 ± 0.04 kg.m-2; half of the biogenic dissolution was 255 

realized after 4.5 ± 0.2 months and the maximum of slope was 0.37 ± 0.15 kg.m-2.mo-1. The 3 steps-process was 256 

confirmed by the non-metric multidimensional scaling (nMDS) with the hierarchical cluster analysis (Fig. 6). 257 

The low value of stress indicates that the representation is reliable: the distance between studied months (circle) 258 

correlate well with the dissimilarity of the three clusters (ellipses). In addition, the nMDS showed how the 259 

different measured biological parameters influenced each step. The early step of biogenic dissolution appeared to 260 

be driven by the abundance of unidentified chlorophytes while the second step seemed to be related to the shift 261 

in community species composition. In contrast, the final step was clearly driven by the abundance of the 262 

chlorophyte Ostreobium quekettii and the intensity of grazing.  263 

 264 

Grazing pressure 265 

Based on observations of block surfaces under a binocular microscope, grazing traces appeared to be due mostly 266 

to parrotfishes, confirming a few in situ observations during block collection. Between 1 and 7 months of 267 

exposure, grazing increased almost linearly (from 35 ± 11 to 365 ± 51 g of CaCO3 eroded per square meter of 268 

reef, respectively; Fig. 4b). Except for the two peaks at 8 and 10 months of exposure (grazing rate > 600 g.m-2), 269 

after 7 months of exposure grazing rate values oscillated around the mean obtained after 12 months of exposure, 270 

i.e. 339 ± 81 g.m-2 (Fig. 4b). Biogenic dissolution and grazing were strongly negatively correlated after 7 months 271 

of exposure (Spearman correlation, r = -0.92, p <0.01).  272 

 273 

 274 

Discussion  275 
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 276 

The present study of euendolithic community successions with a monthly resolution reveals the three main steps 277 

in the colonization of newly available dead carbonate substrates: (i) an early community development stage 278 

between 0 and 3 months where large chlorophytes such as Phaeophila sp. are dominant, (ii) an intermediate 279 

stage between 3 and 6 months where the chlorophyte Ostreobium sp. the main agent of biogenic dissolution, 280 

starts to settle down and to dominate communities, and (iii) a final stage, after more than 6 months of exposure, 281 

where Ostreobium sp. dominates largely microboring communities. The present work confirms that colonization 282 

by euendoliths of newly available carbonate substrates is rapid (a few days or weeks) and is dominated by large 283 

pioneer chlorophytes, especially the green alga Phaeophila sp., and cyanobacteria such as Mastigocoleus 284 

testarum (see Chazottes et al. 1995, Kiene et al. 1995, Le Campion-Alsumard et al. 1995, Gektidis 1999, Vogel 285 

et al. 2000, Tribollet et al. 2006, Tribollet 2008b). Those communities are characteristic of ‘immature 286 

communities’ (Gektidis 1999). Here, the relative abundance of large unidentified chlorophytes, comprising 287 

mostly Phaeophila filaments, was higher than 60% during the first 4 months of exposure which is similar to the 288 

findings of Kiene et al. (1995) and Vogel et al. (2000) in limestone in Bahamian and Australian reefs. Although 289 

Chazottes et al. (1995) also found Phaeophila in abundance in one-month old coral blocks in French Polynesia, 290 

the relative abundance of this species in communities decreased rapidly after the second month of exposure. This 291 

could result from the intense grazing quantified on blocks in French Polynesia which certainly limited the 292 

development of epiliths and Phaeophila, and postponed Ostreobium settlement (seen after 6 months of 293 

exposure). In the present study, significant traces of grazing were only observed on blocks after a few months of 294 

exposure suggesting that epilithic and euendolithic communities developed slowly on the studied reef in New 295 

Caledonia compared to those growing in French Polynesian reefs. Grazers are indeed not attracted by substrates 296 

until epilithic (mostly turfs) and euendolithic communities on which they feed, start to be well developed  297 

(Bruggemann et al. 1994). Interestingly in the present study, Ostreobium sp. started settling on new dead coral 298 

skeletons as soon as the 3rd month of exposure (but represented less than 5% of euendolithic communities). In 299 

mollusc shells Carreiro-Silva et al. (2005) also observed Ostreobium filaments after 49 days. To the contrary of 300 

what was suggested in previous studies, this green euendolithic alga appears thus as an early colonist of dead 301 

carbonate substrates in shallow reefs. Most studies have indeed reported the presence of Ostreobium sp. in dead 302 

substrates comprising limestone, calcite spar, mollusc shells and coral skeletons, only after more than 6-12 303 

months of exposure (Chazottes et al. 1995, Kiene et al. 1995, Le Campion-Alsumard et al. 1995, Gektidis 1999, 304 

Vogel et al. 2000, Tribollet et al. 2006, Tribollet 2008a).  305 

 306 

All pioneer euendolithic species were located within the first few hundred micrometers beneath the substrate 307 

surface, with the exception of a few filaments of M. testarum seen down to 2 mm below the surface. These 308 

species are indeed known as photophile euendoliths which do not penetrate deep into substrates as they require 309 

high light intensities to insure photosynthesis (see review by Tribollet 2008b). In contrast, Ostreobium is a 310 

sciaphile or oligophotic euendolith, i.e. that it is adapted to low light intensities (Fork & Larkum 1989, Tribollet 311 

et al. 2006), and thus, can penetrate deep inside substrates (max depth > 4 mm after 6 months of exposure) and 312 

presents a large bathymetric distribution (found down to 300 m depth; Lukas (1978); Kiene et al. (1995); Radtke 313 

et al. 1996). It can also be easily photoinhibited by sudden important light intensities like in the case of a rapid 314 

bleaching event in live corals (Fine et al. 2005). Its light regime requirements may thus explain why it was not 315 
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observed on one month-old blocks. Like suggested by Vogel et al. (2000), we strongly emphasize that 316 

Ostreobium can only settle on substrates once they are colonized by epilithic organisms (biofilms, and then turfs 317 

at the early stages) and pioneer euendoliths, which provide shade (see also Radtke et al. 1996). As soon as those 318 

conditions were met in the present experiment, Ostreobium started rapidly to dominate communities. The shift in 319 

euendolithic community species composition in favour of Ostreobium occurred between the 4th and 5th months of 320 

exposure. Although such shift was suggested previously by Chazottes et al. (1995) and Kiene et al. (1995), its 321 

period of occurrence was not highlighted due to the temporal resolution selected in each experiment (2-3 months 322 

and then, 6 months or more). Here, after 6 months of exposure, the relative abundance of Ostreobium reached 323 

more than 45% while that of large unidentified chlorophytes (mostly Phaeophila) dropped down to 1%. The 324 

outcompetition between Ostreobium and Phaeophila was first reported by Le Campion-Alsumard et al. (1995) in 325 

shallow waters where light intensity is high. The other species observed in the present study after 6 months of 326 

exposure were essentially the cyanobacterium P. terebrans and fungi. The presence of these species in addition 327 

to Ostreobium characterizes ‘mature communities’ (Chazottes et al. 1995, Kiene et al. 1995, Gektidis 1999, 328 

Vogel et al. 2000, Tribollet 2008a). Such community species composition seems to be maintained after 12 329 

months of exposure (Chazottes et al. 1995, Kiene et al. 1995, Tribollet 2008a) unless a major event occurs. An 330 

extreme grazing pressure for instance, can modify dramatically community assemblages by removing most of 331 

settled euendolithic filaments in substrates allowing more light to penetrate inside the carbonate structure. The 332 

remaining filaments can then grow inside substrates until they reach their new depth of compensation 333 

(photosynthesis = respiration) while new pioneer euendoliths colonize substrate surfaces (Schneider & Torunski 334 

1983, Chazottes et al. 1995). In general, grazers do not remove all euendolithic filaments inside coral skeleton 335 

allowing Ostreobium to remain the dominant species in substrates exposed more than 6 months to colonization, 336 

but are sufficient to offer new surfaces available to colonization by cyanobacteria such as Hyella sp. and M. 337 

testarum. This is why these pioneer species are often observed within mature communities, but in relatively low 338 

abundance (less than 0.5% for Hyella sp. and 20% for M. Testarum here; see also Chazottes et al. 1995, Tribollet 339 

et al. 2006, and Tribollet 2008a). 340 

 341 

With a monthly resolution, we highlight how much the dynamics of euendolithic communities and grazing 342 

pressure controlled the process of biogenic dissolution over a year period. First of all, pioneer communities 343 

within the first 3 months of exposure drove a slow process of biogenic dissolution with a mean rate of 30 g.m-344 

².mo-1 although the amount of dissolved CaCO3 after 3 months of exposure was 66 g.m-2, which is similar to 345 

what found Chazottes et al. (1995), and Peyrot-Clausade et al. (1995) in 2 months-old blocks in French 346 

Polynesia (~73 g.m-² after recalculation with a microdensity for Porites coral skeleton of 2.58 g.cm-3 and a 347 

porosity of 53%). This was due to the low depth of penetration of euendolithic filaments at this early stage of 348 

community development (< 400 µm), and not to the colonization of surfaces which was already important (> 349 

30% like in Chazottes et al. 1995) and the large diameter of pioneer euendolithic filaments (> 10 µm). Carbonate 350 

biogenic dissolution became a very efficient process during the community shift with a mean rate of 564 g.m-351 
2.mo-1 (rate obtained the 4th and 5th month of exposure). The rate of the biogenic dissolution increased 352 

exponentially during this short period of time (one month) and was multiplied by a factor 10. This resulted from 353 

the 3D network development of Ostreobium filaments within substrates (increase of filament abundance and 354 

depth of penetration) as described above. Once Ostreobium’s population became stable after 6 months of 355 
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exposure, -i.e. Ostreobium filaments reached their depth of compensation (about 4 mm which is similar to that 356 

found by Tribollet 2008a)-, the mean rate of biogenic dissolution slowed down and reached a ‘plateau’ (23 g.m-357 
2.mo-1). Interestingly the estimated average rate of biogenic dissolution provided by the model after 12 months of 358 

exposure (0.91 kg m-2.y-1) was of the same order to rates estimated on offshore reefs on the Great Barrier Reef 359 

after one year of exposure, although those reefs where more influenced by oceanic conditions than the present 360 

studied site (0.5 to 1.1 kg m-2.y-1 after recalculation with microdensity and porosity of Porites skeletons, Tribollet 361 

& Golubic 2005). Those rates are comparable as the same techniques were used for their quantification (SEM 362 

picture analysis and thin sections; see Tribollet 2008a). Tribollet (2008a)’s methodology, although it prevents 363 

from confounding initial microbioerosion like in Chazottes et al. (1995) and avoids subjective estimations like in 364 

Vogel et al. (2000) and Carreiro-Silva et al. (2005), allows only the quantification of the amount of CaCO3 365 

dissolved by euendoliths alive at the time of collection. It is like an instantaneous ‘snap shot’ of a community 366 

activity at a given time. It cannot provide the cumulative effects of euendolithic communities on carbonate 367 

substrates over a given time period and does not reflect the potential long term impact of abiotic factors. The 368 

survey of biogenic dissolution rates at different periods of time like in the present study allows however, 369 

determining the possible impacts of biotic and abiotic factors on the process. Here, biogenic dissolution variation 370 

within the last 7 months of the experiment resulted from grazing activity as a strong inverse correlation between 371 

the two processes was found during this period. Grazing was especially important after 8 and 10 months of 372 

exposure reducing biogenic dissolution by about 30% (the ‘residual biogenic dissolution’ was thus measured; see 373 

definition in Chazottes et al. 1995). This synergy between grazers and euendoliths has first been well described 374 

by Schneider and Torunski (1983) in the Adriatic Sea and later by Chazottes et al. (1995) in coral reefs. It has 375 

been reported as the main bioerosion process in dead substrates after more than 12 months by Tribollet and 376 

Golubic (2005). Here, it also appears as the main bioerosion process on dead carbonates exposed 6 to 12 months 377 

to colonization.  378 

 379 

In conclusion, the present experiment revealed the 3 steps in the process of biogenic dissolution over a year 380 

period confirming that it is a neither linear, nor proportional process over time. It also suggested that rates 381 

estimated after 12 months of exposure should be considered as conservative rates (probably minimum values). 382 

This is the first time that such pattern is highlighted under natural conditions with a moderate grazing pressure. 383 

Due to the experimental design, temporal resolution, and biotic conditions (intense grazing), Chazottes et al. 384 

(1995) could only report part of the kinetics of the process. The present study also highlights that the biogenic 385 

dissolution process is particularly efficient during the community shift between the 4th and the 5th month of 386 

exposure and after a grazing episode (similar slopes). It took indeed about one month for the remaining 387 

Ostreobium filaments to reach again their depth of compensation as the amount of calcium carbonate dissolved 388 

per square meter after a high grazing episode (e.g. 8 months) was of the same order to that estimated prior to 389 

grazing (Fig. 7). This fast growth in depth inside substrates may be the result of the avoidance of an increased 390 

light intensity by Ostreobium filaments as epiliths and euendoliths near the surface have been scrapped off by 391 

grazers. This reinforces the idea that the chlorophyte Ostreobium is a very efficient bioeroding microorganism in 392 

coral reef systems. It should be noticed here however, that euendolithic community dynamics over 12 months 393 

were studied starting in the summer season (December). Biofilms and epilithic covers may develop slowly in 394 

winter due to reduce light intensity and seawater temperature, and thus may slow down euendolith settlement 395 
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(especially that of Ostreobium), successions and therefore, biogenic dissolution. This should be investigated over 396 

several years to highlight possible seasonal and inter-annual variations. Such data would definitely improve our 397 

capacity to better predict the response of biogenic dissolution to climatic and anthropogenic factors, and 398 

therefore to better evaluate coral reef future by 2100. 399 

 400 
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TABLES 563 

 564 

 565 

Table 1 Mean bioeroded surface area and mean depth of penetration P80 by euendoliths in dead coral blocks over 566 

a 12 months period. 567 

 568 

Time of exposure 
(Months) 

Bioeroded surface area 
(% ± SEm) 

Depth of penetration 
(mm ± SEm) 

1 17.62 ± 2.10 0.08 ± 0.02 
2 28.64 ± 2.60 0.10 ± 0.01 
3 32.22 ± 2.40 0.19 ± 0.02 
4 40.55 ± 2.40 0.42 ± 0.04 
5 39.44 ± 3.80 1.63 ± 0.12 
6 33.76 ± 2.40 2.12 ± 0.15 
7 27.91 ± 2.00 3.19 ± 0.19 
8 25.61 ± 2.10 2.66 ± 0.22 
9 29.20 ± 2.20 2.77 ± 0.22 
10 36.32 ± 2.80 2.35 ± 0.22 
11 38.43 ± 2.60 2.69 ± 0.18 
12 39.70 ± 2.60 2.29 ± 0.24 
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FIGURES 594 

 595 

Fig. 1 The area of study. a - Position of New Caledonia in the Southwest Pacific Ocean; b - Study site at “Ile aux 596 

Canards” in New Caledonia; c - Two experimental exposure grids with 60 experimental coral blocks fixed on the 597 

reef at 3 m-depth 598 

Fig. 2 Euendolithic filaments or borings observed on colored thin sections or after decalcification under light 599 

microscopy, or under SEM. A – Phaeophila sp. filament (Chlorophyta, on thin section); b – Eugomontia sp. 600 

filament with a few cells (Chlorophyta, after decalcification); c – Ostreobium sp. filaments (Chlorophyta, on thin 601 

section) with the white arrow indicating the typical shape of this alga, and the black arrow highlighting filaments 602 

of fungi; d – Mastigocoleus testarum filaments (Cyanobacteria, after decalcification) with heterocystous cells 603 

(black arrow); e – Plectonema terebrans filaments (Cyanobacteria, after decalcification); f – Borings of 604 

unidentified euendolithic fungi (under SEM). Scale bare = 20 µm 605 

Fig. 3 Mean relative abundance (RA) of euendolithic species as a function of time (in months) and their depth of 606 

penetration in substrates (in mm). a - Unidentified chlorophytes (i.e. Phaeophila sp. + Eugomontia sp. + 607 

unidentified species); b - The chlorophyte Ostreobium sp., c; Thin filaments (i.e. Plectonema terebrans + fungi); 608 

d - The cyanobacterium Mastigocoleus testarum 609 

Fig. 4 Bioerosion by euendoliths (a) and grazers (b) as a function of time. Rates are expressed in kg of CaCO3 610 

dissolved per linear m2 of reef (Mean ± standard error) 611 

Fig. 5 Preliminary logistic growth model of the process of biogenic dissolution in kg of CaCO3 dissolved per 612 

linear m² of reef as a function of time. Solid line relates to fitted values, and dotted lines show the confidence 613 

interval of fitted values 614 

Fig. 6 Non-metric multidimensional scaling (nMDS) realized after clustering the relative abundance of 615 

euendolithic species, biogenic dissolution (BD), and grazing over the duration of the experiment 616 

Fig. 7 Graphic representation of temporal dynamics of the process of biogenic dissolution of carbonates by 617 

euendoliths and interaction with grazers 618 

 619 

 620 

 621 









1 2 3 4 5 6 7 8 9 10 11 12

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

0

0.2

0.4

0.6

0.8

1

1.2

Time of exposure

[months]

B
io

g
e
n
ic

 d
is

s
o
lu

ti
o
n
 d

u
e
 t
o
 e

u
e
n
d
o
lit

h
s

[k
g
.m

-2
]

G
ra

z
in

g

[k
g
.m

-2
]

a

b



0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

B
io

g
e
n
ic

 d
is

s
o
lu

ti
o
n
 d

u
e
 t
o
 e

u
e
n
d
o
lit

h
s

[k
g
.m

-2
]

Time of exposure

[months]





NMDS1

N
M

D
S

2

0

0.05

-0.05

0.1

-0.1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

 1 

 2 

 3 unidentified

chlorophytes
1

2

3

4

5
6

7

8

9

10

11

12

M. testarum
thin filaments

+

+
+

grazing

O. quekettii

BD

+

+

+

stress = 0.007


