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Abstract

Patch models have proven successful to solve a variety

of inverse problems in image restoration. Recent methods,

combining patch models with a Bayesian approach, achieve

state-of-the-art results in several restoration problems. Dif-

ferent strategies are followed to determine the patch mod-

els, such as a fixed number of models to describe all im-

age patches or a locally determined model for each patch.

Local model estimation has proven very powerful for im-

age denoising, but it becomes seriously ill-posed for other

inverse problems such as interpolation of random missing

pixels or zooming. In this work, we present a new frame-

work for image restoration that combines these two power-

ful approaches: Bayesian restoration and a local charac-

terization of image patches. By making use of a prior on

the model parameters, we overcome the ill-posedness of the

local estimation and obtain state-of-the-art results in prob-

lems such as interpolation, denoising and zooming. Exper-

iments conducted on synthetic and real data show the effec-

tiveness of the proposed approach.

1. Introduction

Digital images are subject to a wide variety of degrada-

tions, which in most cases can be modeled as transforma-

tions

Z = DC+N. (1)

Different settings of the degradation matrix D model differ-

ent problems such as zooming, deblurring or random miss-

ing pixels. Different characterizations of the noise term N
describe noise degradations, ranging from the classical ad-

ditive Gaussian noise to more complicated an realistic mod-

els such as multiplicative or signal dependent noise. These

degradations are often combined in practice. For instance,

raw images captured with regular digital cameras combine

signal dependent noise, limited spatial resolution and lim-

ited dynamic range, among others [2].

Inspired by the patch-based approach for texture synthe-

sis proposed by Efros and Leung [7], Buades et al. [3] in-

troduced the use of patches and the self-similarity hypothe-

sis to the denoising problem leading to a new era of patch-

based image restoration techniques. A major step forward

in fully exploiting patches potential was taken with the in-

troduction of patches prior models. Recent state-of-the-art

methods make use of patch models in a Bayesian frame-

work to restore degraded images. Some of them are de-

voted to the denoising problem [11, 5, 8, 15], while others

propose a more general framework for the solution of image

inverse problems [18, 16], including for instance inpainting,

deblurring and zooming. The work by Lebrun et al. [10, 8]

presents a thorough and very interesting analysis of several

recent restoration methods, revealing their common roots

and their relationship with the Bayesian approach.

Among the state-of-the-art restoration methods, two no-

ticeable approaches are the patch-based Bayesian approach

by Yu et al. [16], namely the piecewise linear estimators

(PLE), and the non-local Bayes (NLB) algorithm by Le-

brun et al. [8]. PLE is a general framework for the solution

of image inverse problems under model (1), while NLB is

a denoising method (D = Id). Both methods use a Gaus-

sian patch prior learnt from image patches through iterative

procedures. In the case of PLE, patches are modeled ac-

cording to a Gaussian Mixture Model (GMM), with a rela-

tively small number of classes (19 in all their experiments),

whose parameters are learnt from all image patches1. In the

case of NLB, the parameters of the Gaussian model for each

patch are computed from similar patches chosen from a lo-

cal neighborhood, so the number of classes is not limited a

priori (one class per patch). NLB outperforms PLE in the

denoising task [14], mostly due to its continuous classifica-

1Actually, the authors report the use of 128 × 128 image sub-regions

in their experiments, so we may consider PLE as a semi-local approach.
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tion model. Nevertheless, PLE obtains state-of-the-art re-

sults in other applications such as interpolation of missing

pixels, deblurring and zooming. In particular, PLE yields

very good results in various cases of interpolation of ran-

dom missing pixels with high masking rates. A variant of

PLE for inpainting is proposed by Wang [13] (E-PLE), us-

ing a GMM initialized from natural images instead of using

synthetic images of edges as it is done in PLE.

Zoran and Weiss [18] (EPLL) follow a similar approach,

but instead of iteratively updating the GMM from image

patches, they use a larger number of classes (200) that are

fixed and learnt from a large database of natural image

patches (2 × 106 patches). Wang and Morel [15] claim

that, in the case of denoising, it is better to have fewer

models that are updated with the image patches (as in PLE)

than having a large number of fixed models (as in EPLL).

Moreover, unlike the previous methods, EPLL restores im-

age patches according to the GMM prior2 while keeping the

restored image close to the corrupted image for a given cor-

ruption model.

In this work, we focus on the family of image degra-

dation problems modeled by (1). We propose to take ad-

vantage of the proven restoration power of the Bayesian

approach combined with a Gaussian patch prior [16], and

boost it with the accuracy of local model estimation [8]. For

this purpose, we propose to model image patches according

to a Gaussian prior, whose parameters will be estimated lo-

cally from similar patches. The main challenge with this

framework is to estimate the Gaussian parameters, i.e. the

mean µ and the covariance matrix Σ, from a set of patches

with potentially high degradation levels. For example, in

the case of interpolation of random missing pixels with a

masking rate of 70%, the patches used for the estimation

of µ and Σ will lack 70% of the pixels, thus making the

estimation problem very ill-posed. In order to tackle this

problem, we include prior knowledge on the model param-

eters making use of what is known as an hyperprior, i.e. a

probability distribution on the parameters of the prior. In

Bayesian statistics, µ and Σ are known as hyperparameters,

since they are the parameters of a prior distribution, while

the prior on them is called an hyperprior. The use of an hy-

perprior allows to estimate µ and Σ from similar patches

even if they present high degradation levels. The informa-

tion provided by the hyperprior compensates for the patches

missing information. Finally, image patches are restored

using the maximum a posteriori (MAP) estimator with the

computed Gaussian model.

The article is organized as follows. Section 2 presents

the proposed approach and Section 3 presents the main im-

plementation considerations. Section 4 presents supportive

experiments and Section 5 summarizes the conclusions.

2EPLL does not impose a given prior, GMM is an option among others.

2. Hyperprior Bayesian Estimator

We describe here the proposed restoration method, Hy-

perprior Bayesian Estimator (HBE), that assumes a Gaus-

sian prior for image patches whose parameters µ and Σ

are estimated locally from a group of patches similar to the

current patch. The proposed method iteratively alternates

two steps. First, the patch model parameters µ and Σ are

computed combining similar patches and the hyperprior on

them. Then, the patch is restored computing its MAP esti-

mate under the Gaussian prior defined by µ and Σ. Figure 1

shows a diagram of the proposed iterative approach.

2.1. Patch model

The observed image z is decomposed into I overlapping

patches zi=1,...,I of size
√
n × √

n. Each patch zi ∈ R
n×1

is considered to be a realization of the random variable Zi

given by

Zi = DiCi +Ni, (2)

where Di ∈ R
n×n is a degradation operator, Ci ∈ R

n×1

is the original patch we seek to estimate and Ni ∈ R
n×1

is an additive noise term. The original patch Ci is modeled

according to a Gaussian prior with mean µi and covariance

matrix Σi. The noise term Ni depends on Ci, with its j-

th entry given by Nj
i = f(Cj

i )ε
j
i , j = 1, . . . , n. Variables

(εji )j=1,...,n are i.i.d Gaussian random variables with zero

mean and unit variance, εji is independent of (Cj
i )j=1,...,N

and f : R → R is the function describing the relation-

ship between the noise variance and the signal value at each

pixel. The entries of vector Ni are independent and its di-

agonal covariance matrix is denoted by ΣNi
. The matrix

Di and the function f are assumed to be known. Model (2)

includes the following degradation cases:

• Di: resolution change (zooming), random missing

pixels (inpainting)

• Ni: additive Gaussian noise with constant vari-

ance, variable variance and variance dependent on the

pixel value (approximate Poisson noise), multiplica-

tive noise.

The approximation of Poisson noise as additive Gaussian

noise with variance depending on the pixel value is par-

ticularly useful in the case of raw images captured with

regular digital cameras. In this case, the noise is indepen-

dent among pixels but its variance depends on the irradiance

reaching the pixel [2], the function f being

f(Cj
i ) = (g2apτD

j
iC

j
i + σ2

R)/(gapτ)
2, (3)

where g is the camera gain, ap is the photo-response non

uniformity factor, τ is the exposure time, µR and σ2
R are

the readout noise mean and variance and D
j
i = 1Cj

i<zsat

models the saturation effect taking value one if the pixel is

below the saturation threshold zsat and zero otherwise [2].
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Figure 1. Diagram of the proposed iterative approach with the corresponding initialization stage.

2.2. Patch restoration

Let us first suppose that the patch model parameters µi

and Σi are known for each image patch zi (its computation

is explained in Section 2.3). We propose to restore each

patch zi by minimizing its Bayes risk under Model (2). In

order to get a tractable, closed-form expression, we restrict

the solution space to affine estimators only.

Proposition 1. The affine estimator C̃i that minimizes the

Bayes risk E[(C̃i − Ci)
2] under Model (2) is given by

C̃i = ΣiD
T
i (DiΣiD

T
i +ΣNi

)−1(Zi −Diµi) + µi. (4)

The proof of Proposition 1 is presented in the supplemen-

tary material.

2.3. Estimation of µi and Σi

We propose to estimate µi and Σi by computing their

MAP estimates using a set of patches similar to zi, com-

bined with a prior knowledge on µi and Σi, through an hy-

perprior. On the one hand, using similar patches gives a

spatially adaptive or local characterization of the patch [8].

On the other hand, including the hyperprior makes the pa-

rameter estimation more robust, which is critical when few

similar patches are available or some pixels are unknown

(e.g. for interpolation and zooming). The dependence on

the patch index i is hereafter omitted to simplify notation.

MAP estimates of µ and Σ To simplify calculations,

it is convenient to work in terms of the precision matrix

Λ = Σ
−1 instead of the covariance matrix Σ. As it is

usual when considering hyperpriors, we rely on a conju-

gate distribution. In our case, that boils down to assuming a

Normal-Wishart3 prior for the couple (µ,Λ),

p(µ,Λ) = N (µ|µ0, (κΛ)−1)W(Λ|(νΣ0)
−1, ν) (5)

∝ |Λ|1/2 exp
(

−κ

2
(µ− µ0)Λ(µ− µ0)

T
)

|Λ|(ν−d−1)/2 exp

(

−1

2
tr(νΣ0Λ)

)

,

3The Normal-Wishart distribution is the conjugate prior of a multivari-

ate normal distribution with unknown mean and covariance matrix. W

denotes the Wishart distribution [12].

where µ0 is a prior on µ, Σ0 is a prior on Σ, and κ, ν ∈
R, κ > 0, ν > d − 1. The likelihood of the M patches

similar to the current patch (according to the L2 distance)

z = (z1, . . . , zM ) is given by

p(z|µ,Λ) =

M
∏

j=1

|Λ∗

j |−1/2

(2π)d/2
exp



−1

2

M
∑

j=1

z′jΛ
∗

j (z
′

j)
T



,

(6)

with z′j = (zj −Djµ) and Λ
∗

j = (DjΛ
−1

D
T
j +ΣNj

)−1.

Then the MAP estimates µ̂ and Λ̂ are found by maximizing

the posterior probability

(µ̂, Λ̂) = argmax
µ,Λ

p(µ,Λ|z) (7)

= argmax
µ,Λ

p(z|µ,Λ)p(µ,Λ). (8)

Computing the partial derivatives of p(µ,Λ|z) with respect

to µ and Σ and equating to zero we have (c.f. Appendix B

in the supplementary material)

µ̂ =



κI+
M
∑

j=1

Λ
−1

DjΛ
∗

jDj





−1



M
∑

j=1

Λ
−1

DjΛ
∗

jzj + κµ0





(9)

Λ̂
−1

= H1H2, (10)

with

H1 =



(ν − d)I+
M
∑

j=1

Λ
−1

DjΛ
∗

jDj





−1

(11)

H2 =





M
∑

j=1

(Λ−1
DjΛ

∗

jz
′

j)(Λ
−1

DjΛ
∗

jz
′

j)
T (12)

+ κ(µ− µ0)(µ− µ0)
T + νΣ0

)

.

Since (9) depends on Λ and (10) depends on µ and Λ, those

are not closed-forms for the estimators. Hence, we pro-

pose to use an iterative approach to compute the parame-

ters, which is summarized in Algorithm 1. This estimation



algorithm results from the combination of two procedures.

The outer loop follows from the classic EM estimation pro-

cedure for the mean and covariance (or precision) matrix.

The inner one, which deals with the estimation of the preci-

sion matrix, converges if and only if the spectral norm of the

precision matrix is less than one. This is not easy to prove

analytically, given the expressions for H1 and H2. In case

this condition on the spectral norm of Λ holds, since EM

and therefore the posteriors are guaranteed to converge to

a local maxima, µ and Λ are ensured to converge to local

maximizers. In practice, we observe that the algorithm con-

verges after a single iteration of the outer loop with 3 to 4

iterations of the inner loop.

Algorithm 1: Computation of µ̂ and Λ̂.

Input: Z, D, µ0,Σ0, κ, ν (see details in Section 3.3)

Output: µ̂, Λ̂

1 Initialization: Set Λ = Σ
−1
0

2 for it = 1 to maxIts0 do

3 Compute µ̂ according to (9)

4 Set µ = µ̂.

5 for it = 1 to maxIts1 do

6 Compute Λ̂ according to (10).

7 Set Λ = Λ̂.

8 end

9 end

2.4. Summary of the proposed algorithm

The analysis previously presented leads to an iterative

algorithm that implements the proposed approach. Two

stages are alternated: the restoration step, where all patches

are reconstructed, and the model estimation step, where the

model parameters are updated (Figure 1). For the model es-

timation step, an oracle image is assumed to be available,

i.e. the result of the previous iteration. In practice, the al-

gorithm is found to converge after 3 to 4 iterations. The

procedure is summarized in Algorithm 2.

3. Implementation details

3.1. Search for similar patches

The similar patches are all patches with L2 distance to

the current patch below a given threshold, which is given

by a tolerance parameter times the distance to the closest

neighbor. The patch comparison is performed in an ora-

cle image (i.e. the result of the previous iteration), so all

pixels are known. However, it may be useful to assign dif-

ferent confidence levels to the known pixels (Dj
p = 1) and

to those originally missing and then restored (Dj
p = 0). For

all the experimental results presented in Section 4, the dis-

tance between patches cp and cq in the oracle image Coracle

Algorithm 2: Summary of the proposed algorithm.

Input: Z, D, µ0,Σ0, κ, ν (see details in Section 3.3)

Output: C̃
1 Decompose Z and D into overlapping patches.

2 Initialization: Compute first oracle image Coracle

(see details in Section 3.4)

3 for it = 1 to maxIts2 do

4 for all patches not yet restored do

5 Find patches similar (L2 distance) to the

current zi in Coracle (see details in

Section 3.1).

6 Compute µ0 and Σ0 from Coracle (see details

in Section 3.3).

7 Compute µ̂ and Σ̂ following Algorithm 1.

8 Restore the similar patches using (4) (see

details in Section 3.2).
9 end

10 Perform aggregation to restore the image.

11 Set Coracle = C̃.

12 end

is computed according to

d(p, q) =

∑N
j=1(c

j
p − cjq)

2ωj
p,q

∑N
j=1 ω

j
p,q

, (13)

with ωj
p,q = 1 if Dj

p = D
j
q = 1 and ωj

p,q = 0.01 otherwise.

With this formulation, we are giving much higher priority to

the known pixels compared to the unknown ones. Variations

of these weights could be explored.

3.2. Computation of µ and Σ

The proposed method computes one Gaussian model per

image patch according to Equations (9) and (10). In order to

reduce the computational cost, we rely on the collaborative

filtering idea previously introduced for patch-based denois-

ing techniques [8, 6]. Based on the hypothesis that similar

patches share the same model, instead of computing a dif-

ferent pair (µ,Σ) for each patch, we assign the same model

to all patches in the set of similar patches. The restoration

is thus performed for all similar patches according to the

computed model.

3.3. Parameters setting

The four parameters of the Normal-Wishart distribution:

κ, ν, the prior mean µ0 and the prior covariance matrix Σ0,

must be set in order to compute µ and Σ using (9) and (10).

Setting of κ and ν The computation of µ according to (9)

combines the mean estimated from the similar patches and

the prior mean µ0. The parameter κ is related to the degree



of confidence we have on the prior µ0. Hence, its value

should be a trade-off between the confidence we have on

the prior accuracy vs. the one we have on the information

provided by the similar patches. A higher κ is needed if

few similar patches are available or if a large part of the

patch is unknown. Similarly, the ν parameter should be set

to define a trade-off between the information provided by

the similar patches and the prior Σ0. Despite these intu-

itive insights, setting these parameters is not a trivial task

and should be the subject of further study. For the results

presented in Section 4, the parameters are defined as fol-

lows. Because the importance we give to the priors µ0

and Σ0 is controlled by the relative importance of the value

of κ and ν with respect to the diagonal values of the term

S =
∑M

j=1 Λ
−1

DjΛ
∗

jDj (see equations (9) and (11)), we

set κ and ν proportional to the mean value of the diagonal

entries of this matrix

κ, ν =
α

n

n
∑

i=1

Si, α =

{

αL if P and M > threshold

αH otherwise,

(14)

where P is the number of known pixels in the current patch

and Si is i-th diagonal element of matrix S.

Setting of µ0 and Σ0 Assuming an oracle image Coracle

is available (see details in Section 2.4), µ0 and Σ0 can be

computed using the classical MLE estimators from a set of

similar patches (c̃1, . . . , c̃M ) taken from Coracle

µ0 =
1

M

M
∑

j=1

c̃j , Σ0 =
1

M − 1

M
∑

j=1

(c̃j − µ0)(c̃j − µ0)
T .

(15)

This is the same approach followed by Lebrun et al. [8] to

locally estimate the patch model parameters in the case of

denoising. As previously stated, the method from [8] cannot

be directly applied to zooming or interpolation due to the

presence of missing pixels.

3.4. Initialization

A good initialization is crucial since we aim at solving

a non-convex problem through an iterative procedure. Yu

et al. [16] propose to initialize the PLE algorithm learn-

ing the K GMM covariance matrices from synthetic im-

ages of edges with different orientations as well as the DCT

basis to represent isotropic patterns. As they state, in dic-

tionary learning, the most prominent atoms represent local

edges which are useful at representing and restoring con-

tours. Hence, this initialization helps to correctly restore

corrupted patches even in quite extreme cases. The first or-

acle of the proposed iterative approach is created by aggre-

gating the estimations of all patches obtained through the

initialization process proposed by Yu et al. [16]. Figure 1 il-

lustrates the proposed initialization. A detailed description

of the initialization process is provided in the supplemen-

tary material.

4. Experiments

In this section we illustrate the ability of the proposed

method to solve a number of diverse image inverse prob-

lems. Both synthetic and real data are used. The considered

problems are: interpolation, denoising, and zooming. The

reported values of peak signal-to-noise ratio (PSNR =
20 log10(255/

√
MSE)) are the mean of 10 realizations for

each experiment (variance is below 0.1 for interpolation and

it is below 0.05 for denoising). The complete result images

are included in the supplementary material.

4.1. Synthetic data

Interpolation Random masks with 20%, 50% and 70% of

missing pixels are applied to the tested ground-truth images.

The interpolation performance of the proposed method is

compared to that of PLE [16], EPLL [18] and E-PLE [13]

using a patch size of 8× 8 for all methods. PLE parameters

are set as indicated in [16] (σ = 3, ε = 30, K = 19). We

used the EPLL code provided by the authors [17] with de-

fault parameters and the E-PLE code available in [13] with

the parameters set as specified in this demo. The parameters

for the proposed method are set to αH = 1, αL = 0.5 (αH

and αL define the values for κ and ν, see Section 3.3). The

PSNR results are shown in Table 1. Figure 2 shows some

extracts of the obtained results, the PSNR values for the ex-

tracts and the corresponding difference images with respect

to the ground-truth. The proposed method gives sharper re-

sults than the other cosidered methods. This is specially

noticeable on the reconstruction of the texture of the fabric

of Barbara’s trousers shown in the first row of Figure 2 or

on the strips that appear through the car’s window shown in

the second row of the same figure.

Denoising The following experiments are conducted in

order to compare the denoising ability of the proposed

method to that of the state-of-the-art denoising algorithm

NLB [8]. The experiments are performed with images cor-

rupted with additive Gaussian noise with variance σ2 =
10, 30, 50, 80. The code provided by the authors [9] au-

tomatically sets the algorithm parameters from the input σ2

and the patch size, in this case 8 × 8. For this experiment,

there are no unknown pixels to interpolate (the mask D is

the identity matrix). The results of both methods are very

similar if HBE is initialized with the output of the first step

of NLB [8] (instead of using the initialization described in

Section 2.4) and the parameters κ and ν are large enough. In

that case, µ0 andΣ0 are prioritized in equations (9) and (10)

and both algorithms are almost the same. That is what we

observe in practice with αH = αL = 100, as exempli-

fied in the results summarized in Table 1. The denoising



PSNR (dB)

HBE PLE EPLL E-PLE HBE PLE EPLL E-PLE HBE PLE EPLL E-PLE

Interpolation

% missing pixels 20% 50% 70%

barbara 45.73 43.48 40.89 43.75 39.17 36.93 32.99 35.43 34.74 32.50 27.96 28.77

boat 41.76 40.37 40.17 40.32 35.14 34.32 34.21 33.59 31.47 30.74 30.38 30.26

traffic 35.73 35.53 35.71 35.10 30.28 30.12 30.19 28.86 27.41 27.12 27.13 26.64

HBE NLB EPLL HBE NLB EPLL HBE NLB EPLL HBE NLB EPLL

Denoising

σ
2 10 30 50 80

barbara 41.39 41.20 40.56 38.57 38.26 37.32 37.32 36.94 35.84 36.15 35.73 34.51

boat 40.24 39.99 39.47 36.83 36.76 36.34 35.58 35.46 35.13 34.51 34.33 34.12

traffic 40.87 40.74 40.55 37.24 36.99 36.86 35.57 35.26 35.20 34.04 33.70 33.72

Table 1. Results of the interpolation and denoising tests described in Section 4.1. Patch size of 8× 8 for all methods in all tests. Parameter

setting for interpolation, HBE: αH = 1, αL = 0.5, PLE: σ = 3, ε = 30, K = 19 [16], EPLL: default parameters [17], E-PLE: parameters

set as specified in [13]. Parameter setting for denoising, HBE: αH = αL = 100, NLB: code provided by the authors [9] automatically sets

parameters from input σ2, EPLL: default parameters for the denoising example [17]

performance of HBE is degraded for small κ and ν values.

The reason for this is that µ0 and Σ0, as well as µ and Σ in

NLB, are computed from an oracle image resulting from the

first restoration step. This restoration includes not only the

denoising of each patch, but also an aggregation step that

highly improves the final result. Therefore, the contribution

of the first term of (9) to the computation of µ̂ degrades the

result compared to using µ0 only (i.e. using a large κ).

Zooming In order to evaluate the zooming capacity of the

proposed approach, ground-truth images are downsampled

by a factor 2 (no anti-aliasing filter is used) and the zoom-

ing is compared to the ground-truth. The results are com-

pared with PLE, EPLL, E-PLE and the Lanczos interpola-

tion. Figure 3 shows extracts of the obtained results, the

PSNR values for the extracts and the corresponding differ-

ence images with respect to the ground-truth. HBE yields a

sharper reconstruction than the other methods.

4.2. Real data

Raw images are captured using a Canon 400D camera set

to ISO 400 and exposure time 1/160 seconds. Because we

treat raw data, pixels’ noise have variable variance (accord-

ing to Model (3)) and a camera calibration step is needed to

compute the noise model parameters [2]. In order to evalu-

ate the interpolation capacity of the proposed approach, we

consider the pixels of the green channel only (i.e. 50% of

the pixels in the RGGB Bayer pattern) and interpolate the

missing values. We compare the results to those obtained

using an adaptation of PLE to images degraded with noise

with variable variance [1]. The results for the EPLL and

E-PLE methods are not presented since these methods are

not suited for this kind of noise. Figure 4 shows examples

of the obtained results. As had already been observed in the

synthetic data experiments, fine details and edges are better

preserved. Compare for example the reconstruction of the

balcony edges and the wall structure in the first row of Fig-

ure 4, as well as the structure of the roof and the railing in

the second row of the same image.

4.3. Discussion

In all the tested examples, the results obtained by HBE

for every considered inverse problems outperform or are

very close to those obtained by the other evaluated methods.

Details are better reconstructed and the resulting images are

more sharp both in the synthetic and real data examples.

The improvement is more noticeable comparing the differ-

ence images (available for the synthetic tests only), which

present less structure in the result obtained by HBE.

Even if the PLE method can be considered as semi-local

(since it is applied in 128×128 regions [16]), we find that 19

classes are not enough to correctly represent certain image

patches. This is mostly the case for patches that seldomly

appear in the image, such as certain edges or particular tex-

tures that appear in a few patches. This is quite noticeable in

the extract of barbara’s trousers and in the interior of the car

(Figure 2). The specific characteristics of these patches are

buried in the PLE class update when combined with many

other different patches. A local model estimation as the one

performed by HBE correctly handles those cases. The per-

formance difference is much more remarkable for the higher

masking rates. In those cases, two phenomena take place.

On the one hand, very few pixels are known thus making the

model selection less robust. On the other hand, the model

accuracy is critical since a much larger part of the patch

is to be restored. The proposed method tackles the model

selection problem by limiting the model estimation to sim-

ilar patches found on a local research window. It has been

widely observed in denoising techniques based on the self-

similarity principle [4] that performance improves when re-

stricting the patch search space to a local search window

instead of using the whole image. This strategy, in addition



(a) Ground-truth (b) HBE (30.01 dB) (c) PLE (26.78 dB) (d) EPLL (21.12 dB) (e) E-PLE (23.12 dB)

(f) Ground-truth (g) HBE (30.20 dB) (h) PLE (27.89 dB) (i) EPLL (27.83 dB) (j) E-PLE (26.79 dB)

Figure 2. Synthetic data. Interpolation with 70% of randomly missing pixels. Left to right: (first row) Ground-truth (extract of

barbara), result by HBE, PLE, EPLL, E-PLE. (second row) input image, difference with respect to the ground-truth of each of the corre-

sponding results. (third and fourth row) Idem for an extract of the traffic image. See Table 1 for the PSNR results for the complete images.

Please see the digital copy for better details reproduction.

to the hypothesis of self-similarity in that neighborhood, re-

stricts the possible models robustifying the model estima-

tion which is crucial for high masking rates. Furthermore,

the local model estimation, previously proven successful at

describing patches [8], gives a better reconstruction even

when a very large part of the patch is missing.

EPLL uses more mixture components in its GMM model

than PLE, where 200 components are learnt from 2 × 106

patches of natural images [18]. The results obtained by

this approach, despite using a larger number of GMM com-

ponents, are not very good for the restoration of certain

patches. As previously mentioned, Wang and Morel [15]

claim that, in the case of denoising, it is better having fewer

models that are updated with the image patches (as in PLE)

than having a large number of fixed models (as in EPLL).

In this work, we observe that the proposed approach outper-

forms EPLL, not only in denoising, but also in inpainting

and zooming. However, it is here harder to tell if the im-

provement is due to the local model estimation performed

from the similar patches or it is due to the different approach



(a) Ground-truth (b) HBE (34.41 dB) (c) PLE (33.82 dB) (d) EPLL (33.11 dB) (e) E-PLE (33.54 dB) (f) Lanczos (27.91 dB)

Figure 3. Synthetic data. Zooming ×2. Left to right: (first row) Ground-truth high resolution image (extract of lena). Result by HBE,

PLE, EPLL, E-PLE, lanczos interpolation. (second row) Input low-resolution image, difference with respect to the ground-truth of each of

the corresponding results. Please see the digital copy for better details reproduction.

Figure 4. Real data. Zooming ×2. Interpolation of the green channel of a raw image (RGGB). Left to right: Input low-resolution image,

result by HBE, PLE adapted to noise with variable variance [1], bicubic and lanczos interpolation.

that both methods follow for restoration. 5. Conclusions

In this work we have presented a novel image restoration

framework. It has the benefits of local patch characteriza-

tion proven by the NLB denoising methods, but manages to



extend its use to general restoration problems such as zoom-

ing, inpainting and interpolation, by combining a local es-

timation with a Bayesian restoration based on hyperpriors.

We presented various experiments that confirm the sound-

ness of the proposed strategy based on hyperpriors. In these

experiments, using both synthetic and real data, we show

that for a wide range of image restoration problems, HBE

outperforms several state-of-the-art restoration methods.
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