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Abstract: We numerically study the evolution of the spectrum of parametric resonance or 

modulation instability sidebands in aperiodic dispersion oscillating fibers. We separately 

consider a linear variation along the fiber of either the spatial period, the average dispersion, or 

the amplitude of the dispersion oscillation. We found that this linear variation of the dispersion 

oscillating fiber parameters may provide different novel mechanisms for the splitting of the 

resonance sideband spectrum, owing to coherent interference between quasi-resonant waves that 

are generated at different points along the fiber.  
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1. Introduction 

Modulation instability (MI) is a nonlinear process that has been widely investigated in various 

fields of physics including plasmas, hydrodynamics and optics, to cite a few. In the presence of a 

high power continuous wave (CW), MI leads to the emergence and amplification of gain 

sidebands in the wave spectrum. In nonlinear fiber optics, such a process has been demonstrated 

in fibers with anomalous, constant group velocity dispersion (GVD) [1], as well as in normal 

GVD fibers by enabling the fulfillment of the nonlinear phase-matching condition through either 

fourth order dispersion [2; 3], birefringence or a multimodal structure [4; 5; 6]. However, the 

efficiency of such parametric processes may highly suffer from unwanted longitudinal 

fluctuations of the fiber parameters, with a rapid drop of the gain as well as a broadening of its 

bandwidth. Ultimately, parametric gain may fully disappear in the presence of fiber fluctuations 

[4; 5; 6], which leads to the requirement of sophisticated devices or fiber designs [2; 3; 6; 7; 8]. 

The efficiency of pulse reshaping processes may also be seriously impaired by stochastic 

fluctuations of the fiber parameters [9].  

To the contrary, whenever the longitudinal variations of the fiber parameters are quite large, 

periodic and controlled such as in loss (or nonlinearity) [10], dispersion [11] or polarization [12; 

13] managed fiber transmission or laser systems, new deterministic MI or parametric resonance 

(PR) sidebands appear. In this work, we shall use the terms of MI or PR as fully equivalent in 

our description of the sideband spectrum generation process. As a matter of fact, the periodic 

oscillation of the fiber dispersion leads to the quasi-phase-matching (QPM) of the nonlinear four-

wave mixing (FWM) process. As a result, unequally spaced MI sidebands can emerge [14]. A 

renewed experimental and theoretical interest in these studies has been recently stimulated by the 

availability of fibers presenting a longitudinal and periodic modulation of their dispersion 
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properties [12; 15]. Recent experimental works have confirmed the QPM-induced MI process in 

the normal GVD regime of microstructured dispersion oscillating fiber (DOF) around 1 m [16; 

17], as well as of non-microstructured highly nonlinear DOF at telecom wavelengths [16]. 

However, one may wonder how in this case deviations from a strictly periodic evolution of 

the fiber parameters may affect the QPM-MI spectrum. Can it be beneficial to the enlargement of 

the sideband bandwidth to use a chirped DOF, in a manner that is similar to the approach 

commonly used in the context of chirped QPM quadratic crystals? Or is the longitudinal 

variation of the parameters of the fiber always detrimental to the parametric resonance gain? To 

answer this important question, in this work we numerically study the impact of a linear 

longitudinal evolution of the main parameters of a DOF. Therefore our analysis is organized as 

follows. In a first section, we describe our numerical model and the specific DOF under 

investigation. Next, by using systematic simulations and an approximate approach that is based 

on the Floquet theorem and the associated linear stability analysis, we separately discuss the 

influence of each parameter, i.e., the spatial dispersion oscillation period, the value of the 

average dispersion, and finally the amplitude of the dispersion oscillations.  

2. Model and situation under investigation 

The evolution of the optical field   in an optical fiber can be described by the nonlinear 

Schrödinger equation (NLSE) that includes both the Kerr nonlinearity  and the longitudinally 

varying second-order dispersion 2(z) 
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where   is the complex electrical field, z is the propagation distance and t is the reduced time. 
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MI or parametric resonance induced by the longitudinal variations of chromatic dispersion was 

theoretically investigated before in a wide range of configurations, ranging from sinusoidal 

profiles with a spatial period of a few tens of meters [18; 19], up to dispersion-managed systems 

with periods of several kilometers [16; 18]. Let us consider a fiber dispersion profile that evolves 

with distance z according to the following sinusoidal rule 

 b
2
(z) = b

2av
+ b

2amp
sin 2p z / L( ) , (2) 

where  is the spatial period of the dispersion oscillation, 2av is the average dispersion of the 

fiber, and 2amp  is half of the peak-to-peak amplitude of the dispersion variation. In the presence 

of sinusoidal longitudinal GVD variations, and when pumped by a continuous wave of power P, 

the QPM of FWM (or MI, or PR) leads to the appearance of resonant gain sidebands, whose 

angular frequency shift relative to the pump can be analytically predicted as follows [12; 13; 20; 

21] : 
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with 1, 2,3p   The corresponding exponential gain coefficient for the p
th

 sideband may be 

estimated by the analytical expression [12] : 
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where Jp is the Bessel function of order p. 

In this contribution, we analyze by means of extensive numerical simulations the spectrum of 

parametric resonances in a quasi-periodic DOF. Specifically, we consider a linear variation with 



 5 

propagation distance z of each of the three parameters in the right hand side of Eq.(2).  By 

expressing any of these parameters as Q, we set 

 ( ) 1
2

z
Q z Q

L



 

   
 

 (5) 

Here Q stands for either 2av, or 2amp; Q  is the average value of the quantity under study, 

and   characterizes the rate of evolution of Q. Positive values of  indicate that the value of the 

Q parameter grows larger along the propagation distance. The ratio of the peak-to-peak 

amplitude of fluctuation Q over Q is ||. The values of the parameters Q0 and QL at the input 

and output of the fiber are therefore  0 1
2

Q Q
 

  
   

 and  1
2

LQ Q
 

  
 

, respectively. 

Inspired by the highly nonlinear DOF that was experimentally used in [22], we consider here 

a DOF with the following average values:  =20 m, 2av = 2 ps
2
.km

-1
 and       

 2amp = 2  ps
2
.km

-

1
. 

 
We set the overall fiber length equal to 400 m, and its nonlinear coefficient = 10 W

-1
.km

-1
. 

The DOF is pumped by a CW pump with the average power P = 4 W at the telecommunication 

wavelength =1550 nm. Examples of the resulting dispersion profiles for the different cases of 

linear variation  of either one of the 2av, or 2amp  parameters are illustrated in Fig. 1. 
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Figure 1 : Evolution of the longitudinal dispersion profile of a DOF with sinusoidal dispersion modulation (grey 

line), or for a quasi-periodic DOF with linear evolution of either: the spatial period (panel a, black line,  = 0.1); the 

average dispersion (panel b, black line,  = 0.5); the amplitude of the dispersion fluctuations (panel c, black line,   

= 2). 

 

We numerically solved the NLSE (1) by the standard split-step Fourier algorithm, including a 

weak input white noise seed: the results were averaged over 12 independent noise shots. We 

consider here separately the impact of a longitudinal variation of either 2av, or 2amp. We also 

took advantage of the LSA based on the Floquet theorem, which proved to be a very powerful 

tool for the analysis of the evolution of the MI gain spectrum in DOFs [18; 19; 23]. Clearly the 

Floquet theorem is strictly valid for a periodic DOF only: nevertheless, it may still be used as an 

approximate tool to compute the sideband spectrum in quasi-periodic DOFs as well. Indeed, in 

Ref. [17; 21; 24; 25] we have shown that the Floquet method may still be used to obtain an 

approximate averaged description of the MI gain spectrum in the presence of fiber loss (or gain). 

The way to compute the gain profile g(, Q) by the Floquet method is to consider first a constant 
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value of Q, obtain its corresponding PR spectrum, and then compute the overall MI spectrum gF 

by simply averaging over the probability distribution of the Q parameter  

 
0

( ) ( , ) ( ) ( , )
LQ

F
Q

d dg g Q pdf Q Q g Q Q      (6) 

3. Impact of the spatial period variation 

We start our study by investigating the influence of a spatial dispersion oscillation period that 

varies linearly with the propagation distance (see Fig. 1(a)). The resulting spectra (or Arnold 

resonance tongues  [24]) are plotted in Fig. 2(a), and highlight the rapid fall of the gain that is 

experienced by the various sidebands when || is increased. We may also note that the unequally 

spaced and initially narrow spectral sidebands continuously broaden and eventually may overlap.  

The splitting and fan-out of the resonant sideband frequencies is strikingly reminiscent to the 

Stark splitting of the electron resonances or spectral lines of atoms and molecules in the presence 

of an applied electric field [26; 27]. Moreover, Fig. 2(a) also shows that an oscillatory pattern 

develops in the sideband amplitudes within the resonance tongues. In Fig. 2(b), we evaluate the 

tolerance p on , that we defined as follows: p =max-min where max and min are the 

values of  leading to a decrease of 10 dB of the maximum gain of the p
th

 sideband. p rapidly 

decreases with the order of the gain sideband, from a value of 0.26 for the first sideband down to 

a value below 0.05 for the 6
th

 sideband. As a practical consequence, we may infer that even very 

small deviations from a strictly periodic dispersion oscillation structure may hamper the 

development of high-order gain sidebands, and that a tight drawing precision is therefore 

required for generating a large set of spectral lines. 
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Figure 2 : (a) Evolution of the MI gain spectrum (or Arnold resonance tongues) according to the amplitude of the 

linear change of the spatial period. Results are obtained from the numerical integration of the NLSE. (b) Evolution 

of    at -10dB according to the QPM sideband number p: results from numerical simulations (black triangles) are 

compared with results from the Floquet LSA (grey circles) 

 

Details of the spectra obtained for  = -0.1 and  = 0.1 are provided in Fig. 3(a1), and 

compared with the gain spectrum that obtained in perfectly periodic conditions. We may note 

here that the sign of  has a crucial influence on the sideband spectrum, as can also be observed 

by noting the tilt of the spectrum in Fig. 2(a). In other words, according to the direction of 

propagation along the chirped DOF, the sideband spectrum may exhibit a shift towards either 

lower or higher frequencies whenever the dispersion oscillation period grows larger or smaller, 

respectively. 

In order to gain a simple qualitative understanding of the observed evolution of the resonance 

tongues, we computed the corresponding sideband spectrum as it is predicted by the Floquet 
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linear stability analysis: Fig. 3(b) summarizes the evolution of the gain g() for a strictly 

periodic DOF. In agreement with the analytical expression for the sideband position given in 

Eq. (3), the central frequencies of the gain sidebands are strongly affected by changes of the 

oscillation period . This explains the observed broadening of the average gain profile resulting 

from Eq. (6) (see Fig. 3(c)), as well as the dramatic decrease of the gain values. Quite 

unexpectedly, the approximate Floquet method approach may indeed qualitatively well 

reproduce the numerically observed gain drop that is summarized in Fig. 2(b). Nevertheless, the 

Floquet method approach is unable to capture some of the numerically observed features, such as 

the previously discussed spectral asymmetry of the sideband spectrum obtained as the direction 

of propagation is reversed in the linearly chirped DOF. Clearly, the main a limitation inherent in 

using Eq. (6) is that the average gain is a sum of positive contributions: the overall gain may 

intrinsically only increase upon propagation. Hence it is not possible to reproduce with Eq. (6) 

the large spectral oscillations of the gain sidebands: as it can be seen in Fig. 3(a2), instead of 

strong oscillations, a kind of plateau is predicted. This means that the sideband splitting and 

associated rapid amplitude oscillations with frequency of the resonance tongues are due to the 

coherent constructive (or destructive) interference among the sidebands that are generated at 

different points along the chirped DOF. Moreover, Eq. (6) leads to the same result irrespective of 

the sign of : consequently, it fails in predicting the asymmetric spectral evolution that is 

obtained by the full numerical simulation of the NLSE. 
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Figure 3 : (a) Output spectrum obtained from numerical simulations (panel a1) without linear evolution of  (black 

line), for  = -0.1 (grey curve) and  = 0.1 (light grey curve). Result from Eq. (6) are plotted on panel (a2) for || = 

0.1 (grey line). (b) Evolution of the QPM MI spectrum  g()  according to  for a strictly periodic DOF, as 

predicted by the Floquet LSA.  (c) Evolution of the output spectrum according to || as predicted by the use of the 

approximate approach based on Eq. (6). Same colormap as Fig. 2. 
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4. Impact of the average dispersion variation 

Let us investigate next the influence on the Arnold resonance tongues of a longitudinal change of 

the average DOF dispersion (see Fig. 1(b)). To this end, we carried out a numerical study similar 

to that of section 3. The corresponding results are summarized in Fig. 4 and Fig. 5. As it can be 

seen in Fig.4, in this case the sideband splitting and fan-out as the amplitude of the average 

dispersion excursion grows larger is now symmetric with respect to the direction of variation of   

 (or 2av). On the other hand, we may also note from Figs.4-5 several features that are common 

with the trends observed in the presence of a chirped spatial period . Namely, the broadening to 

the gain sidebands results owing to the change of p according to 2av as predicted by Eq.(3). 

Moreover, the peak sideband gain is strongly sensitive to the presence of a chirp: its amplitude 

drops and exhibits strong frequency oscillations. Finally, an overlap of the different gain 

sidebands is also observed in Fig.4 and Fig.5. Once again, in spite of some limitations owing to 

the fact that the Floquet method is only rigorously applicable to a perfectly periodic DOF, the 

approximate approach that is based on Eq. (6) may provide a useful insight on the evolution of 

the gain bandwidth or the range of .  But even if the difference between DOF with constant 

parameters and the aperiodic DOF under study seem relatively small (see Fig. 1(b) plotted for = 

0.5), Eq. (6) is unable to capture the rapidly oscillating spectral pattern that is observed when the 

gain sideband spectrum is substantially broadened. Once again, the sideband splitting and 

amplitude oscillations within the Arnold resonance tongues result from the coherent (or phase-

sensitive) summation of sidebands generated at different points of the linearly chirped DOF. 
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Figure 4 : (a) Evolution of the MI gain spectrum or resonance tongues vs. the amplitude of the linear variation of 

the average dispersion. Results are obtained from the numerical integration of the NLSE. (b) Evolution of  at -

10dB vs. the QPM sideband order: results from numerical simulations (black triangles) are compared with results 

from the Floquet LSA (grey circles) 
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Figure 5 : (a) Output spectrum obtained from numerical simulations (panel a1) without a linear evolution of 2av 

(black curve), and for  = -0.25 (grey line) or  = 0.25 (light grey curve). Result from Eq. (6) are plotted on panel 

(a2) for || = 0.25 (grey curve). (b) Evolution of the QPM MI spectrum according to 2av for a strictly periodic DOF 

as predicted by the Floquet linear stability analysis.   (c) Evolution of the output spectrum according to || as 

predicted by the use of the approximate approach based on Eq. (6).  Same colormap as Fig. 4. 
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5. Impact of the amplitude of the dispersion oscillation 

In this last section, we shall examine the impact of a linear variation of the amplitude of the fiber 

dispersion oscillation on the shape and amplitude of the Arnold resonance tongues. As we shall 

see, in this case the evolution of the sideband spectrum is strongly dependent on the value of the 

(constant) average dispersion 2ave. Let us consider first the case with 2ave  = 2 ps
2
/km. The 

corresponding results, obtained from the numerical integration of the NLSE, are summarized on 

Fig. 6(a). As it can be seen, in this case the linear chirp of the oscillation amplitude has a quite 

limited impact on the sideband spectrum, contrary to the two previous cases discussed in sections 

2 and 3. Remarkably, Fig.6(a) shows that  may vary over a relatively large range, without 

significantly affecting the peak gain values. Indeed, Fig. 6(b) confirms that  may be as high as 

3 and even higher, without decreasing the gain in the first QPM by more than 3 dBs. We may 

also note that the gain bandwidth does not broaden significantly, even when deviations from 

constant 2amp as large as = 2 are imposed (see Fig. 1(c) for an illustration of the dispersion 

evolution for = 2). Finally, Fig. 6(a) shows that the spectrum deformation is fully symmetric as 

the sign of  is changed. This means that in this case the same spectrum results at the output of 

the chirped DOF, irrespective of the propagation direction. 

Now, a relatively good qualitative and quantitative match is obtained between the 

numerical spectra and the approximate analysis relying on the Floquet LSA as it has been 

summarized in Fig. 7. The key point is that, contrary to the previous cases, the variation of the 

amplitude of the dispersion oscillations 2amp should in principle have no influence, on the basis 

of Eq. (3), on the position of the MI sidebands.  
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Figure 6 : (a) Evolution of the MI gain spectrum or resonance tongues vs. the strength of the variation of the 

dispersion oscillation amplitude; here2av = 2 ps
2
/km. Results are obtained from the numerical integration of the 

NLSE. (b) Evolution of  at -3dB according to the order of the QPM sideband: results from numerical simulations 

(black triangles) are compared with approximate results from the Floquet LSA (grey circles). 
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Figure 7 : (a) Output spectrum obtained from numerical simulations (panel a1) and from Eq. 6 (panel a2) for a 

constant 2amp (black curve), and for  = 2 (grey curve); here2av = 2 ps
2
/km. (b) Evolution of the QPM MI 

spectrum according to 2amp for a strictly periodic DOF as predicted by the Floquet LSA.   (c) Evolution of the 

output spectrum according to || as predicted by the use of the approximate approach based on Eq. (6). Same 

colormap as Fig. 6. 
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As we shall see now, the impact of the longitudinal evolution of 2amp is dramatically 

different whenever the average dispersion is reduced down to 2ave=1ps
2
/km. The corresponding 

results of our systematic simulations are reported in Fig. 8(a): as can be seen, the resonance 

tongues display several new features. First of all, at low || values, a new sideband that is 

induced by FWM between the pump and the first QPM sideband is observed. The corresponding 

generation efficiency drops down as soon as the gain of the first QPM sideband decreases. 

 However, an interesting and novel property of the MI or PR spectrum is that for selected 

sidebands, the linearly chirped oscillation amplitude leads to a substantial increase of the spectral 

gain. This is for example the case for the 4
th

 sideband: the corresponding gain is increased by 

more than 20 dBs with respect to the case of a strictly periodic DOF (see Fig. 8(c)). This gain 

enhancement may be explained with the help of Eq. (4): with  = 0 and for the parameters under 

study, the gain predicted by Eq. (4) for the 4
th

 sideband vanishes. To the contrary, whenever  ≠ 

0, nonzero gain is experienced at different stages of the propagation along the fiber, so that the 

overall gain is finite. The numerically observed gain enhancement of Fig. 8(c) is well reproduced 

with the help of Eq. (6): the corresponding LSA results are presented in Fig. 9(b).  
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Figure 8 : (a) Evolution of the MI gain spectrum as a function of the value of the linear amplitude change of the 

dispersion fluctuations: here 2av = 1 ps
2
/km. Results are obtained from the numerical integration of the NLSE. (b) 

Details of the output spectrum recorded for =2.  (c) Evolution of the maximum value of the sideband gain vs.  for 

various sidebands (black, dark grey and light grey are for the first, second and fourth QPM sideband, respectively). 

Results from the numerical integration of the NLSE (solid curves) are compared with predictions from Eq. (6)  

(dotted curve). 
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On the other hand, in a manner similar to the cases described in Fig. 2 and Fig.4, the use 

of the Floquet approach based on the incoherent summation of Eq.(6) is not able to capture a 

very interesting spectral feature that is observed for the higher-order QPM sidebands in Figs. 

8(b) and 9(a). As can be seen, instead of a spectral sideband with a single peak, a splitting into 

two separate sub-peaks occurs for sidebands of order p>1. Moreover, for each of these sidebands 

the frequency spacing between the two sub-peaks grows larger as || increases. The observed 

sideband splitting is analogous to the Zeeman splitting of the spectral lines in a gas in the 

presence of a strong magnetic field owing to the two states of the spin of the electron [28].  

A sideband splitting of the resonance tongues was previously theoretically reported for a 

strictly periodic DOF in Ref. [29], and later experimentally demonstrated in Ref. [24], and its 

potential implications for all-optical signal processing were further analyzed in Ref. [23]. 

Because of the periodicity of the dispersion oscillations, in those cases the Floquet analysis could 

be successfully applied to reproduce the sideband splitting effect. In the case of a linearly chirped 

DOF, a proper extension of the Floquet method should be developed, similarly to the case of 

quasi-periodic (i.e., containing several incommensurable frequencies) parametric forcing [30].  

However the development of this new mathematical tool is beyond the scope of the present 

numerical study. . In [31], Mussot et al analyzed analytically and experimentally the emergence 

of new sidebands in the spectrum obtained after propagation in a fiber with a complex dispersion 

oscillating profile characterized by two different spatial frequencies. We do not see here 

straightforward connections to the splitting highlighted in the fiber we investigate so that 

additional elements may be involved in the emergence of those peaks located at the edges of the 

gain sidebands.  
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Figure 9 : Same as Fig. 7 but for 2av = 1 ps
2
/km. Same colormap as Fig. 8. 

 

 

In the present case, the sideband splitting results from a coherent interference among the 

resonant waves that are generated at different points of the chirped DOF. The longitudinal 

evolution of the sideband amplitudes is illustrated on Fig. 10(a): as can be seen, the MI or PR 

gain at the mid-point of higher-order (i.e., with p>1) sidebands may experience a non-monotonic 

behavior. The initial growth is followed by a gain decrease at the mid-point of each parametric 

resonance. Correspondingly, two gain peaks emerge with a frequency spacing that grows 

progressively larger with the propagation distance.  
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We thus performed a systematic study of the evolution of the resonance tongues as a 

function of the value of the average dispersion. The corresponding results are summarized on 

Fig. 10(b), and reveal that the spacing between the sub-sidebands also increases with the ratio 

2amp/2av, so that two well-separated peaks may result, as the relative amplitude of the 

dispersion oscillations grows larger. Fig.10(b) reveals that the sideband splitting is not 

necessarily restricted to higher order QPM sidebands: for average dispersion2av <0.5 ps
2
/km, a 

splitting of the first-order QPM sideband may be observed, too. 

 

 

 

Figure 10 : (a) Longitudinal evolution of the QPM MI gain spectrum in a fiber with  = 2 and 2av = 1 ps
2
/km.  (b) 

Output spectrum according to the value of 2av for  = 2.  
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6. Conclusion 

In this work we have studied how a longitudinal and linear evolution of the parameters of a 

dispersion oscillating fiber may affect the spectrum of quasi-phase-matched modulation 

instability or parametric resonance. We found that even slight deviations of a constant spatial 

period significantly affect the output sideband spectrum, in a manner that is sensitive to the 

direction of use of the DOF. Moreover, variations of the average DOF dispersion also impact the 

MI gain, leading to a noticeable sideband broadening, and the development of additional 

amplitude modulations in the sideband gain. To the contrary, as long as the ratio of sideband 

amplitude fluctuations to average dispersion 2amp/2av remains moderately high, even large 

changes of the amplitude of the dispersion fluctuations do not significantly affect the main 

properties of the spectrum.  On the other hand, in the regime of sufficiently high 2amp/2av 

ratios, a new type of spectral sideband splitting was observed. In all of the above cases, a simple 

but approximate approach based on the averaging of Floquet spectra obtained by a linear stability 

analysis was found to be useful, and it could permit to qualitatively reproduce most of the 

observed spectral sideband features. However, the sideband splitting effect could not be captured 

by the averaged Floquet approach, since it results from a coherent constructive or destructive 

interference among the resonant waves generated at different points along the linearly chirped 

DOF.  
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