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A Bayesian Hyperprior Approach for Joint Image
Denoising and Interpolation,

with an Application to HDR Imaging
Cecilia Aguerrebere, Andrés Almansa, Julie Delon, Yann Gousseau and Pablo Musé

Abstract—Recently, impressive denoising results have been
achieved by Bayesian approaches which assume Gaussian models
for the image patches. This improvement in performance can
be attributed to the use of per-patch models. Unfortunately
such an approach is particularly unstable for most inverse
problems beyond denoising. In this work, we propose the use
of a hyperprior to model image patches, in order to stabilize
the estimation procedure. There are two main advantages to the
proposed restoration scheme: Firstly it is adapted to diagonal
degradation matrices, and in particular to missing data problems
(e.g. inpainting of missing pixels or zooming). Secondly it can
deal with signal dependent noise models, particularly suited to
digital cameras. As such, the scheme is especially adapted to
computational photography. In order to illustrate this point, we
provide an application to high dynamic range imaging from
a single image taken with a modified sensor, which shows the
effectiveness of the proposed scheme.

Index Terms—Non-local patch-based restoration, Bayesian
restoration, Maximum a Posteriori, Gaussian Mixture Models,
hyper-prior, conjugate distributions, high dynamic range imag-
ing, single shot HDR, hierarchical models.

I. INTRODUCTION

D IGITAL images are subject to a wide variety of degra-
dations, which in most cases can be modeled as

Z =DC + N, (1)

where Z is the observation, D is the degradation operator,
C is the underlying ground-truth image and N is additive
noise. Different settings of the degradation matrix D model
different problems such as zooming, deblurring or missing
pixels. Different versions of the noise term N include the
classical additive Gaussian noise with constant variance or
more complicated and realistic models such as signal depen-
dent noise.

Due to the inherent ill-posedness of such inverse problems,
standard approaches impose some prior on the image, in either
variational or Bayesian approaches. Popular image models
have been proposed through the total variation [1], wavelet
decompositions [2] or the sparsity of image patches [3].
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Buades et al. [4] introduced the use of patches and the self-
similarity hypothesis to the denoising problem leading to
a new era of patch-based image restoration techniques. A
major step forward in fully exploiting the potential of patches
was achieved by several state-of-the-art restoration methods
with the introduction of patch prior models, in a Bayesian
framework. Some methods are devoted to the denoising prob-
lem [5]–[8], while others propose a more general framework
for the solution of image inverse problems [9], [10], including
inpainting, deblurring and zooming. The work by Lebrun et
al. [7], [11] presents a thorough analysis of several recent
restoration methods, revealing their common roots and their
relationship with the Bayesian approach.

Among the state-of-the-art restoration methods, two notice-
able approaches are the patch-based Bayesian approach by Yu
et al. [10], namely the piece-wise linear estimators (PLE), and
the non-local Bayes (NLB) algorithm by Lebrun et al. [7].
PLE is a general framework for the solution of image inverse
problems under Model (1), while NLB is a denoising method
(D = Id). Both methods use a Gaussian patch prior learnt
from image patches through iterative procedures. In the case
of PLE, patches are modeled according to a Gaussian Mixture
Model (GMM), with a relatively small number of classes (19
in all their experiments), whose parameters are learnt from all
image patches1. In the case of NLB, each patch is associated
with a single Gaussian model, whose parameters are computed
from similar patches chosen from a local neighbourhood, i.e.,
a search window centered at the patch. We refer hereafter to
this kind of per-patch modelling as local.

Zoran and Weiss [9] (EPLL) follow a similar approach, but
instead of iteratively updating the GMM from image patches,
they use a larger number of classes that are fixed and learnt
from a large database of natural image patches. Wang and
Morel [8] claim that, in the case of denoising, it is better to
have fewer models that are updated with the image patches
(as in PLE) than having a large number of fixed models (as
in EPLL).

All of the previous restoration approaches share a common
Bayesian framework based on Gaussian patch priors. Relying
on local priors [7], [8] has proven more accurate for the task of
image denoising than relying on a mixture of a limited number
of Gaussian models [9], [10]. In particular, NLB outperforms
PLE for this task [12], mostly due to its local model estimation.

1Actually, the authors report the use of 128 × 128 image sub-regions in
their experiments, so we may consider PLE as a semi-local approach.
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On the other hand, PLE yields state-of-the-art results in other
applications such as interpolation of missing pixels (especially
with high masking rates), deblurring and zooming.

As a consequence we are interested in taking advantage of
a local patch modelling for more general inverse problems
than denoising. The main difficulty lies in the estimation of
the models, especially when the image degradations involve
a high rate of missing pixels, in which case the estimation is
seriously ill-posed.

In this work we propose to model image patches according
to a Gaussian prior, whose parameters, the mean µ and
the covariance matrix Σ, will be estimated locally from
similar patches. In order to tackle this problem, we include
prior knowledge on the model parameters making use of a
hyperprior, i.e. a probability distribution on the parameters
of the prior. In Bayesian statistics, µ and Σ are known as
hyperparameters, while the prior on them is called a hyper-
prior. Such a framework is often called hierarchical Bayesian
modelling [13]. Its application to inverse problems in imaging
is not new. In particular, in the field of image restoration, this
methodology was proposed by Molina et al. [14], [15], and was
more recently applied to image unmixing problems [16] and
to image deconvolution and the estimation of the point spread
function of a camera [17]. However, to our knowledge, this is
the first time that such a hierarchical Bayesian methodology is
used to reduce ill-posedness in patch-based image restoration.
In this context, the use of a hyperprior compensates for the
patches missing information.

There are two main contributions of this work: First, as de-
scribed above, we propose a robust framework enabling the use
of Gaussian local priors on image patches for solving a useful
family of restoration problems by drawing on a hierarchical
Bayesian approach. The second advantage of the proposed
framework is its ability to deal with signal dependent noise,
therefore making it adapted to realistic digital photography
applications.

Experiments on both synthetic and real data show that
the approach is well suited to various problems involving
a diagonal degradation operator. First, we show state-of-the-
art results in image restoration problems such as denoising,
zooming and interpolation of missing pixels. Then we consider
the generation of high dynamic range (HDR) images from a
single snapshot using spatially varying pixel exposures [18]
and demonstrate that our approach significantly outperforms
existing methods to deal with this inverse problem. It is worth
mentioning that modified sensors enabling such approaches
have been recently made available by Sony but are not yet
fully exploited by available smartphones and digital cameras.

The article is organized as follows. Section II introduces
the proposed approach while Section III presents the main
implementation aspects. Supportive experiments are presented
in Section IV. Section V is devoted to the application of
the proposed framework to the HDR imaging problem. Last,
conclusions are summarized in Section VI.

II. HYPERPRIOR BAYESIAN ESTIMATOR

The proposed restoration method, called Hyperprior
Bayesian Estimator (HBE), assumes a Gaussian prior for

Normal-Wishart 

prior on

M similar patches

(Algorithm I)MAP

- compute model mean     (Eq. 6)

- compute model 

  covariance matrix         (Eq. 8)

oracle
=Algorithm II

- restore patch               (Eq. 7)

Fig. 1. Diagram of the proposed iterative approach.

image patches, with parameters µ and Σ. A joint maximum
a posteriori formulation is used to estimate both the image
patches and the parameters µ and Σ, thanks to a Bayesian
hyperprior model on these parameters, stabilizing the local
estimation of the Gaussian statistics. As a consequence, we
can exploit the accuracy of local model estimation for general
restoration problems, in particular with missing values (e.g.
for interpolation or zooming). Figure 1 illustrates the proposed
approach which is described in detail in the following.

A. Patch degradation model

The observed image z is decomposed into I overlapping
patches {zi}i=1,...,I of size

√
n×
√
n. Each patch zi ∈ Rn×1

is considered to be a realization of the random variable Zi
given by

Zi =DiCi + Ni, (2)

where Di ∈ Rn×n is a degradation operator, Ci ∈ Rn×1
is the original patch we seek to estimate and Ni ∈ Rn×1 is
an additive noise term, modeled by a Gaussian distribution
Ni ∼ N (0,ΣNi). Therefore, the distribution of Zi given Ci

can be written as

p(Zi | Ci) ∼ N (DiCi,ΣNi)

∝ |Σ−1Ni
| 12 exp

(
−1

2
(Zi −DiCi)

TΣ−1Ni
(Zi −DiCi)

)
.

(3)

In this noise model, the matrix ΣNi
is only assumed to be

diagonal (the noise is uncorrelated). It can represent a con-
stant variance, spatially variable variances or even variances
dependent on the pixel value (to approximate Poisson noise).

This degradation model is deliberately generic. We will see
in Section IV that keeping a broad noise model is essential
to properly tackle the problem of HDR imaging from a
single image. The model also includes the special case of
multiplicative noise.

B. Joint Maximum A Posteriori

We assume a Gaussian prior for each patch, with unknown
mean µ and covariance matrix Σ, p(Ci | µ,Σ) ∼ N (µ,Σ).
To simplify calculations we work with the precision matrix
Λ = Σ−1. As it is usual when considering hyperpriors,
we assume that the parameters µ and Σ follow a conjugate



JOURNAL OF LATEX CLASS FILES, VOL., NO., MARCH 2017 3

distribution. In our case, that boils down to assuming a
Normal-Wishart2 prior for the couple (µ,Λ),

p(µ,Λ) = N (µ|µ0, (κΛ)−1)W(Λ|(νΣ0)
−1, ν) (4)

∝ |Λ|1/2 exp
(
−κ
2
(µ− µ0)Λ(µ− µ0)

T
)

|Λ|(ν−n−1)/2 exp
(
−1

2
tr(νΣ0Λ)

)
,

with parameters µ0, Σ0, scale parameter κ > 0 and ν > n−1
degrees of freedom.

Now, assume that we observe a group {Zi}i=1,...,M of sim-
ilar patches and that we want to recover the restored patches
{Ci}i=1,...,M . If these unknown {Ci} are independent3 and
follow the same Gaussian model, we can compute the joint
maximum a posteriori

argmax
{Ci},µ,Λ

p({Ci},µ,Λ | {Zi}) = (5)

= p({Zi} | {Ci},µ,Λ) p({Ci} | µ,Λ) p(µ,Λ)

= p({Zi} | {Ci}) p({Ci} | µ,Λ) p(µ,Λ).

In this product, the first term is given by the noise model (3),
the second one is the Gaussian prior on the set of patches
{Ci} and the third one is the hyperprior (4). In the last
equality we omit the explicit dependence on µ and Λ in
p({Zi} | {Ci},µ,Λ), since these parameters are completely
determined by the set {Ci}.

C. Optimality conditions
Computing the joint maximum a posteriori amounts to

minimizing

f({Ci},µ,Λ) := − log p({Ci},µ,Λ | {Zi})

=
1

2
(Zi −DiCi)

TΣ−1
Ni

(Zi −DiCi)

− ν − n+M

2
log |Λ|

+
1

2

M∑
i=1

(Ci − µ)TΛ(Ci − µ)

+
κ

2
(µ− µ0)

TΛ(µ− µ0) +
1

2
trace[νΣ0Λ],

over the set RnM × Rn × S++
n (R), with S++

n (R) the set of
real symmetric positive definite matrices of size n.

The function f is biconvex respectively in the variables
({Ci},µ) and Λ. To minimize this energy for a given set of
hyper-parameters (µ0,Λ0), we will use an alternating convex
minimization scheme. At each iteration, f is first minimized
with respect to ({Ci},µ) with Λ fixed, then viceversa.

Differentiating f with respect to each variable, we get
explicit optimality equations for the minimization scheme. The
proofs of the following propositions are straightforward and
available in the supplementary material.

Proposition 1. Assume that Λ is fixed and that the covariance
ΣNi

does not depend on the {Ci}. The function ({Ci},µ) 7→

2The Normal-Wishart distribution is the conjugate prior of a multivariate
normal distribution with unknown mean and covariance matrix. W denotes
the Wishart distribution [19].

3We rely on the classical independence assumption made in the patch-based
literature, even if it is wrong in case patches overlap.

f({Ci},µ,Λ) is convex on Rn(M+1) and attains its minimum
at ({Ĉi}, µ̂), given by

µ̂ =

(
κId +

M∑
i=1

AiDi

)−1( M∑
i=1

AiZi + κµ0

)
. (6)

Ĉi = Ai(Zi −Diµ̂) + µ̂, ∀i ∈ {1, . . .M} (7)

with Ai = Λ−1DT
i (DiΛ

−1DT
i + ΣNi

)−1.

Proposition 2. Assume that the variables ({Ci},µ) are fixed.
The function Λ → f({Ci},µ,Λ) is convex on S++

n (R) and
attains its minimum at Λ̂ such that

Λ̂
−1

=
νΣ0 + κ(µ− µ0)(µ− µ0)

T +
∑M

i=1(Ci − µ)(Ci − µ)T

ν +M − n .

(8)

The expression of Ĉi in (7) is obtained under the hypothesis
that the noise covariance matrix ΣNi does not depend on Ci.
Under the somewhat weaker hypothesis that the noise Ni and
the signal Ci are uncorrelated, this estimator is also the affine
estimator C̃i that minimizes the Bayes risk E[(C̃i−Ci)

2] (c.f.
supplementary material). The uncorrelatedness of Ni and Ci
is a reasonable hypothesis in practice. This includes various
noise models, such as Ni = f(Ci)εi with εi independent of
Ci, which approximates CMOS and CCD raw data noise [20].

From (6), we find that the MAP estimator of µ is a weighted
average of two terms: the mean estimated from the similar
restored patches and the prior µ0. The parameter κ controls the
confidence level we have on the prior µ0. With the same idea,
we observe that the MAP estimator for Λ is a combination
of the prior Λ0 on Λ, the covariance imposed by µ and the
covariance matrix estimated from the patches Ci.

D. Alternating convex minimization of f

The previous propositions imply that we can derive an ex-
plicit alternating convex minimization scheme for f , presented
in Algorithm 1. Starting with a given value of Λ, at each step,
µl and Cl are computed according to Equations (6) and (7),
then Λl is updated according to (8). We show in Appendix A

Algorithm 1: Alternating convex minimization for f
Input: Z, D, µ0,Σ0, κ, ν
Output: {Ĉi},µ̂, Λ̂,

1 Initialization: Set Λ0 = Σ−10

2 for l = 1 to maxIts do
3 Compute (Cl,µl) = argmin(C,µ) f(C,µ,Λ

l−1) by
equations (6) and (7)

4 Compute Λl = argminΛ f(C
l,µl,Λ) by Eq. (8)

5 end
6 {Ĉi = CmaxIts

i }, µ̂ = µmaxIts, Λ̂ = ΛmaxIts

the following convergence result for the previous algorithm.
The proof adapts the arguments in [21] to our particular case.

Proposition 3. The sequence f({Cl
i},µl,Λ

l) converges
monotonically when l → +∞. The sequence {{Cl

i},µl,Λ
l}

generated by the alternate minimization scheme has at least
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one accumulation point. The set of its accumulation points
forms a connected and compact set of partial optima and
stationary points of f , and they all have the same function
value.

In practice, we observe in our experiments that the algorithm
always converges after a few iterations.

E. Full restoration algorithm

The full restoration algorithm used in our experiments is
summarized in Algorithm 2 and illustrated by Figure 1. It
alternates between two stages: the minimization of f using Al-
gorithm 1, and the estimation of the hyper-parameters µ0,Σ0.
In order to estimate these parameters, we rely on an oracle
image computed by aggregation of all the patches estimated
on the first stage (details are provided in Section III-D).

Algorithm 2: HBE algorithm.
Input: Z, D, µ0,Σ0, κ, ν (see details in Section III-C)
Output: C̃

1 Decompose Z and D into overlapping patches.
2 Initialization: Compute first oracle image Coracle (see

details in Section III-D)
3 for it = 1 to maxIts2 do
4 for all patches not yet restored do
5 Find patches similar (L2 distance) to the current

zi in Coracle (see details in Section III-A).
6 Compute µ0 and Σ0 from Coracle (see details in

Section III-C).
7 Compute ({Ĉi}, µ̂, Σ̂) following Algorithm 1.
8 end
9 Perform aggregation to restore the image.

10 Set Coracle = C̃.
11 end

III. IMPLEMENTATION DETAILS

A. Search for similar patches

The similar patches are all patches within a search window
centered at the current patch, whose L2 distance to the central
patch is less than a given threshold. This threshold is given
by a tolerance parameter ε times the distance to the nearest
neighbour (the most similar one). In all our experiments, the
search window was set to size 25 × 25 (with a patch size
of 8 × 8) and ε = 1.5. The patch comparison is performed
in an oracle image (i.e. the result of the previous iteration),
so all pixels are known. However, it may be useful to assign
different confidence levels to the known pixels and to those
originally missing and then restored. For all the experimental
results presented in Section IV, the distance between patches
cp and cq in the oracle image Coracle is computed as

d(p, q) =

∑N
j=1(c

j
p − cjq)

2ωjp,q∑N
j=1 ω

j
p,q

, (9)

where j indexes the pixels in the patch, ωjp,q = 1 if
Dj
p = Dj

q = 1 (known pixel) and ωjp,q = 0.01 otherwise

(originally missing then restored pixel) [22]. With this formu-
lation, known pixels are assigned a much higher priority than
unknown ones. Variations on these weights could be explored.

B. Optional speed-up by Collaborative Filtering

The proposed method computes one Gaussian model per
image patch according to Equations (6) and (8). In order to
reduce the computational cost, we can rely on the collaborative
filtering idea previously introduced for patch-based denoising
techniques [7], [23]. Based on the hypothesis that similar
patches share the same model, we assign the same model
to all patches in the set of similar patches (as defined in
Section III-A).

The number of similar patches jointly restored depends
on the image and the tolerance parameter ε, but it is often
much smaller than what would result from the patch clustering
performed by methods that use global GMMs such as PLE
or EPLL. Performance degradation is observed in practice
when using a very large tolerance parameter (ε > 3), showing
that mixing more patches than needed is detrimental. The
collaborative filtering strategy helps accelerating the algorithm
up to a certain point, but a trade-off with performance needs
to be considered.

C. Parameter choices

The four parameters of the Normal-Wishart distribution: κ,
ν, the prior mean µ0 and the prior covariance matrix Σ0, must
be set in order to compute µ and Σ.

a) Choice of κ and ν: The computation of µ according
to (6) combines the mean

∑M
i=1 AiZi estimated from the sim-

ilar patches and the prior mean µ0. The parameter κ is related
to the degree of confidence we have on the prior µ0. Hence,
its value should be a trade-off between the confidence we have
in the prior accuracy vs. the one we have in the information
provided by the similar patches. The latter improves when both
M (i.e. the number of similar patches) and P = trace(Di)
(i.e. the number of known pixels in the current patch) increase.
These intuitive insights suggest the following rule to set κ:

κ =Mα, α =

{
αL if P and M > threshold
αH otherwise. (10)

A similar reasoning leads to the same rule for ν,

ν =Mα+ n (11)

where the addition of n ensures the condition ν > n − 1
required by the Normal-Wishart prior to be verified.

This rule is used to obtain the experimental results presented
in Section IV, and proved to be a consistently good choice
despite its simplicity. However, setting these parameters in a
more general setting is not a trivial task and should be the
subject of further study. In particular we could explore a more
continuous dependence of α on P , M , and possibly a third
term Q =

∑n
i=1 Sii where S =

∑M
j=1 Λ−1DjΛ

∗
jDj . This

term estimates to what an extent similar patches cover the
missing pixels in the current patch.
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b) Setting of µ0 and Σ0: Assuming an oracle image
Coracle is available (see details in Section II-E), µ0 and Σ0

can be computed using the classical MLE estimators from a
set of similar patches (c̃1, . . . , c̃M ) taken from Coracle

µ0 =
1

M

M∑
j=1

c̃j , Σ0 =
1

M − 1

M∑
j=1

(c̃j − µ0)(c̃j − µ0)
T .

(12)
This is the same approach followed by Lebrun et al. [7] to
estimate the patch model parameters in the case of denoising.

D. Initialization

A good initialization is crucial since we aim at solving
a non-convex problem through an iterative procedure. To
initialize the proposed algorithm we follow the approach
proposed by Yu et al. [10] (described in detail in Appendix A
in the supplementary material). They propose to initialize the
PLE algorithm by learning the K GMM covariance matrices
from synthetic images of edges with different orientations as
well as from the DCT basis to represent isotropic patterns. As
they state, in dictionary learning, the most prominent atoms
represent local edges which are useful to represent and restore
contours. Hence, this initialization helps to correctly restore
corrupted patches even in quite extreme cases. The oracle of
the first iteration of the proposed approach is the output of the
first iteration of the PLE algorithm.

E. Computational complexity

With the original per-patch strategy, the complexity of the
algorithm is given by step 3 in Algorithm 1: [(4n3+n3/3)M+
n3/3], so the total complexity is [(4n3 + n3/3)M + n3/3]×
maxIts×maxIts2×T (where T = total number of patches to
be restored and assuming the Cholesky factorization is used for
matrix inversion). The collaborative filtering strategy reduces
this value by a factor that depends on the number of groups
of similar patches, which depends on the image contents and
the distance tolerance parameter ε. The main difference with
the PLE algorithm complexity ((3n3 + n3/3)× itsPLE × T )
is a factor given by the number of groups defined by the
collaborative filtering approach and the ratio between itsPLE
and maxIts × maxIts2. As mentioned by Yu et al. [10],
computational complexity can be further reduced in the case
of binary masks by removing the zero rows and inverting a
matrix of size n2/S × n2/S instead of n2 × n2 where S is
the masking ratio. Moreover, the proposed algorithm can be
run in parallel in different image subregions thus allowing
for even further acceleration in multiple-core architectures.
The complexity comparison to NLB needs to be made in
the case where the degradation is additive noise with constant
variance (translation invariant degradation), which is the task
performed by NLB. In that case, the complexity of the
proposed approach (without considering collaborative filtering
nor parallelization, which are both done also in NLB), is
11n3/3 × maxIts × maxIts2 × T whereas that of NLB is
2× (4n3/3).

IV. IMAGE RESTORATION EXPERIMENTS

In this section we illustrate the ability of the proposed
method to solve several image inverse problems. Both syn-
thetic (i.e., where we have added the degradation artificially)
and real data (i.e., issued from a real acquisition process)
are used. The considered problems are: interpolation, com-
bined interpolation and denoising, denoising, and zooming.
The reported values of peak signal-to-noise ratio (PSNR =
20 log10(255/

√
MSE)) are averaged over 10 realizations for

each experiment (variance is below 0.1 for interpolation and
below 0.05 for combined interpolation and denoising and
for denoising only). Similar results are obtained with the
structural similarity index (SSIM) which is included in the
supplementary material (Appendix B).

A. Synthetic degradation

a) Interpolation: Random masks with 50%, 70% and
90% missing pixels are applied to the tested ground-truth
images. The interpolation performance of the proposed method
is compared to that of PLE [10], EPLL [9] and E-PLE [25]
using a patch size of 8 × 8 for all methods. PLE parameters
are set as indicated in [10] (σ = 3, ε = 30, K = 19).
We used the EPLL code provided by the authors [24] with
default parameters and the E-PLE code available in [25] with
the parameters set as specified in the companion demo. The
parameters for the proposed method are set to αH = 1,
αL = 0.5 (αH and αL define the values for κ and ν,
see Section III-C). The PSNR results are shown in Table I.
Figure 2 shows some extracts of the obtained results, the
PSNR values for the extracts and the corresponding difference
images with respect to the ground-truth. The proposed method
gives sharper results than the other considered methods. This is
specially noticeable on the reconstruction of the texture of the
fabric of Barbara’s trousers shown in the first row of Figure 2
or on the strips that appear through the car’s window shown
in the second row of the same figure.

b) Combined interpolation and denoising: For this ex-
periment, the ground-truth images are corrupted with additive
Gaussian noise with variance 10, and a random mask with
70% and 90% of missing pixels. The parameters for all meth-
ods are set as in the previous interpolation-only experiment.
Table I summarizes the PSNR values obtained by each method.
Figure 3 shows some extracts of the obtained results, the
PSNR values for the extracts and the corresponding difference
images with respect to the ground-truth. Once again, the results
show that the proposed approach outperforms the others. Fine
structures, such as the mast and the ropes of the ship, as well as
textures, as in Barbara’s headscarf, are much better preserved.

c) Denoising: For the denoising task the proposed ap-
proach should perform very similarly to the state-of-the-art
denoising algorithm NLB [7]. The following experiments are
conducted in order to verify this.

The ground-truth images are corrupted with additive Gaus-
sian noise with variance σ2 = 10, 30, 50, 80. The code
provided by the authors [26] automatically sets the NLB
parameters from the input σ2 and the patch size, in this case
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Interpolation - PSNR (dB) Interpolation & Denoising - PSNR (dB)

50% 70% 90% 70% 90%

HBE PLE EPLL E-PLE HBE PLE EPLL E-PLE HBE PLE EPLL E-PLE HBE PLE EPLL E-PLE HBE PLE EPLL E-PLE

barbara 39.11 36.93 32.99 35.43 34.69 32.50 27.96 28.77 24.86 23.62 23.30 23.26 33.34 31.99 27.63 27.75 24.57 23.53 23.27 23.20
boat 34.92 34.32 34.21 33.59 31.37 30.74 30.38 30.26 25.96 25.35 24.72 25.43 30.61 30.41 30.15 29.54 25.78 25.45 24.71 25.47

traffic 30.17 30.12 30.19 28.86 27.27 27.12 27.13 26.64 22.84 22.34 21.85 22.27 26.99 26.98 27.05 26.35 22.87 22.43 22.21 22.35

Denoising - PSNR (dB) Zooming - PSNR (dB)

σ2 10 30 50 80 ×2

HBE NLB EPLL HBE NLB EPLL HBE NLB EPLL HBE NLB EPLL HBE PLE EPLL E-PLE Lanczos

barbara 41.26 41.20 40.56 38.40 38.26 37.32 37.13 36.94 35.84 35.96 35.73 34.51 38.17 37.11 31.34 36.51 28.01
boat 40.05 39.99 39.47 36.71 36.76 36.34 35.41 35.46 35.13 34.30 34.33 34.12 32.35 31.96 31.95 32.08 29.60

traffic 40.73 40.74 40.55 37.03 36.99 36.86 35.32 35.26 35.20 33.78 33.70 33.72 25.05 24.78 25.17 24.91 21.89
TABLE I

RESULTS OF THE INTERPOLATION, COMBINED INTERPOLATION AND DENOISING, DENOISING AND ZOOMING TESTS DESCRIBED IN SECTION IV-A.
PATCH SIZE OF 8× 8 FOR ALL METHODS IN ALL TESTS. PARAMETER SETTING FOR INTERPOLATION, COMBINED INTERPOLATION AND DENOISING, AND
ZOOMING, HBE: αH = 1, αL = 0.5, PLE: σ = 3, ε = 30, K = 19 [10], EPLL: DEFAULT PARAMETERS [24], E-PLE: PARAMETERS SET AS SPECIFIED

IN [25]. PARAMETER SETTING FOR DENOISING, HBE: αH = αL = 100, NLB: CODE PROVIDED BY THE AUTHORS [26] AUTOMATICALLY SETS
PARAMETERS FROM INPUT σ2 , EPLL: DEFAULT PARAMETERS FOR THE DENOISING EXAMPLE [24]

(a) Ground-truth (b) HBE (30.01 dB) (c) PLE (26.78 dB) (d) EPLL (21.12 dB) (e) E-PLE (23.12 dB)

(f) Ground-truth (g) HBE (30.20 dB) (h) PLE (27.89 dB) (i) EPLL (27.83 dB) (j) E-PLE (26.79 dB)

Fig. 2. Synthetic data. Interpolation with 70% of randomly missing pixels. Left to right: (first row) Ground-truth (extract of barbara), result by HBE,
PLE, EPLL, E-PLE. (second row) input image, difference with respect to the ground-truth of each of the corresponding results. (third and fourth row) Idem
for an extract of the traffic image. See Table I for the PSNR results for the complete images. Please see the digital copy for better details reproduction.
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(a) Ground-truth (b) HBE (26.20 dB) (c) PLE (24.76 dB) (d) EPLL (23.84 dB) (e) E-PLE (23.60 dB)

(f) Ground-truth (g) HBE (28.34 dB) (h) PLE (27.50 dB) (i) EPLL (27.27 dB) (j) E-PLE (26.83 dB)

Fig. 3. Synthetic data. Combined interpolation and denoising with 70% of randomly missing pixels and additive Gaussian noise (σ2 = 10). Left to
right: (first row) Ground-truth (extract of barbara), result by HBE, PLE, EPLL, E-PLE. (second row) input image, difference with respect to the ground-truth
of each of the corresponding results. (third and fourth row) Idem for an extract of the boat image. See Table I for the PSNR results for the complete images.
Please see the digital copy for better details reproduction.

8 × 8. For this experiment, there are no unknown pixels to
interpolate (the mask D is the identity matrix).

The results of both methods are very similar if HBE is
initialized with the output of the first step of NLB [7] (instead
of using the initialization described in Section II-E) and the
parameters κ and ν are large enough. In this case, µ0 and Σ0

are prioritized in equations (6) and (8) and both algorithms
are almost the same. That is what we observe in practice with
αH = αL = 100, as demonstrated in the results summarized
in Table I. The denoising performance of HBE is degraded
for small κ and ν values. This is due to the fact that µ0

and Σ0, as well as µ and Σ in NLB, are computed from
an oracle image resulting from the first restoration step. This
restoration includes not only the denoising of each patch,
but also an aggregation step that greatly improves the final
result. Therefore, the contribution of the first term of (6) to
the computation of µ̂ degrades the result compared to that of
using µ0 only (i.e. using a large κ).

d) Zooming: In order to evaluate the zooming capacity of
the proposed approach, ground-truth images are downsampled
by a factor 2 (no anti-aliasing filter is used) and the zooming is
compared to the ground-truth. The results are compared with
PLE, EPLL, E-PLE and Lanczos interpolation. Table I sum-
marizes the obtained PSNR values. Figure 4 shows extracts
from the obtained results, the PSNR values for the extracts
and the corresponding difference images with respect to the
ground-truth. Again, HBE yields a sharper reconstruction than
the other methods.

B. Real data

For this experiment, we use raw images captured with a
Canon 400D camera (set to ISO 400 and exposure time 1/160
seconds). The main noise sources for CMOS sensors are: the
Poisson photon shot noise, which can be approximated by
a Gaussian distribution with equal mean and variance; the
thermally generated readout noise, which is modeled as an
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(a) Ground-truth (b) HBE (38.17 dB) (c) PLE (37.11 dB) (d) EPLL (31.34 dB) (e) E-PLE (36.51 dB) (f) Lanczos (28.01 dB)

Fig. 4. Synthetic data. Zooming ×2. Left to right: (first row) Ground-truth high resolution image (extract of barbara). Result by HBE, PLE, EPLL, E-PLE,
lanczos interpolation. (second row) Input low-resolution image, difference with respect to the ground-truth of each of the corresponding results. Please see
the digital copy for better details reproduction.

Fig. 5. Left. Real data. JPEG version of the raw image used in the exper-
iments presented in Section IV-B. The boxes show the extracts displayed in
Figure 6. Right. Synthetic data. Ground-truth images used in the experiments
presented in Section IV-A. The green boxes indicate the extracts used for the
zooming experiments.

additive Gaussian distributed noise and the spatially varying
gain given by the photo response non uniformity (PRNU) [20],
[27]. We thus consider the following noise model for the non
saturated raw pixel value Z(p) at position p

Z(p) ∼ N (gapτC(p) + µR, g
2apτC(p) + σ2

R), (13)

where g is the camera gain, ap models the PRNU factor, τ is the
exposure time, C(p) is the irradiance reaching pixel p, µR and
σ2
R are the readout noise mean and variance. The camera pa-

rameters have to be estimated by a calibration procedure [20].
The noise covariance matrix ΣN is thus diagonal with entries
that depend on the pixel value (ΣN )p = g2apτC(p) + σ2

R.
In order to evaluate the interpolation capacity of the pro-

posed approach, we consider the pixels of the green channel
only (i.e. 50% of the pixels in the RGGB Bayer pattern)
and interpolate the missing values. We compare the results to
those obtained using an adaptation of PLE to images degraded
with noise with variable variance (PLEV) [28]. The results
for the EPLL and E-PLE methods are not presented here
since these methods are not suited for this kind of noise.
Figure 6 shows extracts of the obtained results (see Figure 5
for a JPEG version of the raw image showing the location

of the extracts). As it was already observed in the synthetic
data experiments, fine details and edges are better preserved.
Compare for example the reconstruction of the balcony edges
and the wall structure in the first row of Figure 6, as well as
the structure of the roof and the railing in the second row of
the same image.

C. Discussion

In all the previous experiments, the results obtained with
HBE outperform or are very close to those obtained by the
other evaluated methods. Visually, details are better recon-
structed and images are sharper.

We interpret this as the inability of a fixed set of patch
classes (19 for PLE) to accurately represent patches that
seldom appear in the image, such as edges or textures (as
in Barbara’s trouser). The fact that methods such as PLE
are actually semi-local (classes are estimated on 128 × 128
regions [10]) does not solve this issue. On the contrary, a
local model estimation as the one performed by HBE correctly
handles those cases.

The performance difference is much more remarkable for
the higher masking rates. In such cases, the robustness of the
estimation is crucial. Indeed the proposed method performs the
estimation from similar patches in a local window. The hypoth-
esis of self-similarity being reinforced by considering local
neighbourhoods, such a strategy restricts the possible models,
therefore making the estimation more robust. Furthermore, the
local model estimation, previously shown to be successful at
describing patches [7], gives a better reconstruction even when
a very large part of the patch is missing.

EPLL uses more mixture components (200 components are
learnt from 2×106 patches of natural images [9]) in its GMM
model than PLE. It was observed in [8] that this strategy is
less efficient than PLE for the denoising task. In this work, we
also observe that the proposed approach outperforms EPLL,
not only in denoising, but also in inpainting and zooming.
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Ground-truth HBE PLEV Bicubic Lanczos

Fig. 6. Real data. Zooming ×2. Interpolation of the green channel of a raw image (RGGB). Left to right: Input low-resolution image, result by HBE,
PLEV [28], bicubic and lanczos interpolation.

However, here it is harder to tell if the improvement is due
to the local model estimation performed from similar patches
or to the different restoration strategies followed by these
methods.

V. HIGH DYNAMIC RANGE IMAGING FROM A SINGLE
SNAPSHOT

In this section, we apply the proposed framework to gen-
erate HDR images from a single shot. HDR imaging aims
at reproducing an extended dynamic range of luminosity
compared to what can be captured using a standard digital
camera, which is often not enough to produce an accurate
representation of real scenes. In the case of a static scene
and a static camera, the combination of multiple images with
different exposure levels is a simple and efficient solution [27],
[29], [30]. However, several problems arise when either the
camera or the elements in the scene move [31], [32].

An alternative to the HDR from multiple frames is to
use a single image with spatially varying pixel exposures
(SVE) [18]. An optical mask with spatially varying transmit-
tance is placed adjacent to a conventional image sensor, thus
controlling the amount of light that reaches each pixel (see
Figure 7) [18], [33], [34].

The greatest advantage of this acquisition method is that
it avoids the need for image alignment and motion estima-
tion. Another advantage is that the saturated pixels are not
organized in large regions. Indeed, some recent multi-image
methods tackle motion problems by taking a reference image
and then by estimating motion or reconstructing the image
relative to this reference [31], [35]. A problem encountered

by these approaches is the need to inpaint very large saturated
and underexposed regions in the reference frame. The SVE
acquisition strategy avoids this problem since, in general, all
scene regions are sampled by at least one of the exposures.

Taking advantage of the ability of the proposed framework
to simultaneously estimate missing pixels and denoise well-
exposed ones, we propose a novel approach to generate HDR
images from a single shot acquired with spatially varying
pixel exposures. The proposed approach shows significant
improvements over existing methods.

A. Spatially varying exposure acquisition model

An optical mask with spatially varying transmittance is
placed adjacent to a conventional image sensor to give dif-
ferent exposure levels to the pixels. This optical mask does
not change the acquisition process of the sensor. Hence, the
noise model (13) can be adapted to the SVE acquisition by
including the per-pixel SVE gain op4:

Z(p) ∼ N (gopapτC(p) + µR, g
2opapτC(p) + σ2

R). (14)

In the approach proposed by Nayar and Mitsunaga [18], the
varying exposures follow a regular pattern. Motivated by the
aliasing problems of regular sampling patterns, Schöberl et
al. [36] propose to use spatially varying exposures on a non-
regular pattern. Figure 7 shows examples of both acquisition
patterns. This observation led us to choose the non-regular
pattern in the proposed approach.

4Some noise sources not modeled here, such as blooming, might have an
impact in the SVE acquisition strategy and should be considered in a more
accurate image modeling.
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Input Ground-truth HBE PLEV Schöberl et al. Nayar & Mitsunaga

Fig. 7. Synthetic data. Left: (top) Tone mapped version of the ground-truth image used for the experiments in Section V-C1. (bottom) Regular (left) and
non-regular (right) optical masks for an example of 4 different filters. Right: Results for extracts 1 and 6. From left to right: Input image with random pattern,
ground-truth, results by HBE, PLEV [28], Schöberl et al. [36], Nayar and Mitsunaga [18]. 50% missing pixels (for both random and regular pattern). See
PSNR values for these extracts in Table II. Please see the digital copy for better details reproduction.

B. Hyperprior Bayesian Estimator for Single Shot High Dy-
namic Range Imaging

1) Problem statement: In order to reconstruct the dynamic
range of the scene we need to solve an inverse problem. We
want to estimate the irradiance image C from the SVE image
Z, knowing the exposure levels of the optical mask and the
camera parameters. For this purpose we map the raw pixel
values to the irradiance domain Y with

Y(p) =
Z(p)− µR
gopapτ

. (15)

We take into account the effect of saturation and under-
exposure by introducing the exposure degradation matrix D,
a diagonal matrix given by

(D)p =

{
1 if µR < Z(p) < zsat,
0 otherwise, (16)

with zsat equal to the pixel saturation value. From (14)
and (16), Y(p) can be modeled as

Y(p)|(D)p ∼ N
(
(D)pC(p),

g2opapτ(D)pC(p) + σ2
R

(gopapτ)2

)
.

(17)
Notice that (17) is the distribution of Y(p) for a given exposure
degradation factor (D)p, since (D)p is itself a random variable
that depends on Z(p). The exposure degradation factor must
be included in (17) since the variance of the over or under
exposed pixels no longer depends on the irradiance C(p) but
is only due to the readout noise σ2

R. From (17) we have

Y =DC + N, (18)

where N is zero-mean Gaussian noise with diagonal covari-
ance matrix ΣN given by

(ΣN)j =
g2opapτ(D)pC(p) + σ2

R

(gopapτ)2
. (19)

Then the problem of irradiance estimation can be stated
as retrieving C from Y, which implies denoising the well-
exposed pixel values ((D)p = 1) and estimating the unknown
ones ((D)p = 0).

2) Proposed solution: From (18), image Y is under the hy-
pothesis of the HBE framework introduced in Section II. The
proposed HDR imaging algorithm consists of the following
steps: 1) generate D from Z according to (16), 2) obtain Y
from Z according to (15), 3) apply the HBE approach to Y
with the given D and ΣN.

C. Experiments
The proposed reconstruction method was thoroughly tested

in several synthetic and real data examples. A brief summary
of the results is presented in this section.

1) Synthetic data: Sample images are generated according
to Model (18) using the HDR image in Figure 7 as the ground-
truth. Both a random and a regular pattern with four equiprob-
able exposure levels o = {1, 8, 64, 512} are simulated. The
exposure time is set to τ = 1/200 seconds and the camera
parameters are those of a Canon 7D camera set to ISO 200
(g = 0.87, σ2

R = 30, µR = 2048, vsat = 15000) [27].
Figure 7 shows extracts of the results obtained by the

proposed method, by PLEV [28] (basically an adaptation of
PLE to the same single image framework) and by Schöberl et
al. [36] for the random pattern and by Nayar et Mitsunaga [18]
using the regular pattern. The percentage of unknown pixels
in the considered extracts is 50% (it is nearly the same for
both the regular and non-regular pattern). Table II shows the
PSNR values obtained in each extract marked in Figure 7.
The proposed method manages to correctly reconstruct the
irradiance on the unknown pixels. Moreover, its denoising
performance is much better than that of Schöberl et al. and
Nayar and Mitsunaga, and still sharper than PLEV.

2) Real data: The feasibility of the SVE random pattern has
been shown in [34] and that of the SVE regular pattern in [33].
Nevertheless, these acquisition systems are still not available
for general usage.5 However, as stated in Section V-A, the only

5While writing the last version of this article the authors got aware of
Sony’s latest sensor IMX378. This sensor has a special mode called SME-
HDR, which is a variation of the SVE acquisition principle. Whereas this
sensor was adopted by the Google Pixel smartphone in 2016, the special
SME-HDR mode is never activated by the Google Pixel phone, according
to experts from the company DxO, and we found no way to activate it and
access the raw image.
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Fig. 8. Real data. Left: Tone mapped version of the HDR image obtained by the proposed approach and its corresponding mask of unknown (black) and
well-exposed (white) pixels. Right: Comparison of the results obtained by the proposed approach (first row) and PLEV (second row) in the extracts indicated
in the top image. Please see the digital copy for better details reproduction.

PSNR (dB)

1 (Fig. 7) 2 (Fig. 7) 3 4 5 6

HBE 33.08 33.87 22.95 35.10 36.80 35.66
PLEV 29.65 30.82 22.77 33.99 36.42 34.73

Schöberl et al. 30.38 31.16 21.39 30.04 32.84 31.02
Nayar and Mitsunaga 29.39 30.10 23.24 25.83 30.26 26.90

TABLE II
PSNR VALUES FOR THE EXTRACTS SHOWN IN FIGURE 7.

variation between the classical and the SVE acquisition is the
optical filter. Hence, the noise at a pixel p captured using SVE
with an optical gain factor op and exposure time τ/op and a
pixel captured with a classical camera using exposure time τ
should be very close. We take advantage of this fact in order
to evaluate the reconstruction performance of the proposed
approach using real data.

For this purpose, we generate an SVE image zsve from
four raw images {ziraw}i=1,...,4 acquired with different ex-
posure times. The four different exposure times simulate four
different filters of the SVE optical mask. The value at position
(x, y) in zsve is chosen at random among the four available
values at that position {ziraw(x, y)}i=1,...,4. Notice that the
Bayer pattern is kept on zsve by construction. The images
{ziraw}i=1,...,4 are acquired using a remotely controlled cam-
era and a tripod so as to be perfectly aligned. This protocol
does not allow us to take scenes with moving objects. Let us
emphasize, however, that using a real SVE device, this, as well
as the treatment of moving camera, would be a non-issue.

Figures 8 and 9 show the results obtained from two real
scenes, together with the masks of well-exposed (white) and
unknown (black) pixels (the SVE raw images are included
in Appendix B in the supplementary material). Recall that
among the unknown pixels, some of them are saturated and
some of them are under exposed. Square patches of size 6
and 8 were used for the examples in Figure 9 and Figure 8
respectively. Demosaicing [37] and tone mapping [38] are used
for displaying purposes.

We compare the results to those obtained by PLEV [28].
A comparison against the methods by Nayar and Mitsunaga

and Schöberl et al. is not presented since they do not specify
how to treat raw images with a Bayer pattern. The proposed
method manages to correctly reconstruct the unknown pixels
even in extreme conditions where more than 70% of the pixels
are missing, as for example the last extract in Figure 9.

These examples show the suitability of the proposed ap-
proach to reconstruct the irradiance information in both very
dark and bright regions simultaneously. See for instance the
example in Figure 9, where the dark interior of the building
(which can be seen through the windows) and the highly
illuminated part of another building are both correctly recon-
structed (see the electronic version of the article for better
visualization).

VI. CONCLUSIONS

In this work we have presented a novel image restoration
framework. It has the benefits of local patch characterization
(that was key to the success of NLB as a state of the art
denoising method), but manages to extend its use to more gen-
eral restoration problems where the linear degradation operator
is diagonal, by combining local estimation with Bayesian
restoration based on hyperpriors. This includes problems such
as zooming, inpainting and interpolation. In this way, all these
restoration problems are set under the same framework. It
does not include image deblurring or deconvolution, since
the degradation operator is no longer diagonal. Correctly
addressing deconvolution with large kernels with patch-based
approaches and Gaussian prior models is a major challenge
that will be the subject of future work.

We have presented a large series of experiments both on
synthetic and real data that confirm the robustness of the
proposed strategy based on hyperpriors. These experiments
show that for a wide range of image restoration problems HBE
outperforms several state-of-the-art restoration methods.

This work opens several perspectives. The first one concerns
the relevance of the Gaussian patch model and its relation to
the underlying image patches manifold. If this linear approx-
imation has proven successful for image restoration, its full
relevance in other areas remains to be explored, especially
in all domains requiring to compare image patches. Another
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Fig. 9. Real data. Left: Tone mapped version of the HDR image obtained by the proposed approach and its corresponding mask of unknown (black) and
well-exposed (white) pixels. Right: Comparison of the results obtained by the proposed approach (first row) and PLEV (second row) in the extracts indicated
in the top image. Please see the digital copy for better details reproduction.

important related question is the one of the estimation of
the degradation model in images jointly degraded by noise,
missing pixels, blur, etc. Restoration approaches generally rely
on the precise knowledge of this model and of its parameters.
In practice however, we often deal with images for which the
acquisition process is unknown, and that have possibly been
affected by post-treatments. In such cases, blind restoration
remains an unsolved challenge.

Finally, we have presented a novel application of the pro-
posed general framework to the generation of HDR images
from a single variable exposure (SVE) snapshot. The SVE
acquisition strategy allows the creation of HDR images from a
single shot without the drawbacks of multi-image approaches,
such as the need for global alignment and motion estimation
to avoid ghosting problems. The proposed method manages
to simultaneously denoise and reconstruct the missing pixels,
even in the presence of (possibly complex) motions, improving
the results obtained by existing methods. Examples with real
data acquired in very similar conditions to those of the SVE
acquisition show the capabilities of the proposed approach.

APPENDIX A
ALTERNATE MINIMIZATION SCHEME CONVERGENCE

We study in the following the convergence of the alternate
minimization algorithm 1. To show the main convergence
result, we need the following lemma

Lemma 1. The function f is coercive on Rn(M+1)×S++
n (R).

Proof. We need to show that

lim
‖({Ci},µ,Λ)‖→+∞

f({Ci},µ,Λ) = +∞.

Now, ‖({Ci},µ,Λ)‖ → +∞ if and only if ‖Ci‖ → +∞ or
‖µ‖ → +∞ or ‖Λ‖ → +∞.

The matrix Λ being positive-definite, the terms
1
2

∑M
i=1(Ci − µ)TΛ(Ci − µ) and κ

2 (µ − µ0)
TΛ(µ − µ0)

are both positive. Thus

f({Ci},µ,Λ) ≥ −ν − n+M

2
log |Λ|

+
1

2
trace[νΣ0Λ].

Now, this function of Λ is convex and coercive on S++
n (R),

which implies that f({Ci},µ,Λ)→ +∞ as soon as ‖Λ‖ →
+∞. It also follows that the previous function of Λ has a
global minimum that we denote by mΛ. We can now write

f({Ci},µ,Λ) ≥ mΛ +
1

2

M∑
i=1

(Ci − µ)TΛ(Ci − µ)

+
κ

2
(µ− µ0)

TΛ(µ− µ0)

and this function of ({Ci},µ) clearly tends towards +∞ as
soon as ‖Ci‖ → +∞ or ‖µ‖ → +∞.

We now show the main convergence result for our alter-
nate minimization algorithm. The proof adapts the arguments
in [21] to our case.

Proposition 3. The sequence f({Cl
i},µl,Λ

l) converges
monotonically when l → +∞. The sequence {{Cl

i},µl,Λ
l}

generated by the alternate minimization scheme has at least
one accumulation point. The set of its accumulation points
forms a connected and compact set of partial optima and
stationary points of f , all having the same function value.

Proof. The sequence f({Cl
i},µl,Λ

l) obviously decreases at
each step by construction. The coercivity and continuity of
f imply that this sequence is also bounded from below, and
thus converges. The convergence of f({Cl

i},µl,Λ
l) implies

that the sequence {{Cl
i},µl,Λ

l} is bounded. It follows that it
has at least one accumulation point ({C?

i },µ?,Λ
?) and that

there exists a strictly increasing sequence (lk)k∈N of integers
such that {{Clk

i },µlk ,Λ
lk}k∈N converges to {{C?

i },µ?,Λ
?}.

Now, we can show that such an accumulation point is a par-
tial optimum of f , i.e. that f({C?

i },µ?, .) attains its minimum
at Λ∗ and f(., .,Λ∗) attains its minimum at ({C?

i },µ?). By
construction,

f({Clk},µlk ,Λlk) ≤ f({Clk},µlk ,Λ), ∀Λ ∈ S++
n (R)

which implies by continuity of f that

f({C∗},µ∗,Λ∗) = argmin
Λ∈S++

n (R)
f({C∗},µ∗,Λ). (20)
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Let us denote G({C},µ,Λ) = ({C′},µ′,Λ′) with

({C′},µ′) = argmin
({C,}µ)

f({C},µ,Λ)

Λ′ = argmin
Λ

f({C′},µ′,Λ).

The alternate minimization scheme consists in updating G
at each iteration. From Equations (6), (7), and (8), we see
that G is explicit and continuous. Since {lk}k∈N is strictly
increasing, for each k ∈ N∗, lk ≥ lk−1 + 1. The sequence
{f({Cl

i},µl,Λ
l)}l∈N decreases, so

f(G({Clk−1},µlk−1 ,Λlk−1)) = f({Clk−1+1},µlk−1+1,Λlk−1+1)

≥ f({Clk},µlk ,Λlk)

≥ f(G({Clk},µlk ,Λlk)).

Therefore, as k → +∞, since G is continuous, it follows that

f(G({C∗},µ∗,Λ∗)) = f({C∗},µ∗,Λ∗).

Now, writing ({C∗∗},µ∗∗,Λ∗∗) = G({C∗},µ∗,Λ∗), we get

f({C∗},µ∗,Λ∗) ≥ argmin
(C,µ)

f({C},µ,Λ∗) = f({C∗∗},µ∗∗,Λ∗)

≥ argmin
Λ

f({C∗∗},µ∗∗,Λ) = f({C∗∗},µ∗∗,Λ∗∗).

We can conclude that all these terms are equal and in particular

f({C∗},µ∗,Λ∗) = f({C∗∗},µ∗∗,Λ∗) = argmin
(C,µ)

f({C},µ,Λ∗).

(21)

From (20) and (21) we deduce that the accumulation point
({C?},µ?,Λ?) is a partial optimum of f and since f is
differentiable, it is also a stationary point of f . Moreover,
since f(., .,Λ∗) is strictly convex and has a unique mini-
mum, it follows from (21) that ({C∗∗},µ∗∗) = ({C∗},µ∗).
As a consequence, Λ∗∗ = argminΛ f({C∗∗},µ∗∗,Λ) =
argminΛ f({C∗},µ∗,Λ) = Λ∗. Therefore, the accumulation
point ({C?},µ?,Λ?) (and actually any accumulation point of
the sequence) is also a fixed point of function G.

We have shown that accumulation points of the sequence
{{Cl},µl,Λl} are partial optima of f and fixed points of
the function G. The set of accumulation points is obvi-
ously compact. Let us show that it is also a connected
set. First, observe that whatever the norm ‖‖, the sequence
‖({Cl+1},µl+1,Λl+1)−({Cl},µl,Λl)‖ converges to 0 when
l→∞. If it was not the case, it would be possible to extract a
subsequence ({Clk},µlk ,Λlk) converging to an accumulation
point ({C∗},µ∗,Λ∗) while ({Clk+1},µlk+1,Λlk+1) con-
verges to a different accumulation point ({C′},µ′ ,Λ

′
), but we

know that it is impossible since ({Clk+1},µlk+1,Λlk+1) =
G({Clk},µlk ,Λlk) would also tend toward ({C∗},µ∗,Λ∗).
The sequence ({Cl},µl,Λl) being bounded and such that
‖({Cl+1},µl+1,Λl+1)− ({Cl},µl,Λl)‖ converges to 0, the
set of its accumulation points is connected (see [39]). The
fact that all accumulation points have the same function
value is obvious since the sequence {f({Cl},µl,Λl)}l∈N
decreases.
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Descartes, ENS Cachan (France) and Universidad
de la Republica (Uruguay), respectively, where he
is an Associate Professor since 2004. His current
interests as a CNRS Research Scientist at Telecom
ParisTech include image restoration and analysis,
subpixel stereovision and applications to earth ob-
servation, high quality digital photography and film
restoration.

Julie Delon studied mathematics from the École
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APPENDIX A
MAXIMUM A POSTERIORI

In the following, we derive the optimality equations for the
function

f({Ci}, µ,Λ) := − log p({Ci}, µ,Λ | {Zi})

=
1

2
(Zi −DiCi)

TΣ−1
Ni

(Zi −DiCi)

− ν − n+M

2
log |Λ|+ 1

2

M∑
i=1

(Ci − µ)TΛ(Ci − µ)

+
κ

2
(µ− µ0)

TΛ(µ− µ0) +
1

2
trace[νΣ0Λ],

over the set RnM × Rn × S++
n (R), with S++

n (R) the set of
real symmetric positive definite matrices of size n.

A. Optimality equations

Proposition 1. Assume that Λ is fixed and that ΣNi

and Ci are independent. Then the function ({Ci}, µ) 7→
f({Ci}, µ,Λ) is convex on Rn(M+1) and has a unique
minimizer ({Ĉi}, µ̂), given by

µ̂ =

(
κId +

M∑
i=1

AiDi

)−1( M∑
i=1

AiZi + κµ0

)
. (1)

Ĉi = Ai(Zi −Diµ̂) + µ̂, ∀i ∈ {1, . . .M} (2)

with Ai = Λ−1DT
i (DiΛ

−1DT
i + ΣNi)

−1.

Proof. Showing that f is convex in ({Ci}, µ) is a simple
exercise, left to the reader. It is also easy to show that the
minimum of the quadratic function f is unique. Indeed the
expression of this unique solution involves the inversion of a
positive definite matrix. Differentiating f with respect to each
Ci yields

∂f({Ci}, µ,Λ | {Zi})
∂Ci

= −DT
i Σ−1

Ni
(Zi−DiCi)+Λ(Ci−µ).

(3)
Then, equating to zero, the explicit solution must satisfy

Ci = Λ−1DT
i (DiΛ

−1DT
i + ΣNi

)−1(Zi −Diµ) + µ

= Ai(Zi −Diµ) + µ. (4)

We recognize here a Wiener-like estimator for each Ci.

Differentiating with respect to µ yields

f({Ci}, µ,Λ | {Zi})
∂µ

= Λ

M∑
i=1

(µ−Ci) + κΛ(µ− µ0), (5)

which is zero if and only if (assuming Λ is invertible)

µ =
MC + κµ0

M + κ
, with C =

1

M

M∑
i=1

Ci. (6)

Replacing the Ci’s in the previous expression of µ by their
the expression as minimizers (Eq. (4)) leads to

µ =

∑M
i=1Ai(Zi −Diµ) +Mµ+ κµ0

M + κ
,

Finally, grouping all the terms in µ on the left hand side of
the equation, we obtain the expected explicit solution

µ = (κId +

M∑
i=1

AiDi)
−1(

M∑
i=1

AiZi + κµ0). (7)

Proposition 2. Assume that the variables ({Ci}, µ) are fixed.
The function Λ 7→ f({Ci}, µ,Λ) is convex on S++

n (R) and
its unique minimizer is

Λ̂ =

(
νΣ0 + κ(µ− µ0)(µ− µ0)

T +
∑M

i=1(Ci − µ)(Ci − µ)T

ν +M − n

)−1

.

(8)

Proof. When ({Ci}, µ) is fixed, the function f is convex in
Λ. Indeed, f is a sum of linear terms in Λ and a term in
− log |Λ| which is also convex [1]. In order to compute the
partial derivative with respect to Λ (see for instance [2] for
these derivations), observe that

f({Ci}, µ,Λ) = −ν − n+M

2
log |Λ| (9)

+
1

2

M∑
i=1

(Ci − µ)TΛ(Ci − µ)

+
κ

2
(µ− µ0)TΛ(µ− µ0)

+
1

2
trace[νΣ0Λ].

The derivative of the first term is (Λ is symmetric)

−ν − n+M

2
(Λ−1)T = −ν − n+M

2
Λ−1.
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Fig. 1. Left to right: Chosen patch indicated by the black box. Decay of the eigenvalues of the patch model covariance matrix Σ. Patch model means µ by
each method. Ground-truth and restored patches by each method.

The derivative of the second and third terms are

1

2

M∑
i=1

(Ci − µ)(Ci − µ)T

and
κ

2
(µ− µ0)(µ− µ0)T .

Finally, the derivative of the fourth term is

1

2
νΣT

0 =
1

2
νΣ0.

Then it follows that

∂f({Ci}, µ,Λ | {Zi})
∂Λ

= −ν − n+M

2
Λ−1

+
1

2

M∑
i=1

(Ci − µ)(Ci − µ)T

+
κ

2
(µ− µ0)(µ− µ0)T

+
1

2
νΣ0.

Equating to zero, this yields the unique minimizer

Λ−1 =
νΣ0 + κ(µ− µ0)(µ− µ0)T +

∑M
i=1(Ci − µ)(Ci − µ)T

ν +M − n
.

(10)

B. Affine risk minimizer

Proposition 3. Assume that the noise has zero mean and is
not correlated to the signal Ci. Then, the affine estimator C̃i

that minimizes the Bayes risk E[(C̃i −Ci)
2] is given by

C̃i = Λ−1DT
i (DiΛ

−1DT
i + ΣNi)

−1(Zi−Diµ) + µ. (11)

Proof. Let us first consider the case µ = 0. If we consider
linear estimators only, we look for the matrix W̃ that verifies

W̃ = arg min
W

E[(WZi −Ci)
2]. (12)

Hence, W̃ must verify

E[(W̃Zi −Ci)Z
T
i ] = 0, (13)

and we have

W̃ = E[CiZ
T
i ](E[ZiZ

T
i ])−1. (14)

Since the noise Ni has zero mean and is not correlated to the
signal Ci, the element (p, q) of matrix E[CiZ

T
i ] is given by

E[CiZ
T
i ]p,q = E[Ci(DiCi + Ni)

T ]p,q (15)
= E[Cp

i (DiCi)q + Cp
iN

q
i ] (16)

= (Λ−1DT
i )p,q. (17)

Also, the element (p, q) of matrix E[ZiZ
T
i ] is given by

E[ZiZ
T
i ]p,q = E[(DiCi + Ni)(DiCi + Ni)

T ]p,q (18)

= E[(DiCi)p(DiCi)
T
q + (DiCi)p(Ni)

T
q (19)

+ (Ni)p(DiCi)q + (Ni)p(Ni)
T
q ] (20)

= (DiΛ
−1DT

i )p,q + (ΣNi
)p,q. (21)

Hence we have,

W̃ = Λ−1DT
i (DiΛ

−1DT
i + ΣNi

)−1. (22)

In the general case where µ 6= 0, we can always consider
the centered version of the patches (Zi−Diµ) and apply the
previous result. Therefore, the estimator of Ci that minimizes
the risk function E[(C̃−Ci)

2] among all affine estimators is
given by (11).

APPENDIX B
INITIALIZATION

A good initialization is crucial since we aim at solving
a non-convex problem through an iterative procedure. Yu et
al. [3] propose to initialize the PLE algorithm by learning
the K GMM covariance matrices from synthetic images of
edges with different orientations as well as the DCT basis
to represent isotropic patterns. As they state, in dictionary
learning, the most prominent atoms represent local edges
which are useful at representing and restoring contours. Hence,
this initialization helps to correctly restore corrupted patches
even in quite extreme cases.

Each covariance matrix Σk, k = 1, . . . ,K−1, corresponds
to one of K − 1 orientations, uniformly sampled from direc-
tions 0 to π. For a given orientation θ, a synthetic black-and-
white image is generated and patches that touch the contour at
different positions are randomly sampled from it. A covariance
matrix is then computed from the sampled patches. The first
eigenvector of the covariance matrix, which is almost constant,
is replaced by a constant vector. This allows a class k of a
given orientation to restore patches having different means.
Up to a certain gray level difference, dark or bright edges
with the same orientation are correctly represented by the
same class. A Gram-Schmidt orthogonalization is computed



JOURNAL OF LATEX CLASS FILES, VOL., NO., MARCH 2017 3

on the other eigenvectors to ensure the orthogonality of the
basis. The eigenvalues of all bases are initialized with the same
values, chosen to have a fast decay. Lastly, the DCT basis is
added to represent isotropic image patterns, making a total
of K classes. The mean of each class µk, k = 1, . . . ,K, is
initialized to zero. The authors claim that they have found
in practice that K = 19 classes (i.e. 18 orientations, 10
degrees apart) give a correct reconstruction and are a good
compromise between performance and complexity for a patch
size of 8× 8. The fact that the algorithm is applied in regions
of size 128× 128, and therefore localized, also explains why
this a priori small number of classes can be suitable to describe
all image patches.

To initialize the proposed algorithm, we follow the approach
by Yu et al. [3] and compute the K covariance matrices
Σk as previously described. Then, each image patch zi is
reconstructed under each class k = 1, . . . ,K as

C̃k
i = ΣkD

T
i (DiΣkD

T
i + ΣNi)

−1(Zi−Diµk) +µk. (23)

The best suited class k̃i is chosen as the one maximizing
the posterior probability of the patch p(Ci|zi, µk,Σk) over
k assuming C = C̃k

i :

k̃i = arg max
k

log p(C|zi, µk,Σk)

= arg min
k

(
(zi −DiC̃

k
i )TΣ−1

N (zi −DiC̃
k
i )

+ (C̃k
i − µk)TΣ−1

k (C̃k
i − µk) + ln |Σk|

)
. (24)

The first oracle is thus created by aggregating the estimations
of all patches corresponding to the chosen classes. In other
words, the oracle of the first iteration of the proposed approach
is the output of the first iteration of the PLE algorithm.
Algorithm 1 summarizes the initialization steps.

Algorithm 1: Summary of the initialization procedure.
Input: Z, D, K
Output: Coracle

1 Decompose Z and D into overlapping patches.
2 Compute the covariance matrix of the K classes from

synthetic images of edges plus the DCT.
3 Project all patches into the K classes using (23) and

chose the best class using (24).
4 Compute the first oracle Coracle aggregating the

estimations of all patches for the chosen class.

APPENDIX C
EXTRA EXPERIMENTAL RESULTS

A. Synthetic Degradation
In this section we include further results showing the

performance of the proposed approach. Table I shows the
structural similarity index (SSIM) obtained by each method
under the different degradation models.

B. Real Data
Figures 2 and 3 show the SVE raw images used to create

the HDR examples shown in Section V.C, figures 8 and 9
respectively.

APPENDIX D
COMPARISON TO THE PLE RESTORATION

Despite close, HBE and PLE have fundamental differences
that make the obtained models considerably different. The
two main differences are the computation of the model pa-
rameters µ and Σ and the group patches involved in this
computation. PLE alternates between the patch restoration and
the maximum-likelihood estimation of the model parameters,
whereas in the case of HBE, it uses a joint maximum a
posteriori formulation to estimate both the image patches and
the parameters µ and Σ, thanks to a Bayesian hyperprior
model on these parameters. In the case of PLE, the included
patches are all those belonging to the most probable cluster,
while in the case of HBE are all patches similar to the current
one in a local search window (often much fewer than in the
case of PLE).

Both algorithms share the same initialization. Figure 1
shows the final model after subsequent iterations of each
approach, represented by the decay of the covariance matrix
eigenvalues and the corresponding means, for the patch in-
dicated by the black box in the same figure. Figure 1 also
shows the final patch reconstructions obtained by each method,
clearly showing the performance difference already presumed
by the difference in the patch models.

Figure 4 shows examples of the 18 patches used by HBE
to compute the model and the cluster map produced by PLE,
which indicates the cluster (among the possible 19) assigned
to each pixel. In this example, the chosen patch belongs to
the cluster represented by the blue color (indicated in white
in the binary image next to the cluster map). As it can be
seen in Figure 4 the PLE model includes much more varied
patches (all those with value 0 in the cluster image). PLE
mixes constant patches from the arm, giving a much smoother
result.
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Fig. 2. SVE raw image used in the HDR generation example in Section V.C Figure 8

Fig. 3. SVE raw image used in the HDR generation example in Section V.C Figure 9
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barbara 0.89 0.88 0.88 0.83 0.81 0.81 0.80 0.78 0.78 0.77 0.75 0.76 0.81 0.80 0.77 0.79 0.72
boat 0.91 0.90 0.89 0.82 0.80 0.78 0.78 0.75 0.73 0.73 0.70 0.69 0.75 0.70 0.68 0.69 0.66

traffic 0.87 0.86 0.87 0.82 0.80 0.81 0.79 0.77 0.79 0.76 0.75 0.77 0.84 0.81 0.83 0.82 0.74
TABLE I

RESULTS OF THE INTERPOLATION, COMBINED INTERPOLATION AND DENOISING, DENOISING AND ZOOMING TESTS DESCRIBED IN SECTION IV-A.
PATCH SIZE OF 8× 8 FOR ALL METHODS IN ALL TESTS. PARAMETER SETTING FOR INTERPOLATION, COMBINED INTERPOLATION AND DENOISING, AND

ZOOMING, HBE: αH = 1, αL = 0.5, PLE: σ = 3, ε = 30, K = 19 [3], EPLL: DEFAULT PARAMETERS [4], E-PLE: PARAMETERS SET AS SPECIFIED
IN [5]. PARAMETER SETTING FOR DENOISING, HBE: αH = αL = 100, NLB: CODE PROVIDED BY THE AUTHORS [6] AUTOMATICALLY SETS

PARAMETERS FROM INPUT σ2 , EPLL: DEFAULT PARAMETERS FOR THE DENOISING EXAMPLE [4]
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Original image PLE cluster map Binarized PLE cluster map HBE patch examples

Fig. 4. Left: Original image with considered patch indicated by the black box, cluster map obtained by PLE for the corresponding image and binarized
version of the cluster map. Each color of the PLE cluster map indicates the cluster, among the possible 19, assigned to each pixel. The binary image shows
in white all pixels assigned to the same cluster as the considered patch. As it can be seen, pretty varied patches are being combined. Right: Four examples
of the patches used by HBE for the restoration of the considered patch.


