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Abstract

The damage of a planar, elastic and initially isotropic material is consid-
ered in the framework of a classical approach where the damaged elasticity
tensor is ruled by a fourth-rank symmetric damage tensor. The analysis
is completely carried on using the so-called polar method for the invariant
representation of tensors in <2. The final elastic behavior, induced by dam-
age, can be anisotropic: all the possible situations of elastic symmetries are
considered, and for each one an analytical expression for the bounds on the
invariants of the damaged elastic tensor and of the damage tensor is given.
An admissible domain for the damage invariants and for the damaged elastic
invariants is so provided, the convexity of these domains is also proved.
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1. Introduction

We consider in this paper the anisotropy induced by damage on an ini-
tially isotropic layer. The goal is twofold: first, if the elastic tensor of the
virgin material is C, determine which is the final tensor C̃. Then, to give
explicit bounds for the elastic moduli of C̃ and for the characteristics of the
damage tensor D. To this purpose, we define the damage tensor D as a
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fourth-rank tensor with minor and major tensor symmetries, such that the
elastic tensor C̃ of the damaged material linearly depends upon C and D,
Chaboche (1978), Chaboche (1979), Leckie and Onat (1980), Sidoroff
(1980), Chow (1987), Lemaitre et al (2009):

C̃ = [(1− D)C]Sym =⇒ C̃ = C− Ĉ with Ĉ =
CD + DC

2
, (1)

The elastic tensor C of the virgin material and the damaged elastic tensor C̃
must be positive definite, as a consequence of the positiveness of the elastic
potential. In a thermodynamical framework, the positive semi-definiteness
of the loss of stiffness tensor Ĉ is equivalent to a positive intrinsic dissipation
due to linear elasticity-damage coupling (more details are given in section 4
and Appendix B). The damage tensor D is assumed to be positive semi-
definite.

The conditions of positive semi-definiteness for D and Ĉ and positive
definiteness for C̃ provide the conditions to determine the bounds on the
values of their moduli, once those on C known. The problem of whether
some of these conditions are more restrictive than the others will be solved in
the present work, by showing that the positive semi-definiteness of Ĉ always
implies the positive semi-definiteness of D, and is even equivalent in some
particular cases related to the induced anisotropy by damage.

To investigate this problem, we make use of the so-called polar formalism,
Verchery (1979); Vannucci (2005). This method gives a representation of
elasticity based upon tensor invariants and the different elastic symmetries
are readily identified by the values taken by some of these invariants.

We obtain the polar invariants of C̃ as functions of those of C and D; while
we assume that the initial material is isotropic, we consider all the possible
transformations for the damaged material, leading to a final elastic behavior
that can be completely anisotropic, orthotropic, specially orthotropic or also
isotropic.

Then, we pass to consider the bounds that damage process impose to the
polar moduli of D and C̃; starting from the simpler case, that of an isotropic
tensor C̃, we consider all the possible cases of elastic symmetries for C̃, until
the most general case of complete anisotropy. We give an explicit expression
for these bounds and show that the admissible domain for the moduli is
convex in all the cases, in some of them a graphical representation is also
possible.

2. Essentials of the polar formalism

In this section, we briefly recall the essentials, for the present paper, of
the polar formalism. The polar method is basically a mathematical method
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to search for a complete set of the invariants of a given tensor in <2. As
such, it can be applied not only to elasticity tensors, but also to any other
plane tensor, see for instance Vannucci (2007) or Vannucci & Verchery (2010).
The polar formalism is based upon a complex variable method, a technique
once widely used in physical mathematics and which has its initiators in
the pioneer works of Michell (1902) and Kolosov (1909) and which finds its
completion in the treatises of Muskhelishvili (1953), Green & Zerna (1954),
and Milne-Thomson (1960). As a consequence, the polar formalism can be
applied only to plane problems.

Verchery makes use, just like Green and Zerna, of a complex variable
transformation, interpreted as a change of frame; this transformation has
some algebraic properties that allows simplifying the expressions of frame
rotations and symmetries, which renders rather easy the search for tensor
invariants. The mathematical details and passages, rather technical and
not to be detailed here, can be found in Vannucci (2005) and Vannucci &
Verchery (2010), whereto the interested reader is addressed for a complete
explanation of the method.

Here, we recall just the main features of the polar method for a plane
fourth-rank tensor T owing the minor and major tensor symmetries, i.e. such
that ∀i, j, k, l = 1, 2,

Tijkl = Tjikl = Tijlk,
Tijkl = Tklij.

(2)

Five invariants suffice to completely describe T, because in any frame it
is completely described by six quantities. Among them, one is needed to fix
a frame, so the remaining five ones can be reduced to independent tensor
invariants. In the polar formalism, four of these invariants are elastic moduli
and are indicated by the symbols T0, T1, R0 and R1; the last invariant is
the angular difference Φ0 − Φ1. One of the two angles, Φ0 or Φ1, may be
arbitrarily chosen to fixe a reference frame (the most usual choice is Φ1 = 0).

The basic result of the polar formalism is the expression of the Cartesian
components of T in terms of the polar parameters, in a frame rotated through
an angle θ:

T1111(θ)=T0+2T1+R0 cos 4 (Φ0−θ) +4R1 cos 2 (Φ1−θ),
T1112(θ)=R0 sin 4 (Φ0−θ) +2R1 sin 2 (Φ1−θ),
T1122(θ)=−T0+2T1−R0 cos 4 (Φ0−θ),
T1212(θ)=T0−R0 cos 4 (Φ0−θ),
T1222(θ)=−R0 sin 4 (Φ0−θ) +2R1 sin 2 (Φ1−θ),
T2222(θ)=T0+2T1+R0 cos 4 (Φ0−θ)−4R1 cos 2 (Φ1−θ).

(3)
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The above relations show that T0 and T1 are the isotropy invariants, while
anisotropy is described by the invariants R0, R1 and Φ0 − Φ1. In particular,
it is easy to recognize that for isotropic elasticity,

T0 = G, T1 =
1

2
κ, (4)

where G and κ are respectively the shear and bulk moduli. The same physical
meaning is preserved also for all the anisotropic cases, so we can consider T0
and T1 as a generalization, to any elastic behavior, of the shear and bulk
moduli, respectively. We remark also that

T0 + 2T1 = G+ κ, (5)

a quantity often appearing in the following.
The relations giving the polar components as functions of the Cartesian

ones can be obtained inverting eqs. (3):

8T0 = T1111(θ)− 2T1122(θ) + 4T1212(θ) + T2222(θ),

8T1 = T1111(θ) + 2T1122(θ) + T2222(θ),

8R0e
4i(Φ0−θ) = T1111(θ)− 2T1122(θ)− 4T1212(θ) + T2222(θ)+

+4i[T1112(θ)− T1222(θ)],
8R1e

2i(Φ1−θ) = T1111(θ)− T2222(θ) + 2i[T1112(θ) + T1222(θ)].

(6)

Denoting by lower-case letters the polar parameters of T−1, it is:

t0=
2
∆

(T0T1−R2
1) ,

t1=
1
2∆

(T 2
0−R2

0) ,

r0e
4iϕ0= 2

∆

(
R2

1e
4iΦ1−T1R0e

4iΦ0
)
,

r1e
2iϕ1=− 1

∆
R1e

2iΦ1
[
T0 −R0e

4i(Φ0−Φ1)
]
,

(7)

with
∆=8T1

(
T 2
0−R2

0

)
−16R2

1 [T0−R0 cos 4 (Φ0−Φ1)] . (8)

There is a close relation between the polar invariants and elastic symme-
tries. In particular, the polar analysis of elastic symmetries let appear an
algebraic characterization of the elastic symmetries, for some aspects more
powerful than the classical geometrical characterization using the symmetry
of the elastic properties linked to a subjacent symmetric distribution of the
matter. In fact, special values taken by one ore two invariants determine
an elastic symmetry, and these particular values affect and characterize the
properties of the matter. Upon this consideration, it can be shown that there
are five different and non equivalent types of planar elastic symmetries:
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• ordinary orthotropy: it corresponds to the condition

Φ0 − Φ1 = K
π

4
, K ∈ {0, 1}; (9)

As a consequence, it is possible to have, for the same set of invariant
polar moduli T0, T1, R0 and R1, two different orthotropic materials,
one with K = 0, the other one with K = 1, whose properties are quite
different. These two types of ordinary orthotropic materials correspond
to those termed by Pedersen (1989) as low, K = 0, and high, K = 1,
shear modulus orthotropy. The results obtained by Vannucci (2009),
Vincenti & Desmorat (2011), Catapano et al. (2012) and Barsotti &
Vannucci (2013) suggest that such a classification is rather restrictive:
the differences between these two classes are not limited to shear, but
rather concern the overall mechanical response of the material. This
can be observed also for the effects of damage, as it will be clear in the
following of this paper;

• R0−orthotropy:
R0 = 0; (10)

in this case, the Cartesian components of T are either constant or
change, after a rotation, as those of a second- and not of a fourth-rank
tensor, Vannucci (2002); the existence of this special case of orthotropy
has been successively found also in <3, Forte (2005); a sufficient condi-
tion for having R0−orthotropy is to strengthen (or weaken) an isotropic
layer by fibers (cracks) that are shifted of π/4;

• r0−orthotropy:
r0 = 0; (11)

as eq. (73) clearly shows, condition (10) does not imply the same result
for T−1: R0−orthotropy does not concern the inverse tensor. Of course,
by duality, a similar orthotropy exists for T−1 and not for T, and it is
stated by condition (11); a very common r0−orthotropic material is
paper, Vannucci (2010);

• square symmetry: it is the planar equivalent of the cubic syngony, i.e.
all the properties are periodic by π/2:

R1 = 0; (12)

• isotropy:
R0 = R1 = 0. (13)
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It can be shown that, algebraically speaking, the invariant linked to or-
dinary orthotropy is of the third order, while special orthotropies (10), (11)
and (12) are determined by second-order invariants. Finally, isotropy alge-
braically corresponds to the contemporary existence of special orthotropies
(10) and (12). Also, while ordinary orthotropy with K = 1 is completely
characterized by the knowledge of five non null independent invariants, T0, T1, R0,
R1 and K, and by four for the case K = 0, only three non null inde-
pendent invariants totally determine special orthotropies: T0, T1 and R1 for
R0−orthotropy, T0, T1 and R0 for square symmetry, and of course only two,
T0 and T1, for isotropy. Also in the case of r0−orthotropy there are only
three non null independent invariants, because condition (11) gives

R0 =
R2

1

T1
, K = 0. (14)

Another important feature of the polar formalism, is that it is possible
to state the necessary and sufficient conditions for T to be positive definite,
regardless of the type of elastic symmetry, also for the completely anisotropic
case. We just recall here the general result while the complete demonstration
can be found in Appendix A: an elasticity-like plane tensor T, i.e. satisfying
conditions (2), is positive definite if and only if

T0 > R0,
T1(T

2
0 −R2

0) > 2R2
1 [T0 −R0 cos 4(Φ0 − Φ1)] ,

R0 ≥ 0,
R1 ≥ 0.

(15)

3. Damage description and the polar formalism

The undamaged material is assumed to be isotropic, so its elastic tensor
C is given, in polar terms, by

C1111(θ)=C2222(θ) = T0+2T1,

C1112(θ)=C1222(θ)=0,

C1122(θ)=−T0+2T1,

C1212(θ)=T0.

(16)

We consider in this paper a damage described by a fourth-rank tensor
D; also, we assume D to be positive semi-definite and to have the tensor
symmetries of elasticity, i.e. ∀i, j, k, l = 1, 2,

Dijkl = Djikl = Dijlk,
Dijkl = Dklij.

(17)
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With these assumptions for D, bounds can be used; we will denote by
D0, D1, S0, S1, Ψ0 and Ψ1 its polar parameters. Then, applying eq. (3), the
Cartesian components of D are given by

D1111(θ)=D0+2D1+S0 cos 4 (Ψ0−θ) +4S1 cos 2 (Ψ1−θ),
D1112(θ)=S0 sin 4 (Ψ0−θ) +2S1 sin 2 (Ψ1−θ),
D1122(θ)=−D0+2D1−S0 cos 4 (Ψ0−θ),
D1212(θ)=D0−S0 cos 4 (Ψ0−θ),
D1222(θ)=−S0 sin 4 (Ψ0−θ) +2S1 sin 2 (Ψ1−θ),
D2222(θ)=D0+2D1+S0 cos 4 (Ψ0−θ)−4S1 cos 2 (Ψ1−θ).

(18)

No restrictions about the damage symmetries are assumed: damage can
be completely anisotropic or have one of the symmetries described by equa-
tions (9) to (13).

The implicit definition of the damage tensor is given by the following
elastic tensor C̃ of the damaged material , see Lemaitre et al (2009),

C̃ = [(1− D)C]Sym =⇒ C̃ = C− CD + DC
2

, (19)

the symbol Sym indicating the symmetric part of the tensor between brack-
ets. C̃ owns hence the same tensor symmetries (2) of C and D and it has to
be positive definite too, being a stiffness tensor.

Equation (19) allows for expressing the elastic moduli of C̃ as functions

of those of C and D. The Cartesian components of C̃ are finally expressed
by

C̃1111(θ) = T0(1− 2D0) + 2T1(1− 4D1)− 2T0S0 cos 4(Ψ0 − θ)−
−4(T0 + 2T1)S1 cos 2(Ψ1 − θ),

C̃1112(θ) = −2T0S0 sin 4(Ψ0 − θ)− 2(T0 + 2T1)S1 sin 2(Ψ1 − θ),

C̃1122(θ) = −T0(1− 2D0) + 2T1(1− 4D1) + 2T0S0 cos 4(Ψ0 − θ),

C̃1212(θ) = T0(1− 2D0) + 2T0S0 cos 4(Ψ0 − θ),

C̃1222(θ) = 2T0S0 sin 4(Ψ0 − θ)− 2(T0 + 2T1)S1 sin 2(Ψ1 − θ),

C̃2222(θ) = T0(1− 2D0) + 2T1(1− 4D1)− 2T0S0 cos 4(Ψ0 − θ)+
+4(T0 + 2T1)S1 cos 2(Ψ1 − θ).

(20)

Using now the equivalent, for C̃, of eq. (7), or simply comparing eq. (20)

to eqs. (3) and (18), give the polar parameters of C̃, denoted in the following
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by a ∼:

T̃0 = T0(1− 2D0),

T̃1 = T1(1− 4D1),

R̃0 = 2T0S0,

R̃1 = (T0 + 2T1)S1,

Φ̃0 = Ψ0 + π
4
,

Φ̃1 = Ψ1 + π
2
.

(21)

Some remarks can be done; first of all, the polar formalism gives as a
result that each one of the polar parameters of C̃ depends exclusively upon
the corresponding polar parameter of D. In other words, the choice of the
polar formalism allows for uncoupling the expressions of the parameters of C̃
as functions of those of D. This should not be the case, generally speaking,
with a Cartesian representation.

Also, eq. (21) show that the damage symmetries, eqs. (9) – (13), deter-
mine, each one, exactly the same elastic symmetry of the same type for the
damaged elastic tensor C̃ and inversely.

Finally, eqs. (201,6) and (216) show that the axis of the strongest com-

ponent of C̃, i.e. C̃2222, is turned of π/2 with respect to the direction of the
strongest component of D, D1111. This is quite natural, because the mate-
rial is more severely damaged along the direction of D1111, so that, finally,
C̃1111(θ = 0) < C̃2222(θ = 0). Also the harmonic depending upon 4θ is turned

of π/4, eq. (215), which gives for the angular invariant of C̃

Φ̃0 − Φ̃1 = Ψ0 − Ψ1 −
π

4
. (22)

This result shows a rather surprising fact: the damaged elasticity tensor
C̃ cannot have the same form of ordinary orthotropy of the damage tensor
D. In fact, for D orthotropic with

Ψ0 − Ψ1 = L
π

4
, L = {0, 1}, (23)

C̃ is orthotropic with

Φ̃0 − Φ̃1 = K̃
π

4
, K̃ = L− 1. (24)

So, for L = 1, K̃ = 0 and for L = 0, K̃ = 1 (the sign does not matter).
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4. Polar bounds for the damage and damaged elastic tensors

Equations (6), written for D, and (21) give respectively the polar invari-

ants of D and C̃. A question is of primary importance: how much the value
of these invariants can change? In a more general sense, what are the bounds
for D and C̃?

The use of the polar formalism is advantageous to this purpose, because,
on one side, the general bounds for a tensor to be positive definite are ex-
plicit, eq. (15), and on the other side each polar parameters of C̃ depends
exclusively, as already remarked, upon the corresponding polar parameter of
D, eq. (21), which can considerably simplify the analytical developments.

The bounds for D and C̃ are of two types (for the sake of clarity, we
number the bounds like B1, B2 and so on):

• positive definiteness polar bounds: tensor D is positive semi-definite: a
null damage tensor is admissible, corresponding to the case of undam-
aged material. Its polar invariants must satisfy conditions (15);

B1 −→ D0 ≥ S0,

B2 −→ D1(D
2
0 − S2

0) ≥ 2S2
1 [D0 − S0 cos 4(Ψ0 − Ψ1)] ,

B3 −→ S0 ≥ 0,

B4 −→ S1 ≥ 0.

(25)

On the other side, as any other stiffness tensor, C̃ is positive definite,
so we have

B5 −→ T̃0 > R̃0,

B6 −→ T̃1(T̃
2
0 − R̃2

0) > 2R̃2
1

[
T̃0 − R̃0 cos 4(Φ̃0 − Φ̃1)

]
,

B7 −→ R̃0 ≥ 0,

B8 −→ R̃1 ≥ 0.

(26)

• polar damage bounds: eq. (21) show that the anisotropy polar moduli

R̃0 and R̃1, initially null because the undamaged material is isotropic,
can increase their value during the damage process, making the ma-
terial to become anisotropic as a consequence of damage. Some of
the elasticity moduli of the damaged tensor can hence be increased by
damage; this is also the case of other elastic quantities, at least locally,
for instance C1112(θ) and C1222(θ). Nevertheless, an effective damage
process should reduce the elastic stiffness of the damaged material.
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This can be stated putting a limit on the strain energy of the damaged
material: for any identical strain state, the strain energy stocked in the
damaged material cannot be greater than that stocked in the undamaged
one.

Mechanically, this is motivated by the following consideration: let us
consider an initially strained material which, by the application of more
and more loads, increases the state of strain and of damage. If the ma-
terial is unloaded, following any unloading path, just to the initial state
of strain, then the strain energy stocked by the material in the final
damaged state cannot be greater than that present at the beginning.

The difference of the strain energy between the initial and damaged
state is, for the same strain ε,

4w = w − w̃ =
1

2
ε · Cε− 1

2
ε · C̃ε =

1

2
ε · (C− C̃)ε; (27)

putting
Ĉ = C− C̃, (28)

the condition to be posed on the strain energy becomes

4w =
1

2
ε · Ĉε ≥ 0 ∀ε, (29)

i.e. tensor Ĉ must be positive semi-definite.

The positive semi-definiteness of Ĉ can be interpreted also in a ther-
modynamical framework (Appendix B):

– it is a necessary condition for the intrinsic dissipation due to loss
of stiffness to be positive;

– it is equivalent to a positive intrinsic dissipation due to linear
elasticity-damage coupling (i.e. with Ĉ linear in D).

Applying eq. (15) to the polar components of Ĉ, denoted by a hat,
gives the polar damage bounds :

B9 −→ T̂0 ≥ R̂0,

B10 −→ T̂1(T̂
2
0 − R̂2

0) ≥ 2R̂2
1

[
T̂0 − R̂0 cos 4(Φ̂0 − Φ̂1)

]
,

B11 −→ R̂0 ≥ 0,

B12 −→ R̂1 ≥ 0.

(30)
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It is worth to rewrite these bounds using the polar components of C
and C̃: through eq. (6) it is readily get that

T̂0 = T0 − T̃0,

T̂1 = T1 − T̃1,

R̂0 = R̃0,

R̂1 = R̃1,

Φ̂0 = Φ̃0 + π
4
,

Φ̂1 = Φ̃1 + π
2
.

(31)

Bounds B9 to B12 become hence

B9 −→ T0 − T̃0 ≥ R̃0,

B10 −→ (T1 − T̃1)
[
(T0 − T̃0)2 − R̃2

0

]
≥

2R̃2
1

[
T0 − T̃0 + R̃0 cos 4(Φ̃0 − Φ̃1)

]
,

B11 −→ R̃0 ≥ 0,

B12 −→ R̃1 ≥ 0.

(32)

It is immediate to remark that imposing conditions B9 to B12 compre-
hends the fact that the direct moduli do not increase in any direction,
i.e. that

C̃1111(θ) ≤ C1111, C̃1212(θ) ≤ C1212 ∀θ. (33)

5. Minimal set of polar bounds in the completely anisotropic case

Bounds B1 to B4 are relations among the invariants of D, while B5 to
B12 concern C̃. Also, while the invariants of D are dimensionless, those of
C̃ have the dimensions of a stress. It is then worth, on one side to write all
the bounds as functions of the polar parameters of D or of C̃ uniquely, and
on the other side to write these last in a dimensionless form. This can be
done dividing all the modules of C and C̃ by a term, T0, representing the
undamaged material and upon introduction of the ratios:

τ1 =
2T1
T0

, τ̃0 =
T̃0
T0
, τ̃1 =

2T̃1
T0

, ρ̃0 =
R̃0

T0
, ρ̃1 =

R̃1

T0
. (34)

The ratio τ1 > 0 will hence be the only term representing the mechanical
characteristics of the undamaged material.
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We can now rewrite all the bounds as functions of the invariants of D,
using eqs. (21) and (22) into eqs. (26) and (32):

B1 −→ D0 ≥ S0,

B2 −→ D1(D
2
0 − S2

0) ≥ 2S2
1 [D0 − S0 cos 4(Ψ0 − Ψ1)] ,

B3 −→ S0 ≥ 0,

B4 −→ S1 ≥ 0,

B5 −→ 2(D0 + S0) < 1,

B6 −→ τ1
4(1+τ1)2

(1− 4D1)[(1− 2D0)
2 − 4S2

0 ] > S2
1 [1− 2D0+

2S0 cos 4(Ψ0 − Ψ1)],

B7 −→ S0 ≥ 0,

B8 −→ S1 ≥ 0,

B9 −→ D0 ≥ S0,

B10 −→ D1(D
2
0 − S2

0) ≥ (1+τ1)2

2τ1
S2
1 [D0 − S0 cos 4(Ψ0 − Ψ1)] ,

B11 −→ S0 ≥ 0,

B12 −→ S1 ≥ 0.

(35)

Alternatively, we can write all the bounds as functions of the dimension-
less parameters of C̃, using first eq. (34) into eq. (21) to get

τ̃0 = 1− 2D0 −→ D0 = 1−τ̃0
2
,

τ̃1 = τ1(1− 4D1) −→ D1 = τ1−τ̃1
4τ1

,

ρ̃0 = 2S0 −→ S0 = ρ̃0
2
,

ρ̃1 = (1 + τ1)S1 −→ S1 = ρ̃1
1+τ1

,

Ψ0 = Φ̃0 − π
4
,

Ψ1 = Φ̃1 − π
2
,

(36)
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then inserting eqs. (34) and (36) into eqs. (25), (26) and (32):

B1 −→ τ̃0 + ρ̃0 ≤ 1,

B2 −→ (1 + τ1)
2(τ1 − τ̃1)[(1− τ̃0)2 − ρ̃20] ≥ 16 τ1ρ̃

2
1[1− τ̃0+

+ρ̃0 cos 4(Φ̃0 − Φ̃1)],

B3 −→ ρ̃0 ≥ 0,

B4 −→ ρ̃1 ≥ 0,

B5 −→ τ̃0 > ρ̃0,

B6 −→ τ̃1(τ̃
2
0 − ρ̃20) > 4ρ̃21

[
τ̃0 − ρ̃0 cos 4(Φ̃0 − Φ̃1)

]
,

B7 −→ ρ̃0 ≥ 0,

B8 −→ ρ̃1 ≥ 0,

B9 −→ τ̃0+ρ̃0 ≤ 1,

B10 −→ (τ1 − τ̃1)[(1− τ̃0)2 − ρ̃20] ≥ 4ρ̃21[1− τ̃0+
+ρ̃0 cos 4(Φ̃0 − Φ̃1)],

B11 −→ ρ̃0 ≥ 0,

B12 −→ ρ̃1 ≥ 0.

(37)

It is apparent from eqs. (35) and (37) that some bounds are redundant:
bounds B3, B7 and B11 are identical, just like B4, B8 and B12 or B1 and
B9. Also, it is easily recognized that bound B10 is always more restrictive
than bound B2, so B2 can be discarded. There is an exception: for materials
with τ1 = 1, bounds B2 and B10 are perfectly identical. In this case, and
only in this one, the set of bounds stating the positive semi-definiteness of
D and Ĉ are always completely coincident, regardless of the elastic symme-
tries of C̃. On the other hand, the set of bounds B9 to B12 implies the
set of bounds B1 to B4: for an isotropic elastictity tensor C, the positive
definiteness of Ĉ and C, together with the definition Ĉ = CD+DC

2
implies the

positive semi-definiteness of D and the initial assumption of positive semi-
definiteness of D is finally not necessary. For τ1 6= 1, the bounds on the
positive semi-definiteness of D are less restrictive than those on Ĉ, and hence
will be discarded. Nevertheless, we will prove in the next sections that for C̃
isotropic or square-symmetric, the equivalence of bounds on D and on Ĉ is
always true, regardless of the value of τ1.

It is worth noticing that

τ1 = 1 ⇐⇒ T0 = 2T1 ⇐⇒ G = κ, (38)
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see eqs. (4) and (34), i.e. for the materials with τ1 = 1 the shear and bulk
moduli are identical.

Equations (35) and (37), resumed in Tab. 1 for the sake of convenience,
have a general validity, i.e. they concern completely anisotropic materials.
The redundant bounds have been discarded. A step further can be done
considering the different cases of elastic symmetry, Sec. 2; this is done in the
next sections, starting from the simplest case of isotropy and going up to the
more complicate case of ordinary orthotropy.

Table 1: Minimal set of dimensionless polar bounds in the completely anisotropic case

Polar bounds for D Polar bounds for C̃
B5 2(D0 + S0) < 1 τ̃0 > ρ̃0

B6 τ1
4(1+τ1)2

(1− 4D1)[(1− 2D0)
2− τ̃1(τ̃

2
0 − ρ̃20) >

−4S2
0 ] > S2

1 [1− 2D0+ 4ρ̃21

[
τ̃0 − ρ̃0 cos 4(Φ̃0 − Φ̃1)

]
2S0 cos 4(Ψ0 − Ψ1)]

B7 S0 ≥ 0 ρ̃0 ≥ 0

B8 S1 ≥ 0 ρ̃1 ≥ 0

B9 D0 ≥ S0 τ̃0 + ρ̃0 ≤ 1

B10 D1(D
2
0 − S2

0) ≥ (1+τ1)2

2τ1
S2
1 [D0− (τ1 − τ̃1)[(1− τ̃0)2 − ρ̃20] ≥

−S0 cos 4(Ψ0 − Ψ1)] 4ρ̃21[1− τ̃0 + ρ̃0 cos 4(Φ̃0 − Φ̃1)]

6. Polar bounds in the isotropic case

C̃ is isotropic if and only if D is isotropic, see eq. (213,4):

R̃0 = ρ̃0 = 0 ⇐⇒ S0 = 0,

R̃1 = ρ̃1 = 0 ⇐⇒ S1 = 0.
(39)
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As a consequence, bounds B7 and B8 are meaningless and the bounds writ-
ten in terms of the components of D are

B5 −→ D0 <
1
2
,

B6 −→ D1 <
1
4
,

B9 −→ D0 ≥ 0,

B10 −→ D1 ≥ 0,

(40)

bounds that finally can be rewritten as

0 ≤ D0 <
1
2
,

0 ≤ D1 <
1
4
.

(41)

The above bounds are box constraints, so the admissible domain for D is of
course convex, Fig. 1 a).
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B5 
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0 1 

τ1 

τ1 
~	  

τ0 
~	  

b)	  

Figure 1: Admissible domain for the case of isotropic damaged material; a) domain for

the invariants of D; b) domain for the invariants of C̃.

When conditions (39) are inserted into eqs. (34) and (37) the bounds for

the invariant ratios of C̃ are easily obtained:

B5 −→ τ̃0 > 0,

B6 −→ τ̃1 > 0,

B9 −→ τ̃0 ≤ 1,

B10 −→ τ̃1 ≤ τ1,

(42)
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or more concisely
0 < τ̃0 ≤ 1,

0 < τ̃1 ≤ τ1.
(43)

In the dimensional form the above bounds are

0 < T̃0 ≤ T0,

0 < T̃1 ≤ T1;
(44)

the isotropic part of C is hence diminished by damage.
If conditions (39) are inserted into eqs. (35) or (37), it is immediately

recognized that bounds B2 and B10 are identical, regardless of the value
of τ1. Hence, for an isotropic material which is damaged isotropically, the
bounds on the positive semi-definiteness of D are perfectly coincident with
those on Ĉ.

7. Polar bounds in the square symmetric case

C̃ has the square symmetry if and only if D is square symmetric, see eq.
(214):

R̃1 = ρ̃1 = 0 ⇐⇒ S1 = 0. (45)

This means that bound B8 disappears, so that the conditions on the com-
ponents of D become:

B5 −→ D0 + S0 <
1
2
,

B6 −→ D1 <
1
4
,

B7 −→ S0 ≥ 0,

B9 −→ D0 ≥ S0,

B10 −→ D1 ≥ 0.

(46)

The above bounds can be rewritten in the condensed form

0 ≤ D1 <
1
4
,

0 ≤ S0 < min
{
D0;

1
2
−D0

}
,

(47)

the last condition ensuring that it is still

0 ≤ D0 <
1

2
, (48)

while the highest theoretical value for S0 is clearly

maxS0 =
1

4
. (49)
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Figure 2: Admissible domain for the case of square symmetric damaged material; a)

domain for the invariants of D; b) domain for the invariants of C̃ (material with τ1 = 2;
the bounds indicated by white letters are placed behind and seen in transparency).

Just as in the previous case, inserting (45) into eqs. (34) and (37) gives

the bounds for C̃:
B5 −→ τ̃0 > ρ̃0,

B6 −→ τ̃1 > 0,

B7 −→ ρ̃0 ≥ 0,

B9 −→ τ̃0+ρ̃0 ≤ 1,

B10 −→ τ̃1 ≤ τ1.

(50)

Finally, in this case the bounds for C̃ are

0 < τ̃1 ≤ τ1,

0 ≤ ρ̃0 < min {τ̃0; 1− τ̃0} ,
(51)

the last condition giving
0 < τ̃0 ≤ 1. (52)

The dimensional corresponding of eqs. (51) and (52) are

0 < T̃0 ≤ T0,

0 < T̃1 ≤ T1,

0 ≤ R̃0 < min
{
T̃0;T0 − T̃0

}
.

(53)
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Also for square symmetry, the isotropic part of C is decreased by damage,
but at the same time the anisotropic part, here represented by the only term
R̃0, grows from zero: damage produces hence a decrease of the averaged stiff-
ness, the isotropic part, but at the same time an increase of the anisotropic
part.

Equations (46) and (50) clearly show that the admissible domain for the

invariants of D and C̃, bounded by linear conditions, is convex, see Fig. 2.
Just like in the previous case of isotropic damage, also in this case the

bounds on the positive-semidefiniteness of D are perfectly coincident with
those given by the positive semi-definiteness of Ĉ. This is easily proved
inserting eq. (45) into eqs. (35) or (37): bounds B2 and B10 become
identical.

This case and the previous one are the only two cases where bounds on
D and on Ĉ are perfectly equivalent regardless the material, i.e. of τ1. In all
the following cases of elastic symmetries of the final damaged material, this
equivalency exists only when τ1 = 1, as said in Sec. 4.

8. Polar bounds in the R0−orthotropic case

C̃ is R0−orthotropic if and only if D is R0−orthotropic, see eq. (213):

R̃0 = ρ̃0 = 0 ⇐⇒ S0 = 0. (54)

So now it is bound B7 to disappear, and the conditions to be satisfied by
the invariants of D are:

B5 −→ D0 <
1
2
,

B6 −→ S1 <

√
τ1(1−2D0)(1−4D1)

2(1+τ1)
,

B8 −→ S1 ≥ 0,

B9 −→ D0 ≥ 0,

B10 −→ S1 ≤
√
2τ1D0D1

1+τ1
.

(55)

Using conditions (55), it is not difficult to calculate that the highest
theoretical value for S1 is

S1max =

√
τ1

4(1 + τ1)
, (56)

quantity that gets its highest value, 1/8, for materials with τ1 = 1.
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Finally, the bounds for D R0−orthotropic are

0 ≤ D0 <
1
2
,

0 ≤ S1 < min

{√
τ1(1−2D0)(1−4D1)

2(1+τ1)
;
√
2τ1D0D1

1+τ1

}
,

(57)

the above conditions ensuring also that necessarily

0 ≤ D1 <
1

4
. (58)

Also in this case, inserting (54) into eqs. (34) and (37) allows for obtaining

the bounds on the invariants of C̃:

B5 −→ τ̃0 > 0,

B6 −→ ρ̃1 <
√
τ̃0τ̃1
2
,

B8 −→ ρ̃1 ≥ 0,

B9 −→ τ̃0 ≤ 1,

B10 −→ ρ̃1 ≤
√

(1−τ̃0)(τ1−τ̃1)
2

.

(59)

Finally, the bounds on the invariants of C̃ for the case of R0−orthotropy
are

0 < τ̃0 ≤ 1,

0 ≤ ρ̃1 < min

{
√
τ̃0τ̃1
2

;

√
(1−τ̃0)(τ1−τ̃1)

2

}
,

(60)

and by consequence
0 < τ̃1 ≤ τ1. (61)

The dimensional corresponding of eqs. (60) and (61) are

0 < T̃0 ≤ T0,

0 < T̃1 ≤ T1,

0 ≤ R̃1 < min

{√
T̃0T̃1
2

;

√
(T0−T̃0)(T1−T̃1)

2

}
.

(62)

In this case too the isotropic part of C is decreased by damage and the
anisotropic part, the term R̃1 alone, grows from zero.

Equations (55) and (59) define a convex admissible domain for the invari-

ants of D and C̃, see Fig. 3.
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Figure 3: Admissible domain for the case of R0−orthotropic damaged material; a) domain

for the invariants of D; b) domain for the invariants of C̃ (material with τ1 = 2; the bounds
indicated by white letters are placed behind and seen in transparency).

9. Polar bounds in the ordinarily orthotropic case

C̃ is ordinarily orthotropic if and only if D is ordinarily orthotropic, eq.
(22). In particular, ordinary orthotropy of D is stated by the condition

Ψ0 − Ψ1 = L
π

4
, L ∈ {0, 1}, (63)

and correspondingly that of C̃ by

Φ̃0 − Φ̃1 = K̃
π

4
, K̃ ∈ {0, 1}, (64)

the orthotropies of the two tensors being linked by the relation (22) i.e. by

K̃ = L− 1. (65)

The conditions to be satisfied by the invariants of D are then

B5 −→ D0 + S0 <
1
2
,

B6 −→ S1 <

√
τ1(1−4D1)[1−2D0−(−1)LS0]

2(1+τ1)
,

B7 −→ S0 ≥ 0,

B8 −→ S1 ≥ 0,

B9 −→ D0 ≥ S0,

B10 −→ S1 ≤
√

2τ1D1[D0+(−1)LS0]

1+τ1
.

(66)
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Finally, the bounds on the polar invariants of D can be rewritten as

0 ≤ S0 < min
{
D0;

1
2
−D0

}
,

0 ≤ S1 < min

{√
2τ1D1[D0+(−1)LS0]

1+τ1
;

√
τ1(1−4D1)[1−2D0−(−1)LS0]

2(1+τ1)

}
,

(67)

conditions that imply also
0 ≤ D0 <

1
2
,

0 ≤ D1 <
1
4
.

(68)

In the case of the bounds on C̃, following an analogous approach, we can
find

B5 −→ τ̃0 > ρ̃0,

B6 −→ ρ̃1 <

√
τ̃1[τ̃0+(−1)K̃ ρ̃0]

2
,

B7 −→ ρ̃0 ≥ 0,

B8 −→ ρ̃1 ≥ 0,

B9 −→ τ̃0+ρ̃0 ≤ 1,

B10 −→ ρ̃1 ≤
√

[1−τ̃0−(−1)K̃ ρ̃0](τ1−τ̃1)
2

.

(69)

The bounds on the polar invariants of C̃ can finally be rewritten as

0 ≤ ρ̃0 < min {τ̃0; 1− τ̃0} ,

0 ≤ ρ̃1 < min

{√
τ̃1[τ̃0+(−1)K̃ ρ̃0]

2
;

√
[1−τ̃0−(−1)K̃ ρ̃0](τ1−τ̃1)

2

}
,

(70)

conditions that imply also
0 < τ̃0 ≤ 1,

0 < τ̃1 ≤ τ1.
(71)

The previous bounds can be given also in their dimensional form:

0 < T̃0 ≤ T0,

0 < T̃1 ≤ T1,

0 ≤ R̃0 < min
{
T̃0;T0 − T̃0

}
,

0 ≤ R̃1 < min

{√
T̃1[T̃0+(−1)K̃R̃0]

2
;

√
[T0−T̃0−(−1)K̃R̃0](T1−T̃1)

2

}
.

(72)

Unfortunately, it is not possible to give a graphical representation of the
domains defined by eqs. (67) or (70), because they are functions of four
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independent quantities. Nevertheless, these domains are convex; in fact, the
conditions in eqs. (67) or (70) are either linear or with a Hessian matrix
whose eigenvalues are either null or negative, as it can be easily checked.
So, such functions are concave and their epigraph convex. The admissible
domain, intersection of convex sets, is hence convex.

10. Polar bounds in the r0−orthotropic case

There is, however, a special case of orthotropic C̃ where a graphical repre-
sentation is still possible: the case where C̃−1 is r0−orthotropic. In this case,
Sec. 2, C̃ is orthotropic but depending upon only three non null invariants
thanks to eq. (14), which inserted into eqs. (21), (34) and (65) gives

S0 =
(1 + τ1)

2

τ1

S2
1

1− 4D1

, ρ̃0 = 2
ρ̃21
τ̃1

= 2
(1 + τ1)

2

τ1

S2
1

1− 4D1

, L = 1. (73)

If an isotropic layer is damaged according to the previous conditions, it is
transformed into a material whose behavior is of the same type of that of a
sheet of paper, Vannucci (2010).

Conditions (66) become

B5 −→ S1 <
1

1+τ1

√
τ1(1−2D0)(1−4D1)

2
,

B6 −→ S1 <
1

1+τ1

√
τ1(1−2D0)(1−4D1)

3
,

B7 −→ D1 ≤ 1
4
,

B8 −→ S1 ≥ 0,

B9 −→ S1 ≤
√
τ1D0(1−4D1)

1+τ1
,

B10 −→ S1 ≤ 1
1+τ1

√
2τ1D0D1(1−4D1)

1−2D1
.

(74)

It is apparent that bound B5 is less restrictive than B6, hence it can be
discarded. Also B9 can be neglected, because for 0 ≤ D0 < 1/4, B10 ≤
B9 ≤ B6, while B6 ≤ B10 ≤ B9 for 1/4 ≤ D0 < 1/2.

The polar bounds for D in this special case can finally be summarized in

0 ≤ D0 <
1
2
,

0 ≤ D1 <
1
4
,

0 ≤ S1 < min

{
1

1+τ1

√
τ1(1−2D0)(1−4D1)

3
; 1
1+τ1

√
2τ1D0D1(1−4D1)

1−2D1

}
.

(75)
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Figure 4: Admissible domain for the case of r0−orthotropic damaged material; a) domain

for the invariants of D; b) domain for the invariants of C̃ (material with τ1 = 2; the bounds
indicated by white letters are placed behind and seen in transparency).

Going now to tensor C̃, bounds (69) become

B5 −→ ρ̃1 <
√

τ̃0τ̃1
2
,

B6 −→ ρ̃1 <
√

τ̃0τ̃1
2
,

B7 −→ τ̃1 > 0,

B8 −→ ρ̃1 ≥ 0,

B9 −→ ρ̃1 ≤
√

(1−τ̃0)τ̃1
2

,

B10 −→ ρ̃1 ≤
√

τ̃1(1−τ̃0)(τ1−τ̃1)
2(1+τ1)

.

(76)

Once more, bound B5 is clearly redundant, because equal to B6, and B9
too: in fact, it is an easy matter to check that B10 ≤ B9 everywhere in the
set {0 < τ̃0 ≤ 1, 0 < τ̃1 ≤ τ1}.

The dimensionless polar bounds for C̃ resumes finally to

0 < τ̃0 ≤ 1,

0 < τ̃1 ≤ τ1,

0 ≤ ρ̃1 < min

{√
τ̃0τ̃1
2

;
√

τ̃1(1−τ̃0)(τ1−τ̃1)
2(1+τ1)

}
,

(77)
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while their dimensional corresponding is

0 < T̃0 ≤ T0,

0 < T̃1 ≤ T1,

0 ≤ R̃1 < min

{√
T̃0T̃1;

√
2T̃1(T0−T̃0)(T1−T̃1)

T0+2T1

}
.

(78)

To end this section, we remark that Fig. 4 clearly confirms that the
admissible domain is convex, as it has to be, being this one a particular case
of ordinary orthotropy.

11. Conclusion

We have shown in this paper that it is possible, using an appropriate
choice of tensor representation, the polar formalism, to give a complete an-
alytically expression for the bounds of the damage, D, and damaged elastic
tensor, C̃. These bounds allows for C̃ being positive definite, while D and Ĉ,
positive semi-definite. This last condition is related to the limited strain en-
ergy stored in the damaged material with respect to the original one, which
can be interpreted as an equivalence to a positive dissipation during the
damage process in this special case of linear elasticity-damage coupling.

The positive semi-definiteness of Ĉ together with Ĉ = CD+DC
2

and an
isotropic elasticity tensor C allows for proving the positive semi-definiteness
of D, which is thus not needed as an assumption.

We have also shown that when damage transforms the material into an
isotropic or square-symmetric material, then the bounds on the positive semi-
definiteness of D perfectly coincide with those of Ĉ. This can be interpreted as
follows: for an isotropic or square-symmetric damaged material, the positive
definiteness of C̃ and positive semi-definiteness of D allows for defining the
bounds on C̃ and D.

For all the other types of elastic symmetries of the damaged material, the
bounds on D are less restrictive than those on Ĉ, excepted for τ1 = 1, when
they perfectly coincide.
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Appendix A. Polar conditions for the positive definiteness of a pla-
nar fourth-rank anisotropic tensor of the elasticity
type.

Let us consider in <2 a fourth-rank tensor T of the type of elasticity,
eq. (2), and a second-rank symmetric tensor L. The expressions of their
independent Cartesian components by the polar method are given, for T, by
eq. (3), and for L by:

L11(θ) = t+ r cos 2(ϕ− θ),
L12(θ) = r sin 2(ϕ− θ),
L22(θ) = t− r cos 2(ϕ− θ).

(A.1)

The quantities t and r are the polar invariants of L, the angle ϕ fixes the
frame. It is important to recall that

R0 ≥ 0, R1 ≥ 0, r ≥ 0, (A.2)

because they mathematically represent the norm of a complex number.
T is positive definite if and only if the quadratic form f , defined on the

vector space of the second rank tensors,

f = L · TL > 0 ∀L. (A.3)

When eqs. (3) and (A.1) are inserted into eq. (A.3), after some standard
passages one gets

f = 8T1 t
2 + 16R1 t r cos 2(Φ1 − ϕ) + 4 [R0 cos 4(Φ0 − ϕ) + T0] r

2, (A.4)

which in matrix form reads

f = 4 (t, r) ·

[
2T1 2R1 cos 2(Φ1 − ϕ)

2R1 cos 2(Φ1 − ϕ) T0 +R0 cos 4(Φ0 − ϕ)

](
t

r

)
. (A.5)

Condition (A.3) is hence satisfied if and only if ∀ϕ
T1 > 0,

T0 +R0 cos 4(Φ0 − ϕ) > 0,

T1 [T0 +R0 cos 4(Φ0 − ϕ)] > 2R2
1 cos2 2(Φ1 − ϕ).

(A.6)

The above three conditions can be reduced to only two independent and
simpler conditions: first of all, in (A.63) the second member is a positive
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quantity, so if (A.62,3) are satisfied, (A.61) is obviously redundant, hence
it will be discarded. Condition (A.63) should now be transformed; to this
purpose, let us introduce the angle

α = Φ1 − ϕ (A.7)

which implies
Φ0 − α = ∆Φ+ α, (A.8)

where
∆Φ = Φ0 − Φ1, (A.9)

an invariant of T.
The third of the (A.6) becomes hence

T1 [T0 +R0 cos 4(∆Φ+ α)] > 2R2
1 cos2 2α ∀α, (A.10)

that can be transformed, using standard trigonometric identities, first to

T0T1 −R2
1 +

{[
T1R0 cos 4∆Φ−R2

1

]
cos 4α− T1R0 sin 4∆Φ sin 4α

}
> 0 ∀α,

(A.11)
then to

T0T1 −R2
1 >

√
(T1R0 cos 4∆Φ−R2

1)
2 + T 2

1R
2
0 sin2 4∆Φ cos 4(α−$) ∀α,

(A.12)
where

$ =
1

4
arctan

T1R0 sin 4∆Φ

R2
1 − T1R0 cos 4∆Φ

, (A.13)

a function of only invariants of T. Being the quantity under the sign of square
root in (A.12) strictly positive, conditions (A.62) and (A.12) to be true ∀ϕ
with some simple manipulations resume to

T0 > R0,

T0T1 > R2
1,

T1(T
2
0 −R2

0) > 2R2
1 [T0 −R0 cos 4∆Φ] .

(A.14)

Condition (A.142) is less restrictive than condition (A.143), and can be
discarded. To show this, let us transform eq. (A.14) to a dimensionless form
upon introduction of the ratios

ξ =
T0T1
R2

1

, η =
R0

T0
. (A.15)
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To remark that by the (A.21), (A.61) and (A.141), ξ and η are non negative
quantities. Introducing eq. (A.15) into eq. (A.14) gives

η < 1,

ξ > 1,

ξ > 21−η cos 4∆Φ
1−η2 ,

(A.16)

Then, condition (A.163) is more restrictive than condition (A.162) if

2
1− η cos 4∆Φ

1− η2
≥ 1, (A.17)

thanks to (A.161) equivalent to

η2 − 2η cos 4∆Φ+ 1 ≥ 0, (A.18)

which is always true, as it is easily checked. Finally, condition (A.142) can
be discarded because less restrictive than condition (A.143) and the only
invariant conditions to be T positive definite are eqs. (A.141,3), along with
the two conditions (A.21,2), intrinsic to the polar method:

T0 > R0,

T1(T
2
0 −R2

0) > 2R2
1 [T0 −R0 cos 4(Φ0 − Φ1)] ,

R0 ≥ 0,

R1 ≥ 0.

(A.19)

To remark also that conditions (A.19) imply that the isotropic part of T is
strictly positive:

T0 > 0, T1 > 0. (A.20)

The above four conditions are valid for a completely anisotropic planar
material; the different cases of elastic symmetries can be easily derived in-
troducing the appropriate conditions:

• ordinary orthotropy:

Φ0 − Φ1 = K π
4
,

K ∈ {0, 1}
−→


T0 > R0,

T1
[
T0 + (−1)KR0

]
> 2R2

1,

R0 ≥ 0,

R1 ≥ 0;

(A.21)
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• R0−orthotropy:

R0 = 0 −→


T0 > 0,

T1T0 > 2R2
1,

R1 ≥ 0;

(A.22)

• square symmetry:

R1 = 0 −→


T0 > R0,

T1 > 0,

R0 ≥ 0;

(A.23)

• isotropy:

R0 = R1 = 0 −→

{
T0 > 0,

T1 > 0.
(A.24)

Appendix B. On the link between a positive intrinsic dissipation
and a positive semi-definite loss of stiffness tensor

Let us consider a material for which the elastic behavior is linear, and
a process that induces a loss of stiffness (e.g. elasticity-damage coupling).
The initial stiffness tensor, the actual stiffness tensor and the loss of stiffness
tensor are respectively noted C, C̃ and Ĉ = C− C̃.

The intrinsic dissipation due to loss of stiffness reads (Chaboche (1978),
Chaboche (1994)) :

D =
1

2
εe · ˙̂Cεe (B.1)

From this last equation, it is obvious that

D ≥ 0 ⇐⇒ ˙̂C is positive semi-definite (B.2)

Property 1. The positive semi-definiteness of the loss of stiffness tensor Ĉ
is a necessary condition for the intrinsic dissipation D due to loss of stiffness
to be positive.

Proof. By definition, Ĉ(t = 0) is null, then

Ĉ =

∫ t

0

˙̂C dt (B.3)

A positive intrinsic dissipation D due to loss of stiffness implies that
˙̂C(t)

is positive semi-definite ∀t (see eq (B.2)), thus eq. (B.3) implies that Ĉ is
positive semi-definite.
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Let us consider now that the loss of stiffness is due to a linear elasticity-
damage coupling: the loss of stiffness tensor Ĉ is assumed to be a linear
function of the damage tensor D.

Property 2. The positivity of the intrinsic dissipation D due to linear
elasticity-damage coupling is equivalent to the positive semi-definiteness of
the loss of stiffness tensor Ĉ.

Proof.

1. Let us first assume the positivity of D : the property 1 leads to the
positive semi-definiteness of Ĉ.

2. Let us now assume the positivity semi-definiteness of Ĉ. Ĉ being linear
in D, there exists a constant tensor A such that Ĉ = AD (with a fourth
order damage tensor D, A is an eighth order tensor). The positive semi-

definiteness of Ĉ implies positive semi-definiteness of AD ∀D, and thus

the positive semi-definiteness of
˙̂C = AḊ ∀Ḋ. Considering eq. (B.2),

this proves the positivity of the intrinsic dissipation D due to linear
elasticity-damage coupling.

Appendix C. Proof of positivity definitness of damage tensor D

aaa
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