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Inverse Problems in Imaging: a Hyperprior
Bayesian Approach

Cecilia Aguerrebere, Andrés Almansa, Julie Delon, Yann Gousseau and Pablo Musé

Abstract—Patch models have proven successful to solve a
variety of inverse problems in image restoration. Recent methods,
combining Gaussian patch models with a Bayesian approach,
achieve state-of-the-art results in several restoration problems.
Different strategies are followed to define and estimate the
patch models. In particular, a fixed model can be used for all
image patches, or the model can be estimated locally for each
patch. Per-patch model estimation has proven very powerful for
image denoising, but it becomes seriously ill-posed for other
inverse problems such as the interpolation of random missing
pixels or zooming. In this work, we present a new framework
for image restoration that makes it possible to use per-patch
priors for these more general inverse problems. To this aim,
we make use of a hyperprior on the model parameters which
overcomes the ill-posedness of the per-patch estimation. We also
make this framework general enough to include realistic additive
noise models. This yields state-of-the-art results in problems
such as interpolation, denoising and zooming. Moreover, taking
advantage of the generality of the framework, we present an
application to the generation of high dynamic range images from
a single snapshot. Experiments conducted on synthetic and real
data show the effectiveness of the proposed approach.

Index Terms—Non-local patch-based restoration, Bayesian
restoration, Maximum a Posteriori, Gaussian Mixture Models,
hyper-prior, conjugate distributions, high dynamic range imag-
ing, single shot HDR.

I. INTRODUCTION

D IGITAL images are subject to a wide variety of degra-
dations, which in most cases can be modeled as

Z = DC + N, (1)

where Z is the observation, D is the degradation operator,
C is the underlying ground-truth image and N is additive
noise. Different settings of the degradation matrix D model
different problems such as zooming, deblurring or random
missing pixels. Different characterizations of the noise term
N describe noise degradations, ranging from the classical
additive Gaussian noise to more complicated and realistic
models such as multiplicative or signal dependent noise. These
degradations are often combined in practice. For instance,
raw images captured with regular digital cameras combine
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signal dependent noise, limited spatial resolution and limited
dynamic range, among other problems [1].

Inspired by the patch-based approach for texture synthesis
proposed by Efros and Leung [2], Buades et al. [3] introduced
the use of patches and the self-similarity hypothesis to the
denoising problem leading to a new era of patch-based image
restoration techniques. A major step forward in fully exploiting
the potential of patches was taken with the introduction of
patch prior models. Recent state-of-the-art methods make
use of patch models in a Bayesian framework to restore
degraded images. Some of them are devoted to the denoising
problem [4], [5], [6], [7], while others propose a more general
framework for the solution of image inverse problems [8], [9],
including for instance inpainting, deblurring and zooming. The
work by Lebrun et al. [10], [6] presents a thorough analysis
of several recent restoration methods, revealing their common
roots and their relationship with the Bayesian approach.

Among the state-of-the-art restoration methods, two notice-
able approaches are the patch-based Bayesian approach by Yu
et al. [9], namely the piece-wise linear estimators (PLE), and
the non-local Bayes (NLB) algorithm by Lebrun et al. [6].
PLE is a general framework for the solution of image inverse
problems under Model (1), while NLB is a denoising method
(D = Id). Both methods use a Gaussian patch prior learnt
from image patches through iterative procedures. In the case
of PLE, patches are modeled according to a Gaussian Mixture
Model (GMM), with a relatively small number of classes (19
in all their experiments), whose parameters are learnt from all
image patches.1 In the case of NLB, each patch is associated
with a single Gaussian model, whose parameters are computed
from similar patches chosen from a local neighborhood, i.e., a
search window centered at the patch, so the number of classes
is not chosen a priori (one class per patch). We refer hereafter
to this kind of patch model as local, because it gives a different
model per-patch and it is computed from similar patches in a
local neighborhood, as opposed to the GMM that uses a fixed
number of classes to represent all patches.

NLB outperforms PLE in the denoising task [11], mostly
due to its local model estimation. Nevertheless, PLE obtains
state-of-the-art results in other applications such as interpola-
tion of missing pixels, deblurring and zooming. In particular,
PLE yields very good results in interpolation of random
missing pixels with high masking rates. A variant of PLE for
inpainting is proposed by Wang [12] (E-PLE), using a GMM
initialized from natural images instead of using synthetic

1Actually, the authors report the use of 128 × 128 image sub-regions in
their experiments, so we may consider PLE as a semi-local approach.
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images of edges as it is done in PLE.
Zoran and Weiss [8] (EPLL) follow a similar approach, but

instead of iteratively updating the GMM from image patches,
they use a larger number of classes (200) that are fixed and
learnt from a large database of natural image patches (2 ×
106 patches). Wang and Morel [7] claim that, in the case of
denoising, it is better to have fewer models that are updated
with the image patches (as in PLE) than having a large number
of fixed models (as in EPLL). Moreover, unlike the previous
methods, EPLL restores image patches according to the GMM
prior2 while keeping the restored image close to the corrupted
image for a given corruption model.

All of the previous restoration approaches share a common
Bayesian framework based on Gaussian patch priors. As
said above, relying on local priors [6], [7] has proven more
accurate for the task of image denoising than relying on a
limited number of Gaussian models [8], [9]. However, such
local priors are very difficult to estimate for more general
restoration problems, especially when the image degradations
involve missing pixels. The main contribution of this work
is to propose a robust framework enabling the use of such
Gaussian local priors for solving general restoration problems,
by drawing on what is known in Bayesian statistics as a
hyperprior.

We propose to model image patches according to a Gaus-
sian prior, whose parameters will be estimated locally from
similar patches. The main challenge with this framework is
to estimate the Gaussian parameters, i.e. the mean µ and the
covariance matrix Σ, from a set of patches with potentially
high degradation levels. For example, in the case of the
interpolation of random missing pixels with a masking rate
of 70%, the patches used for the estimation of µ and Σ will
lack 70% of the pixels, thus making the estimation problem
very ill-posed. In order to tackle this problem, we include
prior knowledge on the model parameters making use of a
hyperprior, i.e. a probability distribution on the parameters
of the prior. In Bayesian statistics, µ and Σ are known as
hyperparameters, since they are the parameters of a prior
distribution, while the prior on them is called a hyperprior.
The use of a hyperprior allows to estimate µ and Σ from
similar patches even if they present high degradation levels.
The information provided by the hyperprior compensates for
the patches missing information.

Image patches are then restored using the maximum a pos-
teriori (MAP) estimator with the computed Gaussian model.
Experiments conducted on both synthetic and real data show
state-of-the-art results obtained by the proposed approach in
various problems such as interpolation, denoising and zoom-
ing.

This general framework is also applied to the generation of
high dynamic range (HDR) images. Due to physical limita-
tions, current digital sensors cannot capture faithful represen-
tations of HDR scenes. HDR imaging tackles this problem
and seeks to accurately capture and represent scenes with
the largest possible irradiance range. As will be detailed in
Section V, HDR imaging can be achieved from a single

2EPLL does not impose a given prior, GMM is an option among others.

Fig. 1. Diagram of the proposed iterative approach with the corresponding
initialization stage.

snapshot using specially modified sensors. We propose here
a novel approach to single shot HDR imaging using the
proposed restoration framework. This simple, yet powerful,
approach shows excellent performance in several examples
both on synthetic and real data.

The article is organized as follows. Section II introduces
the proposed approach while Section III presents the main
implementation aspects. Supportive experiments are presented
in Section IV. Section V is devoted to the application of
the proposed framework to the HDR imaging problem. Last,
conclusions are summarized in Section VI.

II. HYPERPRIOR BAYESIAN ESTIMATOR

We describe here the proposed restoration method, called
Hyperprior Bayesian Estimator (HBE). Following the idea of
the recent Bayesian approach [6], we assume a Gaussian prior
for image patches whose parameters µ and Σ are estimated
from a group of patches similar to the current patch. The
particularity of our method is that it uses a joint maximum
a posteriori formulation to estimate both the image patches
and the parameters µ and Σ, thanks to a Bayesian hyperprior
model on these parameters. The maximization alternates two
steps : first the log-likelihood is maximized in µ and Σ by
combining similar patches and the hyperprior on them, and
then the patch is restored under the Gaussian prior defined by
µ and Σ. Figure 1 shows a diagram of the proposed iterative
approach.

A. Patch degradation model

The observed image z is decomposed into I overlapping
patches {zi}i=1,...,I of size

√
n×
√
n. Each patch zi ∈ Rn×1

is considered to be a realization of the random variable Zi
given by

Zi = DiCi + Ni, (2)

where Di ∈ Rn×n is a degradation operator, Ci ∈ Rn×1 is
the original patch we seek to estimate and Ni ∈ Rn×1 is an
additive noise term, not necessarily identically distributed as
we will see.

In this paper, we are interested in different application
scenarios, in which the degradation operator Di (supposed
to be known) can represent resolution change (zooming) or
random missing pixels (inpainting). As for the noise term Ni,
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we assume that it is well modeled by a Gaussian distribution
Ni ∼ N (0,ΣNi). The distribution of Zi given Ci can thus be
written as

p(Zi | Ci) ∼ N (DiCi,ΣNi)

∝ |Σ−1Ni
| 12 exp

(
−1

2
(Zi −DiCi)

TΣ−1Ni
(Zi −DiCi)

)
.

(3)

In this noise model, the matrix ΣNi is only assumed to be
diagonal (the noise is uncorrelated). It can represent a con-
stant variance, spatially variable variances or even variances
dependent on the pixel value (to approximate Poisson noise).

This degradation model is deliberately generic. We will see
in Section IV that keeping a broad noise model is essential
to properly tackle the problem of high dynamic range (HDR)
estimation from a single image. It also includes a wide range
of restoration problems generally studied in the literature, such
as the particular case of multiplicative noise.

B. Joint Maximum A Posteriori

Following the direction of Bayesian patch-based methods,
we assume a Gaussian prior for each patch, with unknown
mean µ and covariance matrix Σ

p(C | µ,Σ) ∼ N (µ,Σ).

In the literature, µ and Σ are either estimated locally from
a set of similar patches [6], or chosen from a finite set of
precomputed parameters that are learned globally [9]. The
first solution is very accurate for Gaussian denoising, but not
reliable when pixels are missing. The second one is more
robust but yields smoother results.

The proposed approach uses a joint Maximum a Posteriori
(MAP) in order to estimate both the patch C and its Gaussian
parameters from a set of similar patches. To this aim, we make
use of a hyperprior on µ and Σ. On the one hand, using similar
patches gives a spatially adaptive or local characterization of
the patch [6]. On the other hand, including the hyperprior
makes the parameter estimation more robust, which is critical
when few similar patches are available or when some pixels
are unknown (e.g. for interpolation and zooming).

To simplify calculations, we work with the precision matrix
Λ = Σ−1 instead of the covariance matrix Σ. As it is usual
when considering hyperpriors, we assume that the parameters
µ and Σ follow a conjugate distribution. In our case, that
boils down to assuming a Normal-Wishart3 prior for the couple
(µ,Λ),

p(µ,Λ) = N (µ|µ0, (κΛ)−1)W(Λ|(νΣ0)−1, ν) (4)

∝ |Λ|1/2 exp
(
−κ

2
(µ− µ0)Λ(µ− µ0)T

)
|Λ|(ν−n−1)/2 exp

(
−1

2
tr(νΣ0Λ)

)
,

3The Normal-Wishart distribution is the conjugate prior of a multivariate
normal distribution with unknown mean and covariance matrix. W denotes
the Wishart distribution [13].

where µ0 is a prior on µ, Σ0 is a prior on Σ, κ > 0 and
ν > n − 1 are a scale parameter and the degrees of freedom
of the Normal-Wishart respectively.

Now, assume that we observe a group {Zi}i=1,...,M of
similar patches and that we want to recover the restored
patches {Ci}i=1,...,M . If these unknown {Ci} are independent
and follow the same Gaussian model, we can compute the joint
maximum a posteriori

arg max
{Ci},µ,Λ

p({Ci}, µ,Λ | {Zi}) = (5)

arg max
{Ci},µ,Λ

p({Zi} | {Ci}, µ,Λ) p({Ci} | µ,Λ) p(µ,Λ) =

arg max
{Ci},µ,Λ

p({Zi} | {Ci}) p({Ci} | µ,Λ) p(µ,Λ).

In this product, the first term is given by the noise model
(Section II-A), the second one is the Gaussian prior on the set
of patches {Ci} and the third one is the hyperprior (4).

Proposition 1. Assume that (µ,Λ) follow the Normal-Wishart
distribution (4), that C1, . . . ,CM |µ,Λ are independent re-
alizations of N (µ,Λ−1), and that Z1, . . . ,ZM |C1, . . . ,CM ,
are independent realizations of the respective distributions
N (DiCi,ΣNi). Then, under the assumption that the noise
covariance matrix ΣNi

is independent of Ci for each i, if
the values ({Ĉi}, µ̂, Λ̂) maximize the unified log-likelihood
log p({Ci}, µ,Λ | {Zi}), they must satisfy the following
equations

Ĉi = Λ̂
−1

DT
i (DiΛ̂

−1
DT
i + ΣNi

)−1(Zi −Diµ̂) + µ̂. (6)

µ̂ =
MC + κµ0

M + κ
, with C =

1

M

M∑
i=1

Ĉi. (7)

and

Λ̂
−1

=
νΣ0 + κ(µ̂− µ0)(µ̂− µ0)

T +
∑M

i=1(Ĉi − µ̂)(Ĉi − µ̂)T

ν +M − n
.

(8)

Proof. See Appendix A.

The expression of Ĉi in (6) is obtained under the hypothesis
that the noise covariance matrix ΣNi

does not depend on Ci.
Observe that it can be shown that under the somewhat weaker
hypothesis that the noise Ni and the signal Ci are uncorrelated,
this estimator is also the affine estimator C̃i that minimizes the
Bayes risk E[(C̃i − Ci)

2].

Proposition 2. Assume that the noise has zero mean and is
not correlated to the signal Ci. Then, the affine estimator C̃i
that minimizes the Bayes risk E[(C̃i − Ci)

2] is given by

C̃i = Λ̂
−1

DT
i (DiΛ̂

−1
DT
i + ΣNi

)−1(Zi −Diµ̂) + µ̂. (9)

Proof. See Appendix A, paragraph (f).

The uncorrelatedness of Ni and Ci is a quite reasonnable
hypothesis in practice : this is for instance the case if the
noise can be written as Ni = f(Ci)εi where εi is independent
of Ci. This includes very different noise models, including
a reasonable approximation of the acquisition by a camera
sensor in which the noise variance is an affine function of the
signal [14].
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a) Interpretation of the MAP in µ,Λ: From (7), we find
that the MAP estimator of µ is a weighted average of two
terms: the mean estimated from the similar restored patches
and the prior µ0. The parameter κ controls the confidence level
we have on the prior µ0. With the same idea, we observe that
the MAP estimator for Λ is a combination of the covariance
matrix estimated from the restored patches

M∑
i=1

(Ĉi − µ̂)(Ĉi − µ̂)T , (10)

the covariance imposed by µ̂ (since µ and Λ are not indepen-
dent),

(µ̂− µ0)(µ̂− µ0)T , (11)

and the prior on Λ (or equivalently on Σ−1),

Σ−10 . (12)

If we inject expression (6) into the previous expressions of
µ̂ and Λ̂, we obtain

µ̂ = (κId +

M∑
i=1

AiDi)
−1(

M∑
i=1

AiZi + κµ0), (13)

and

Λ̂
−1

= (14)

νΣ0 + κ(µ̂− µ0)(µ̂− µ0)
T +

∑M
i=1Ai(Zi −Diµ̂)(Zi −Diµ̂)

TAT
i

ν +M − n
.

with Ai = Λ̂
−1

DT
i (DiΛ̂

−1
DT
i + ΣNi

)−1.

b) Practical estimation: Since (13) depends on Λ and
(14) depends on µ and Λ, these are not closed-forms formulas
for the estimators. Hence, we propose to use an iterative
approach to compute the parameters, as summarized in Algo-
rithm 1. This algorithm results from the combination of two
procedures. The outer loop follows from the classic EM esti-
mation procedure for the mean and covariance (or precision)
matrix. The inner one, which deals with the estimation of the
precision matrix, converges if and only if the spectral norm
of the precision matrix is less than one. In case this condition
on the spectral norm of Λ holds, since EM and therefore the
posteriors are guaranteed to converge to a local maximum, µ
and Λ are ensured to converge to local maximizers. In practice,
we observe that the algorithm converges after a single iteration
of the outer loop with 3 to 4 iterations of the inner loop.

C. Summary of the proposed algorithm

The analysis previously presented leads to an iterative
algorithm that implements the proposed approach. Two stages
are alternated: the restoration step, where all patches are
reconstructed, and the model estimation step, where the model
parameters are updated (Figure 1). For the model estimation
step, the result of the previous iteration is used as an “oracle”.
In practice, the algorithm is found to converge after 3 to 4
iterations. The procedure is summarized in Algorithm 2.

Algorithm 1: Computation of µ̂ and Λ̂.
Input: Z, D, µ0,Σ0, κ, ν (see details in Section III-C)
Output: µ̂, Λ̂

1 Initialization: Set Λ = Σ−10

2 for it = 1 to maxIts0 do
3 Compute µ̂ according to (13)
4 Set µ = µ̂.
5 for it = 1 to maxIts1 do
6 Compute Λ̂ according to (14).
7 Set Λ = Λ̂.
8 end
9 end

III. IMPLEMENTATION DETAILS

A. Search for similar patches

The similar patches are all patches within a window search
centered at the current patch, that have L2 distance to it
below a given threshold. This threshold is given by a tolerance
parameter times the distance to the nearest neighbor. The patch
comparison is performed in an oracle image (i.e. the result
of the previous iteration), so all pixels are known. However,
it may be useful to assign different confidence levels to the
known pixels and to those originally missing and then restored.
For all the experimental results presented in Section IV, the
distance between patches cp and cq in the oracle image Coracle
is computed according to

d(p, q) =

∑N
j=1(cjp − cjq)

2ωjp,q∑N
j=1 ω

j
p,q

, (15)

where j indexes the pixels in the patch, ωjp,q = 1 if
Dj
p = Dj

q = 1 (known pixel) and ωjp,q = 0.01 otherwise
(originally missing then restored pixel) [15]. With this formu-
lation, known pixels are assigned a much higher priority than
unknown ones. Variations of these weights could be explored.

B. Collaborative Filtering

The proposed method computes one Gaussian model per
image patch according to Equations (13) and (14). In order
to reduce the computational cost, we rely on the collaborative
filtering idea previously introduced for patch-based denoising
techniques [6], [16]. Based on the hypothesis that similar
patches share the same model, instead of computing a different
pair (µ,Σ) for each patch, we assign the same model to all
patches in the set of similar patches. The restoration is thus
performed for all similar patches according to the computed
model.

C. Parameters setting

The four parameters of the Normal-Wishart distribution: κ,
ν, the prior mean µ0 and the prior covariance matrix Σ0, must
be set in order to compute µ and Σ using (13) and (14).
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c) Choice of κ and ν: The computation of µ according
to (13) combines the mean

∑M
i=1AiZi estimated from the

similar patches and the prior mean µ0. The parameter κ is
related to the degree of confidence we have in the prior µ0.
Hence, its value should be a trade-off between the confidence
we have in the prior accuracy vs. the one we have in the
information provided by the similar patches. The latter im-
proves when both M (i.e. the number of similar patches) and
P = trace(Di) (i.e. the number of known pixels in the current
patch) increase. These intuitive insights suggest the following
rule to choose the value of κ:

κ = Mα, α =

{
αL if P and M > threshold
αH otherwise. (16)

A similar reasoning leads to the same rule for ν,

ν = Mα+ n (17)

where the addition of n ensures the condition ν > n − 1
required by the Normal-Wishart prior to be verified.

This rule is used to obtain the experimental results presented
in Section IV, and proved to be a consistently good choice
despite its simplicity. However, setting these parameters in a
more general setting is not a trivial task and should be the
subject of further study. In particular we could explore a more
continuous dependence of α on P , M , and possibly a third
term Q =

∑n
i=1 Sii where S =

∑M
j=1 Λ−1DjΛ

∗
jDj . This

third term Q estimates to what an extent similar patches cover
the missing pixels in the current patch.

Algorithm 2: Summary of the proposed algorithm.
Input: Z, D, µ0,Σ0, κ, ν (see details in Section III-C)
Output: C̃

1 Decompose Z and D into overlapping patches.
2 Initialization: Compute first oracle image Coracle (see

details in Section III-D)
3 for it = 1 to maxIts2 do
4 for all patches not yet restored do
5 Find patches similar (L2 distance) to the current

zi in Coracle (see details in Section III-A).
6 Compute µ0 and Σ0 from Coracle (see details in

Section III-C).
7 Compute µ̂ and Σ̂ following Algorithm 1.
8 Restore the similar patches using (6) (see details

in Section III-B).
9 end

10 Perform aggregation to restore the image.
11 Set Coracle = C̃.
12 end

d) Setting of µ0 and Σ0: Assuming an oracle image
Coracle is available (see details in Section II-C), µ0 and Σ0

can be computed using the classical MLE estimators from a
set of similar patches (c̃1, . . . , c̃M ) taken from Coracle

µ0 =
1

M

M∑
j=1

c̃j , Σ0 =
1

M − 1

M∑
j=1

(c̃j − µ0)(c̃j − µ0)T .

(18)

This is the same approach followed by Lebrun et al. [6] to
estimate the patch model parameters in the case of denoising.
As previously stated, the method from [6] cannot be directly
applied to zooming or interpolation due to the presence of
missing pixels.

D. Initialization

A good initialization is crucial since we aim at solving
a non-convex problem through an iterative procedure. Yu et
al. [9] propose to initialize the PLE algorithm by learning
the K GMM covariance matrices from synthetic images of
edges with different orientations as well as the DCT basis
to represent isotropic patterns. As they state, in dictionary
learning, the most prominent atoms represent local edges
which are useful at representing and restoring contours. Hence,
this initialization helps to correctly restore corrupted patches
even in quite extreme cases.

Each covariance matrix Σk, k = 1, . . . ,K−1, corresponds
to one of K − 1 orientations, uniformly sampled from di-
rections zero to π. For a given orientation θ, a synthetic
black-and-white image is generated and patches that touch the
contour at different positions are randomly sampled from it. A
covariance matrix is then computed from the sampled patches.
The first eigenvector of the covariance matrix, which is almost
constant, is replaced by a constant vector. This allows a class
k of a given orientation to restore patches having different
means. Up to a certain gray level difference, dark or bright
edges with the same orientation are correctly represented
by the same class. A Gram-Schmidt orthogonalization is
computed on the other eigenvectors to ensure the orthogonality
of the basis. The eigenvalues of all bases are initialized with
the same values, chosen to have a fast decay. Lastly, the DCT
basis is added to represent isotropic image patterns, making a
total of K classes. The mean of each class µk, k = 1, . . . ,K,
is initialized to zero. The authors claim that they have found
in practice that K = 19 classes (i.e. 18 orientations, 10
degrees apart) give a correct reconstruction and are a good
compromise between performance and complexity for a patch
size of 8× 8. The fact that the algorithm is applied in regions
of size 128× 128, and therefore localized, also explains why
this a priori small number of classes can be suitable to describe
all image patches.

To initialize the proposed algorithm, we follow the approach
by Yu et al. [9] and compute the K covariance matrices
Σk as previously described. Then, each image patch zi is
reconstructed under each class k = 1, . . . ,K as

C̃ki = ΣkD
T
i (DiΣkD

T
i + ΣNi

)−1(Zi −Diµk) + µk. (19)

The best suited class k̃i is chosen as the one maximizing
the posterior probability of the patch p(Ci|zi, µk,Σk) over
k assuming C = C̃ki :

k̃i = arg max
k

log p(C|zi, µk,Σk)

= arg min
k

(
(zi −DiC̃

k
i )TΣ−1N (zi −DiC̃

k
i )

+ (C̃ki − µk)TΣ−1k (C̃ki − µk) + ln |Σk|
)
. (20)
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The first oracle is thus created by aggregating the estimations
of all patches corresponding to the chosen classes. Figure 1
illustrates the proposed initialization and Algorithm 3 summa-
rizes its steps.

Algorithm 3: Summary of the initialization procedure.
Input: Z, D, K
Output: Coracle

1 Decompose Z and D into overlapping patches.
2 Compute the covariance matrix of the K classes from

synthetic images of edges plus the DCT.
3 Project all patches into the K classes using (19) and

chose the best class using (20).
4 Compute the first oracle Coracle aggregating the

estimations of all patches for the chosen class.

IV. IMAGE RESTAURATION EXPERIMENTS

In this section we illustrate the ability of the proposed
method to solve several image inverse problems. Both syn-
thetic (i.e., where we have added the degradation artificially)
and real data (i.e., issued from a real acquisition process)
are used. The considered problems are: interpolation, com-
bined interpolation and denoising, denoising, and zooming.
The reported values of peak signal-to-noise ratio (PSNR =
20 log10(255/

√
MSE)) are averaged over 10 realizations for

each experiment (variance is below 0.1 for interpolation and
below 0.05 for combined interpolation and denoising and for
denoising only).

A. Synthetic degradation

e) Interpolation: Random masks with 20%, 50% and
70% of missing pixels are applied to the tested ground-truth
images. The interpolation performance of the proposed method
is compared to that of PLE [9], EPLL [8] and E-PLE [12]
using a patch size of 8 × 8 for all methods. PLE parameters
are set as indicated in [9] (σ = 3, ε = 30, K = 19). We
used the EPLL code provided by the authors [17] with default
parameters and the E-PLE code available in [12] with the
parameters set as specified in this demo. The parameters for
the proposed method are set to αH = 1, αL = 0.5 (αH and αL
define the values for κ and ν, see Section III-C). The PSNR
results are shown in Table I. Figure 2 shows some extracts of
the obtained results, the PSNR values for the extracts and the
corresponding difference images with respect to the ground-
truth. The proposed method gives sharper results than the
other considered methods. This is specially noticeable on the
reconstruction of the texture of the fabric of Barbara’s trousers
shown in the first row of Figure 2 or on the strips that appear
through the car’s window shown in the second row of the same
figure.

f) Combined interpolation and denoising: For this ex-
periment, the ground-truth images are corrupted with additive
Gaussian noise with variance 10, and a random mask with
20% and 70% of missing pixels. The parameters for all meth-
ods are set as in the previous interpolation-only experiment.

Table I summarizes the PSNR values obtained by each method.
Figure 3 shows some extracts of the obtained results, the
PSNR values for the extracts and the corresponding difference
images with respect to the ground-truth. Once again, the results
show that the proposed approach outperforms the others. Fine
structures, such as the mast and the ropes of the ship, as well as
textures, as in Barbara’s headscarf, are much better preserved
(see Figure 3).

g) Denoising: For the denoising task, the proposed ap-
proach should perform very similarly to the state-of-the-art
denoising algorithm NLB [6]. The following experiments are
conducted in order to verify this.

The ground-truth images are corrupted with additive Gaus-
sian noise with variance σ2 = 10, 30, 50, 80. The code
provided by the authors [18] automatically sets the NLB
parameters from the input σ2 and the patch size, in this case
8 × 8. For this experiment, there are no unknown pixels to
interpolate (the mask D is the identity matrix).

The results of both methods are very similar if HBE is
initialized with the output of the first step of NLB [6] (instead
of using the initialization described in Section II-C) and the
parameters κ and ν are large enough. In this case, µ0 and Σ0

are prioritized in equations (13) and (14) and both algorithms
are almost the same. That is what we observe in practice with
αH = αL = 100, as demonstrated in the results summarized
in Table I. The denoising performance of HBE is degraded
for small κ and ν values. The reason for this is that µ0

and Σ0, as well as µ and Σ in NLB, are computed from
an oracle image resulting from the first restoration step. This
restoration includes not only the denoising of each patch, but
also an aggregation step that highly improves the final result.
Therefore, the contribution of the first term of (13) to the
computation of µ̂ degrades the result compared to that of using
µ0 only (i.e. using a large κ).

h) Zooming: In order to evaluate the zooming capacity of
the proposed approach, ground-truth images are downsampled
by a factor 2 (no anti-aliasing filter is used) and the zooming is
compared to the ground-truth. The results are compared with
PLE, EPLL, E-PLE and the Lanczos interpolation. Figure 4
shows extracts from the obtained results, the PSNR values for
the extracts and the corresponding difference images with re-
spect to the ground-truth. HBE yields a sharper reconstruction
than the other methods.

B. Real data

For this experiment, we use raw images captured with a
Canon 400D camera (set to ISO 400 and exposure time 1/160
seconds). The main noise sources for CMOS sensors are: the
Poisson photon shot noise, which can be approximated by
a Gaussian distribution with equal mean and variance; the
thermally generated readout noise, which is modeled as an
additive Gaussian distributed noise and the spatially varying
gain given by the photo response non uniformity (PRNU) [14],
[19]. We thus consider in this case the following noise model
for the non saturated raw pixel value Z(p) at position p

Z(p) ∼ N (gapτC(p) + µR, g
2apτC(p) + σ2

R), (21)
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PSNR (dB)

HBE PLE EPLL E-PLE HBE PLE EPLL E-PLE HBE PLE EPLL E-PLE

Interpolation

% missing pixels 20% 50% 70%

barbara 45.57 43.48 40.89 43.75 39.11 36.93 32.99 35.43 34.69 32.50 27.96 28.77
boat 41.43 40.37 40.17 40.32 34.92 34.32 34.21 33.59 31.37 30.74 30.38 30.26

traffic 35.66 35.53 35.71 35.10 30.17 30.12 30.19 28.86 27.27 27.12 27.13 26.64

Interpolation barbara 38.35 38.37 37.32 37.26 - - - - 33.34 31.99 27.63 27.75
& boat 36.99 37.02 37.00 36.26 - - - - 30.61 30.41 30.15 29.54

Denoising traffic 34.07 34.13 34.33 33.50 - - - - 26.99 26.98 27.05 26.35

HBE NLB EPLL HBE NLB EPLL HBE NLB EPLL HBE NLB EPLL

Denoising

σ2 10 30 50 80

barbara 41.26 41.20 40.56 38.40 38.26 37.32 37.13 36.94 35.84 35.96 35.73 34.51
boat 40.05 39.99 39.47 36.71 36.76 36.34 35.41 35.46 35.13 34.30 34.33 34.12

traffic 40.73 40.74 40.55 37.03 36.99 36.86 35.32 35.26 35.20 33.78 33.70 33.72
TABLE I

RESULTS OF THE INTERPOLATION, COMBINED INTERPOLATION AND DENOISING AND DENOISING TESTS DESCRIBED IN SECTION IV-A. PATCH SIZE OF
8× 8 FOR ALL METHODS IN ALL TESTS. PARAMETER SETTING FOR INTERPOLATION AND COMBINED INTERPOLATION AND DENOISING, HBE: αH = 1,

αL = 0.5, PLE: σ = 3, ε = 30, K = 19 [9], EPLL: DEFAULT PARAMETERS [17], E-PLE: PARAMETERS SET AS SPECIFIED IN [12]. PARAMETER
SETTING FOR DENOISING, HBE: αH = αL = 100, NLB: CODE PROVIDED BY THE AUTHORS [18] AUTOMATICALLY SETS PARAMETERS FROM INPUT σ2 ,

EPLL: DEFAULT PARAMETERS FOR THE DENOISING EXAMPLE [17]

(a) Ground-truth (b) HBE (30.01 dB) (c) PLE (26.78 dB) (d) EPLL (21.12 dB) (e) E-PLE (23.12 dB)

(f) Ground-truth (g) HBE (30.20 dB) (h) PLE (27.89 dB) (i) EPLL (27.83 dB) (j) E-PLE (26.79 dB)

Fig. 2. Synthetic data. Interpolation with 70% of randomly missing pixels. Left to right: (first row) Ground-truth (extract of barbara), result by HBE,
PLE, EPLL, E-PLE. (second row) input image, difference with respect to the ground-truth of each of the corresponding results. (third and fourth row) Idem
for an extract of the traffic image. See Table I for the PSNR results for the complete images. Please see the digital copy for better details reproduction.
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(a) Ground-truth (b) HBE (26.20 dB) (c) PLE (24.76 dB) (d) EPLL (23.84 dB) (e) E-PLE (23.60 dB)

(f) Ground-truth (g) HBE (28.34 dB) (h) PLE (27.50 dB) (i) EPLL (27.27 dB) (j) E-PLE (26.83 dB)

Fig. 3. Synthetic data. Combined interpolation and denoising with 70% of randomly missing pixels and additive Gaussian noise (σ2 = 10). Left to
right: (first row) Ground-truth (extract of barbara), result by HBE, PLE, EPLL, E-PLE. (second row) input image, difference with respect to the ground-truth
of each of the corresponding results. (third and fourth row) Idem for an extract of the boat image. See Table I for the PSNR results for the complete images.
Please see the digital copy for better details reproduction.

(a) Ground-truth (b) HBE (34.41 dB) (c) PLE (33.82 dB) (d) EPLL (33.11 dB) (e) E-PLE (33.54 dB) (f) Lanczos (27.91 dB)

Fig. 4. Synthetic data. Zooming ×2. Left to right: (first row) Ground-truth high resolution image (extract of lena). Result by HBE, PLE, EPLL, E-PLE,
lanczos interpolation. (second row) Input low-resolution image, difference with respect to the ground-truth of each of the corresponding results. Please see
the digital copy for better details reproduction.
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Fig. 5. Left. Real data. JPEG version of the raw image used in the exper-
iments presented in Section IV-B. The boxes show the extracts displayed in
Figure 6. Right. Synthetic data. Ground-truth images used in the experiments
presented in Section IV-A.

where g is the camera gain, ap models the PRNU factor, τ is the
exposure time, C(p) is the irradiance reaching pixel p, µR and
σ2
R are the readout noise mean and variance. The camera pa-

rameters have to be estimated by a calibration procedure [14].
The noise covariance matrix ΣN is thus diagonal with entries
that depend on the pixel value (ΣN )p = g2apτC(p) + σ2

R.
In order to evaluate the interpolation capacity of the pro-

posed approach, we consider the pixels of the green channel
only (i.e. 50% of the pixels in the RGGB Bayer pattern)
and interpolate the missing values. We compare the results to
those obtained using an adaptation of PLE to images degraded
with noise with variable variance (PLEV) [20]. The results
for the EPLL and E-PLE methods are not presented here
since these methods are not suited for this kind of noise.
Figure 6 shows extracts of the obtained results (see Figure 5
for a JPEG version of the raw image showing the location of
the the extracts). As it was already observed in the synthetic
data experiments, fine details and edges are better preserved.
Compare for example the reconstruction of the balcony edges
and the wall structure in the first row of Figure 6, as well as
the structure of the roof and the railing in the second row of
the same image.

C. Discussion

In all the tested examples, the results obtained by HBE for
every considered inverse problem outperform or are very close
to those obtained by the other evaluated methods. Details are
better reconstructed and the resulting images are more sharp
both in the synthetic and real data examples. The improvement
is more noticeable when comparing the difference images
(available for the synthetic tests only), which present less
structure in the result obtained by HBE.

Even if the PLE method can be considered as semi-local
(since it is applied in 128× 128 regions [9]), we find that in
some cases, 19 classes are not enough to correctly represent
certain image patches. This is mostly the case for patches that
seldom appear in the image, such as certain edges or particular
textures that appear in a few patches. This is quite noticeable
in the extract of Barbara’s trousers and in the interior of the
car (Figure 2). The specific characteristics of these patches
are buried in the PLE class update when combined with many
other different patches.

A local model estimation as the one performed by HBE
correctly handles those cases. The performance difference is

much more remarkable for the higher masking rates. In those
cases, two phenomena take place. On the one hand, very few
pixels are known thus making the model selection less robust.
On the other hand, the model accuracy is critical since a much
larger part of the patch is to be restored. The proposed method
tackles the model selection problem by limiting the model
estimation to similar patches found on a local search window.
It has been widely observed in denoising techniques based on
the self-similarity principle [21] that performance improves
when restricting the patch search space to a local search
window instead of using the whole image. This strategy, in ad-
dition to the hypothesis of self-similarity in that neighborhood,
restricts the possible models robustifying the model estimation,
which is crucial for high masking rates. Furthermore, the local
model estimation, previously proven successful at describing
patches [6], gives a better reconstruction even when a very
large part of the patch is missing.

EPLL uses more mixture components in its GMM model
than PLE, where 200 components are learnt from 2 × 106

patches of natural images [8]. The results obtained by this
approach, despite using a larger number of GMM components,
are not very good for the restoration of certain patches. As
previously mentioned, Wang and Morel [7] claim that in the
case of denoising, it is better to have fewer models that are
updated with the image patches (as in PLE) rather than having
a large number of fixed models (as in EPLL). In this work,
we observe that the proposed approach outperforms EPLL,
not only in denoising, but also in inpainting and zooming.
However, here it is harder to tell if the improvement is due to
the local model estimation performed from the similar patches
or if it is due to the different restoration strategies followed
by these methods.

V. HIGH DYNAMIC RANGE IMAGING FROM A SINGLE
SNAPSHOT

In this section, we propose a novel approach to generate
high dynamic range (HDR) images from a single shot based
on the general framework introduced in Section II.

HDR imaging aims at reproducing an extended dynamic
range of luminosity compared to what can be captured using
a standard digital camera. The range of luminosity which a
standard digital camera can capture is often not enough to
produce a faithful representation of real scenes. In the case of
a static scene and a static camera, the combination of multiple
images with different exposure levels is a simple and efficient
solution [22], [23]. However, several problems arise when
either the camera or the elements in the scene move [24],
[25].

An alternative to the HDR from multiple frames was
introduced by Nayar and Mitsunaga in [26]. They proposed
to perform HDR imaging from a single image using spatially
varying pixel exposures (SVE). An optical mask with spatially
varying transmittance (see Figure 7) is placed adjacent to a
conventional image sensor, thus controlling the amount of light
that reaches each pixel. This gives different exposure levels
to the pixels allowing a single shot to capture an increased
dynamic range compared to that of the conventional sensor.
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Fig. 6. Real data. Zooming ×2. Interpolation of the green channel of a raw image (RGGB). Left to right: Input low-resolution image, result by HBE,
PLEV [20], bicubic and lanczos interpolation.

The greatest advantage of this acquisition method is that
it makes HDR imaging from a single image possible, thus
avoiding the need for image alignment and motion estimation,
which is the main drawback of the classical multi-image
approach. Another advantage is that the saturated pixels are not
organized in large regions. Indeed, some recent multi-image
methods tackle the camera and objects motion problems by
taking a reference image and then estimating motion relative
to this frame or by recovering information from other frames
through local comparison with the reference [27], [24]. A
problem encountered by these approaches is the need to inpaint
very large saturated and underexposed regions in the reference
frame, since the information is completely lost in those areas.
The SVE acquisition strategy avoids this problem since, in
general, all scene regions are sampled by at least one of the
exposures.

Taking advantage of the ability of the proposed framework
to simultaneously estimate missing pixels and denoise well-
exposed ones, we propose a novel approach to generate HDR
images from a single shot acquired with spatially varying
pixel exposures. The proposed approach shows significant
improvements over existing approaches.

A. Spatially varying exposure acquisition model

As presented in [26], [28], [29], an optical mask with
spatially varying transmittance can be placed adjacent to a
conventional image sensor to give different exposure levels to
the pixels. This optical mask does not change the acquisition
process of the sensor, whether using a conventional CCD or
CMOS sensor. Hence, the noise model (21) can be adapted to

the SVE acquisition by including the per-pixel SVE gain op4

Z(p) ∼ N (gopapτC(p) + µR, g
2opapτC(p) + σ2

R). (22)

In the approach proposed by Nayar and Mitsunaga [26], the
varying exposures follow a regular pattern. Motivated by the
aliasing problems of regular sampling patterns, Schöberl et
al. [30] propose to use spatially varying exposures on a non-
regular pattern. Figure 7 shows examples of both acquisition
patterns. This fact led us to choose the non-regular pattern in
the proposed approach.

B. Hyperprior Bayesian Estimator for Single Shot High Dy-
namic Range Imaging

1) Problem statement: In order to reconstruct the dynamic
range of the scene we need to solve an inverse problem, that
is, to find the irradiance values from the input pixel values.
More precisely, we want to estimate the irradiance image C
from the SVE image Z, knowing the exposure levels of the
optical mask and the camera parameters.

For this purpose we map the raw pixel values to the
irradiance domain Y with

Y(p) =
Z(p)− µR
gopapτ

. (23)

We take into account the effect of saturation and under-
exposure by introducing the exposure degradation matrix D,
a diagonal matrix given by

(D)p =

{
1 if µR < Z(p) < zsat,
0 otherwise, (24)

4Some noise sources not modeled in [19], such as blooming, might have a
considerable impact in the SVE acquisition strategy and should be considered
in a more accurate image modeling.
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Fig. 7. Synthetic data. Left: (top) Tone mapped version of the ground-truth image used for the experiments in Section V-C1. Image from [31]. (bottom)
Regular (left) and non-regular (right) optical masks for an example of 4 different filters. Right: Results for extracts 1 and 6. From left to right: Input image
with random pattern, ground-truth, results by HBE, PLEV [20], Schöberl et al. [30], Nayar and Mitsunaga [26]. 50% missing pixels (for both random and
regular pattern). See PSNR values for these extracts in Table II. Please see the digital copy for better details reproduction.

with zsat equal to the pixel saturation value, thus eliminating
the under or overexposed pixels. From (22) and (24), Y(p)
can be modeled as

Y(p)|(D)p ∼ N
(

(D)pC(p),
g2opapτ(D)pC(p) + σ2

R

(gopapτ)2

)
.

(25)
Notice that (25) is the distribution of Y(p) for a given exposure
degradation factor (D)p, since (D)p is itself a random variable
that depends on Z(p). The exposure degradation factor must
be included in (25) since the variance of the over or under
exposed pixels no longer depends on the irradiance C(p) but
is only due to the readout noise σ2

R. From (25) we have

Y = DC + N, (26)

where N is zero-mean Gaussian noise with diagonal covari-
ance matrix ΣN given by

(ΣN)j =
g2opapτ(D)pC(p) + σ2

R

(gopapτ)2
. (27)

Then the problem of irradiance estimation can be stated
as retrieving C from Y, which implies denoising the well-
exposed pixel values ((D)p = 1) and estimating the unknown
ones ((D)p = 0).

2) Proposed solution: From (26), image Y is under the hy-
pothesis of the HBE framework so we can apply the proposed
patch-based reconstruction approach to HDR imaging. The
proposed HDR imaging algorithm consists of the following
steps: 1) generate D from Z according to (24), 2) obtain Y
from Z according to (23), 3) apply the HBE approach to Y
with the given D and ΣN.

C. Experiments

The proposed reconstruction method was thoroughly tested
in several synthetic and real data examples. A brief summary
of the results is presented in this section.

1) Synthetic data: Sample images are generated according
to Model (26) using the HDR image in Figure 7 as the ground-
truth. Both a random and a regular pattern with four equiprob-
able exposure levels o = {1, 8, 64, 512} are simulated. The
exposure time is set to τ = 1/200 seconds and the camera

PSNR (dB)

1 (Fig. 7) 2 (Fig. 7) 3 4 5 6

HBE 33.08 33.87 22.95 35.10 36.80 35.66
PLEV 29.65 30.82 22.77 33.99 36.42 34.73

Schöberl et al. 30.38 31.16 21.39 30.04 32.84 31.02
Nayar and Mitsunaga 29.39 30.10 23.24 25.83 30.26 26.90

TABLE II
PSNR VALUES FOR THE EXTRACTS SHOWN IN FIGURE 7.

parameters are those of a Canon 7D camera set to ISO 200
(g = 0.87, σ2

R = 30, µR = 2048, vsat = 15000) [19].
Figure 7 shows extracts of the results obtained by the

proposed method, by PLEV [20] and by Schöberl et al. [30]
for the random pattern and by Nayar et Mitsunaga [26] using
the regular pattern. The percentage of unknown pixels in
the considered extracts is 50% (it is nearly the same for
both the regular and non-regular pattern). Table II shows the
PSNR values obtained in each extract marked in Figure 7.
The proposed method manages to correctly reconstruct the
irradiance on the unknown pixels. Moreover, its denoising
performance is much better than that of Schöberl et al. and
Nayar and Mitsunaga, but still sharper than PLEV.

2) Real data: The feasibility of the SVE random pattern has
been shown in [29] and that of the SVE regular pattern in [28].
Nevertheless, these acquisition systems are still not available
for general usage. However, as stated in Section V-A, the
only variation between the classical and the SVE acquisition
is the optical filter, i.e. the amount of light reaching each
pixel. Hence, the noise at a pixel p captured using SVE
with an optical gain factor op and exposure time τ/op and a
pixel captured with a classical camera using exposure time τ
should be very close. We take advantage of this fact in order
to evaluate the reconstruction performance of the proposed
approach using real data.

For this purpose, we generate an SVE image zsve draw-
ing pixels at random from four raw images {ziraw}i=1,...,4

acquired with different exposure times. The four different ex-
posure times simulate four different filters of the SVE optical
mask. More precisely, the value at position (x, y) in zsve is
chosen at random among the four available values at that
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Fig. 8. Real data. Left: Tone mapped version of the HDR image obtained by the proposed approach and its corresponding mask of unknown (black) and
well-exposed (white) pixels. Right: Comparison of the results obtained by the proposed approach (first row) and PLEV (second row) in the extracts indicated
in the top image. Please see the digital copy for better details reproduction.

position {ziraw(x, y)}i=1,...,4. Notice that the Bayer pattern is
kept on zsve by construction. The images {ziraw}i=1,...,4 are
acquired using a remotely controlled camera and a tripod so as
to be perfectly aligned. Otherwise, artifacts may appear from
the random sampling of the four images used to create the
SVE frame.

This protocol does not allow us to take scenes with moving
objects. Let us emphasize, however, that using a real SVE
device, this, as well as the treatment of moving camera, would
be a non-issue.

Figures 8 and 9 show the results obtained in two real scenes,
together with the masks of well-exposed (white) and unknown
(black) pixels. Recall that among the unknown pixels, some
of them are saturated and some of them are under exposed
pixels. Patch sizes 6 and 8 were used for the examples in
Figure 9 and Figure 8 respectively. The demosaicking method
by Adams and Hamilton [32] is then used to obtain a color
image from the reconstructed irradiance. To display the results
we use the tone mapping technique by Mantiuk et al. [33].

We compare the results to those obtained by PLEV. A
comparison against the methods by Nayar and Mitsunaga and
Schöberl et al. is not presented since they do not specify how
to treat raw images with a Bayer pattern (how to treat color)
and therefore an adaptation of their methods should be made
in order to process our data. The proposed method manages
to correctly reconstruct the unknown pixels even in extreme
conditions where more than 70% of the pixels are missing, as
for example the last extract in Figure 9.

These examples show the capacity of the proposed approach
to reconstruct the irradiance information in both very dark and
bright regions simultaneously. See for instance the example in
Figure 9, where the dark interior of the building (which can
be seen through the windows) and the highly illuminated part
of another building are both correctly reconstructed (please
consult the pdf version of this article for better visualization).

VI. CONCLUSIONS

In this work we have presented a novel image restoration
framework. It has the benefits of local patch characterization
proven suitable by the NLB denoising methods, but manages

to extend its use to general restoration problems such as
zooming, inpainting and interpolation, by combining local
estimation with Bayesian restoration based on hyperpriors. In
this way, all the restoration problems are set under the same
framework. We have presented a large series of experiments
on both synthetic and real data that confirm the robustness of
the proposed strategy based on hyperpriors. These experiments
show that for a wide range of image restoration problems HBE
outperforms several state-of-the-art restoration methods.

This work opens several perspectives. The first one concerns
the relevance of the Gaussian patch model and its relation to
the underlying image patches manifold. If this linear approx-
imation has proven successful for image restoration, its full
relevance in other areas remains to be explored, especially
in all domains requiring to compare image patches. Another
important related question is the one of the estimation of
the degradation model in images jointly degraded by noise,
missing pixels, blur, etc. Restoration approaches generally rely
on the precise knowledge of this model and of its parameters.
In practice however, we often deal with images for which the
acquisition process is unknown, and that have possibly been
affected by post-treatments. In such cases, blind restoration
remains an unsolved challenge.

Moreover, we have presented a novel application of the
proposed general framework to the generation of HDR images
from a single SVE snapshot. The SVE acquisition strategy
allows the creation of HDR images from a single shot without
the drawbacks of multi-image approaches, such as the need
for global alignment and motion estimation to avoid ghosting
problems. The proposed method manages to simultaneously
denoise and reconstruct the missing pixels, even in the pres-
ence of (possibly complex) motions, improving the results ob-
tained by existing methods. Examples with real data acquired
in very similar conditions to those of the SVE acquisition show
the capabilities of the proposed approach.



JOURNAL OF LATEX CLASS FILES, VOL., NO., FEBRUARY 2016 13

Fig. 9. Real data. Left: Tone mapped version of the HDR image obtained by the proposed approach and its corresponding mask of unknown (black) and
well-exposed (white) pixels. Right: Comparison of the results obtained by the proposed approach (first row) and PLEV (second row) in the extracts indicated
in the top image. Please see the digital copy for better details reproduction.

APPENDIX A
MAXIMUM A POSTERIORI ESTIMATION OF PARAMETERS

A. Patch model

The observed image z is decomposed into I overlapping
patches {zi}i=1,...,I of size

√
n×
√
n. Each patch zi ∈ Rn×1

is considered to be a realization of the random variable Zi
given by

Zi = DiCi + Ni, (28)

where Di ∈ Rn×n is a known degradation operator, Ci ∈
Rn×1 is the original patch we seek to estimate and Ni ∈ Rn×1
is an additive noise term. We assume a Gaussian prior for each
patch, with unknown mean µ and covariance matrix Σ

p(Ci | µi,Σi) ∼ N (µi,Σi). (29)

The additive noise term Ni is modeled by a Gaussian distri-
bution Ni ∼ N (0,ΣNi). The matrix ΣNi is only assumed to
be diagonal (the noise is uncorrelated). It can represent a con-
stant variance, spatially variable variances or even variances
dependent on the pixel value (to approximate Poisson noise).
The distribution of Zi given Ci can thus be written as

p(Zi | Ci) ∼ N (DiCi,ΣNi
)

∝ |Σ−1Ni
| 12 exp

(
−1

2
(Zi −DiCi)

TΣ−1Ni
(Zi −DiCi)

)
.

(30)

B. Unified maximum a posteriori

Let us consider a group {Zi}i=1,...,M of similar patches,
from which we want to recover the restored patches
{Ci}i=1,...,M . If these unknown {Ci} are independent and
follow the same Gaussian model, we can compute the joint
maximum a posteriori

arg max
{Ci},µ,Λ

p({Ci}, µ,Λ | {Zi}) = (31)

arg max
{Ci},µ,Λ

p({Zi} | {Ci}, µ,Λ) p({Ci} | µ,Λ) p(µ,Λ) =

arg max
{Ci},µ,Λ

p({Zi} | {Ci}) p({Ci} | µ,Λ) p(µ,Λ).

In this product, the first term is given by the noise model (30),
the second one is the Gaussian prior on the set of patches (29)
and the third one is the Normal-Wishart hyperprior

p(µ,Λ) = N (µ|µ0, (κΛ)−1)W(Λ|(νΣ0)−1, ν) (32)

∝ |Λ|1/2 exp
(
−κ

2
(µ− µ0)Λ(µ− µ0)T

)
|Λ|(ν−n−1)/2 exp

(
−1

2
tr(νΣ0Λ)

)
,

where µ0 is a prior on µ, Σ0 is a prior on Σ, κ > 0 and
ν > n − 1 are a scale parameter and the degrees of freedom
of the Normal-Wishart respectively.

a) Maximization with respect to {Ci}: If we ignore the
dependence of ΣNi

on Ci, we obtain

∂ log p({Ci}, µ,Λ | {Zi})
∂Ci

= DT
i Σ−1Ni

(Zi−DiCi)−Λ(Ci−µ).

(33)
Equating to zero, the solution is given by the Wiener estimator
for each i separately

Ci = Λ−1DT
i (DiΛ

−1DT
i + ΣNi

)−1(Zi −Diµ) + µ. (34)

b) Maximization with respect to µ: Derivating with re-
spect to µ, we obtain

∂ log p({Ci}, µ,Λ | {Zi})
∂µ

= Λ

M∑
i=1

(µ− Ci) + κΛ(µ− µ0),

(35)
which is zero if and only if (assuming Λ is invertible)

µ =
MC + κµ0

M + κ
, with C =

1

M

M∑
i=1

Ci. (36)

c) Maximization with respect to Λ: The partial derivative
with respect to Λ is slightly more complicated (see the Matrix
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Cookbook for these derivations [34]). Observe that

log p({Ci}, µ,Λ | {Zi}) =
ν − n+M

2
log |Λ| (37)

− 1

2

M∑
i=1

(Ci − µ)TΛ(Ci − µ)

− κ

2
(µ− µ0)TΛ(µ− µ0)

− 1

2
trace[νΣ0Λ].

The derivative of the first term is (Λ is symmetric)

ν − n+M

2
(Λ−1)T =

ν − n+M

2
Λ−1.

The derivative of the second and third terms are

−1

2

M∑
i=1

(Ci − µ)(Ci − µ)T

and
−κ

2
(µ− µ0)(µ− µ0)T .

Finally, the derivative of the fourth term is

−1

2
νΣT

0 = −1

2
νΣ0.

Then it follows that

∂ log p({Ci}, µ,Λ | {Zi})
∂Λ

=
ν − n+M

2
Λ−1

− 1

2

M∑
i=1

(Ci − µ)(Ci − µ)T

− κ

2
(µ− µ0)(µ− µ0)T

− 1

2
νΣ0.

Equating to zero, this yields

Λ−1 =
νΣ0 + κ(µ− µ0)(µ− µ0)T +

∑M
i=1(Ci − µ)(Ci − µ)T

ν +M − n
.

(38)
d) Computation of the maximum in {Ci}, µ and Λ: If

we inject the expression of the Ci’s at the maximum into the
previous expressions of µ and Λ, we get

µ =
MC + κµ0

M + κ
,

=

∑M
i=1Ai(Zi −Diµ) +Mµ+ κµ0

M + κ
,

with Ai = Λ−1DT
i (DiΛ

−1DT
i + ΣNi)

−1. Grouping all the
terms in µ on the left hand side of the equation, we obtain

(κId +

M∑
i=1

AiDi)µ =

M∑
i=1

AiZi + κµ0. (39)

In other words,

µ = (κId +

M∑
i=1

AiDi)
−1(

M∑
i=1

AiZi + κµ0). (40)

In the same way, replacing the Ci’s in (38) gives

Λ−1 =
1

ν +M − n

(
νΣ0 + κ(µ− µ0)(µ− µ0)T+ (41)

M∑
i=1

Ai(Zi −Diµ)(Zi −Diµ)TATi

)
.

(42)

Since Equations (40) and (42) depends both on Λ and µ, we
cannot obtain closed forms for the values of µ and Λ at the
maximum. These two equations can however be seen as a fixed
point problem. In practice, we use an iterative approach to find
the values of µ and Λ from Equations (40) and (42), followed
by Equation (34) to restore the patches.

C. Affine risk minimizer

Proposition 3. Assume that the noise has zero mean and is
not correlated to the signal Ci. Then, the affine estimator C̃i
that minimizes the Bayes risk E[(C̃i − Ci)

2] is given by

C̃i = Λ−1DT
i (DiΛ

−1DT
i + ΣNi)

−1(Zi −Diµ) + µ. (43)

Proof. Let us first consider the case µ = 0. If we consider
linear estimators only, we look for the matrix W̃ that verifies

W̃ = arg min
W

E[(WZi − Ci)
2]. (44)

Hence, W̃ must verify

E[(W̃Zi − Ci)Z
T
i ] = 0, (45)

and we have

W̃ = E[CiZ
T
i ](E[ZiZ

T
i ])−1. (46)

Since the noise Ni has zero mean and is not correlated to the
signal Ci, the element (p, q) of matrix E[CiZ

T
i ] is given by

E[CiZ
T
i ]p,q = E[Ci(DiCi + Ni)

T ]p,q (47)
= E[Cpi (DiCi)q + CpiN

q
i ] (48)

= (Λ−1DT
i )p,q. (49)

Also, the element (p, q) of matrix E[ZiZ
T
i ] is given by

E[ZiZ
T
i ]p,q = E[(DiCi + Ni)(DiCi + Ni)

T ]p,q (50)

= E[(DiCi)p(DiCi)
T
q + (DiCi)p(Ni)

T
q (51)

+ (Ni)p(DiCi)q + (Ni)p(Ni)
T
q ] (52)

= (DiΛ
−1DT

i )p,q + (ΣNi
)p,q. (53)

Hence we have,

W̃ = Λ−1DT
i (DiΛ

−1DT
i + ΣNi)

−1. (54)

In the general case where µ 6= 0, we can always consider
the centered version of the patches (Zi−Diµ) and apply the
previous result. Therefore, the estimator of Ci that minimizes
the risk function E[(C̃ − Ci)

2] among all affine estimators
under Model (28), is given by (43).
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