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Hausdorff volume in non equiregular sub-Riemannian manifolds

In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume. Then we study the regular part, show that it is not commensurable with the smooth volume, and give conditions under which it is a Radon measure. We finally give a complete characterization of the singular part. We illustrate our results and techniques on numerous examples and cases (e.g. to generic sub-Riemannian structures).

Introduction

The present work is motivated by the analysis of intrinsic volumes in sub-Riemannian geometry. Here a sub-Riemannian manifold is a triplet (M, D, g), where M is a smooth manifold, D a Lie-bracket generating distribution on M and g a Riemannian metric on D (note that our framework will permit us to consider rankvarying distributions as well). As in Riemannian geometry, one defines the length of absolutely continuous paths which are almost everywhere tangent to D by integrating the g-norm of their tangent vectors. Then, the sub-Riemannian distance d is defined as the infimum of length of paths between two given points. Since D is Lie-bracket generating, for every point p ∈ M there exists r(p) ∈ N such that

{0} = D 0 p ⊂ D 1 p ⊂ • • • ⊂ D r(p) p = T p M, (1) 
where D i p = {X(p) | X ∈ D i } and D i ⊂ Vec(M ) is the submodule defined recursively by

D 1 = D, D i+1 = D i + [D, D i ].
The sub-Riemannian manifold is equiregular if the dimensions dim D i p do not depend on p. Intrinsic measures on sub-Riemannian manifolds are those which are associated with the sub-Riemannian structure. There are essentially two ways to build such measures: either using the metric structure defined by the sub-Riemannian distance which provides Hausdorff and spherical Hausdorff measures, or by means of the algebraic structure associated with the distribution which allows to construct the so called Popp's measure (see [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF]) on equiregular manifolds.

Intrinsic measures have been widely studied in the equiregular case, where the algebraic structure is well understood (in Carnot groups [START_REF] Balogh | Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups[END_REF][START_REF] Bonfiglioli | Stratified Lie groups and potential theory for their sub-Laplacians[END_REF][START_REF] Franchi | On the structure of finite perimeter sets in step 2 Carnot groups[END_REF] and on equiregular manifolds [START_REF] Gauthier | On the motion planning problem, complexity, entropy, and nonholonomic interpolation[END_REF]). The relevance of the study of intrinsic volumes, e.g., top-dimensional Hausdorff measures, is due to their use in PDE's analysis. For instance, to generalize the Laplace-Beltrami operator in sub-Riemannian geometry, one needs a (sufficiently smooth) intrinsic volume: this motivates the analysis of regularity of the Hausdorff volume in [START_REF] Agrachev | On the Hausdorff volume in sub-Riemannian geometry[END_REF]. We also mention the recent work [START_REF] Capogna | Smoothness of subriemannian isometries[END_REF] where smoothness of intrinsic volumes is needed to apply some nice PDE's proof ideas. In the non equiregular case, no study of intrinsic volumes exists so far. We refer the reader to [START_REF] Gromov | Carnot-Carathéodory spaces seen from within[END_REF] for a survey of many facts and interesting questions. Hausdorff measures are also studied in [START_REF] Ghezzi | A new class of (H k , 1)-rectifiable subsets of metric spaces[END_REF][START_REF] Jean | Entropy and complexity of a path in sub-Riemannian geometry[END_REF] along curves.

The main aim of this paper is the analysis of the Hausdorff volume in non equiregular sub-Riemannian manifolds.

For convenience, let us first recall the equiregular case. Let (M, D, g) be an equiregular sub-Riemannian manifold. The Hausdorff dimension of M can be algebraically computed in terms of the flag (1) of the distribution by dim H M = Q, where

Q = r ∑ i=1 i(dim D i p -dim D i-1 p ),
see [START_REF] Mitchell | On Carnot-Carathéodory metrics[END_REF]. The Hausdorff volume, denoted by vol H , is by definition the top-dimensional spherical Hausdorff measure S dim H M . Assume M to be oriented. A natural way to understand the behavior of vol H is to compare it with a smooth volume µ on M , i.e., a measure defined on open sets by µ(A) = ´A ω, where ω ∈ Λ n M is a positively oriented non degenerate n-form. The equiregular assumption implies that vol H and any smooth volume µ are mutually absolutely continuous. Moreover the Radon-Nikodym derivative of vol H with respect to µ at a point p, denoted by dvolH dµ (p), can be computed explicitly by the formula (see [START_REF] Agrachev | On the Hausdorff volume in sub-Riemannian geometry[END_REF])

lim r→0 vol H (B(p, r)) µ(B(p, r)) = 2 Q μp ( B p ) , ( 2 
)
where B(p, r) is the sub-Riemannian ball centered at p of radius r, B p is the unit ball in the nilpotent approximation at p and μp is a measure obtained through a blow-up procedure of µ at p. As a consequence, dvolH dµ is continuous on M and hence locally bounded and locally bounded away from zero on M . With the language of [START_REF] Mitchell | On Carnot-Carathéodory metrics[END_REF][START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF], this implies that vol H and µ are commensurable and, in particular, that vol H is a Radon measure, i.e., vol H (K) < ∞ for every compact set K. Therefore, when the manifold is equiregular, vol H is well understood in the sense that it behaves essentially as a smooth volume. Nevertheless, further regularity of dvolH dµ is not granted see [START_REF] Agrachev | On the Hausdorff volume in sub-Riemannian geometry[END_REF].

In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold. A point p is called regular if the growth vector q → (dim D 1 q , . . . , dim D r(q) q

) is constant in a neighborhood of p, otherwise p is called singular. The natural assumption under which we perform our work is that the manifold is stratified by equisingular submanifolds, where both the growth vector of the distribution and the growth vector of the distribution restricted to the submanifold are constant. These submanifolds were introduced in [START_REF] Gromov | Carnot-Carathéodory spaces seen from within[END_REF] and, thanks to their simple Lie algebraic structure, they constitute the fundamental block that allows us to carry through our investigation.

When the set S of singular points is not empty, the Hausdorff dimension of M is obviously the maximum between the Hausdorff dimension of S and the Hausdorff dimension of the set R = M \ S of regular points.

The first question is whether vol H is absolutely continuous with respect to a smooth volume µ. It turns out that this may not be the case and vol H may have a singular part. More precisely, under the assumption that S is µ-negligible, then vol H admits the following Lebesgue decomposition

vol H = vol H R +vol H S ,
that is, vol H R ≪ µ and vol H S ⊥ µ (see Corollary 3.9). As a consequence, vol H is absolutely continuous with respect to a smooth volume µ if and only if the Hausdorff dimension of the singular set is smaller than the Hausdorff dimension of the set of regular points.

The next problem is to analyze the behavior of the absolutely continuous part vol H R (which is nontrivial if and only if dim H R ≥ dim H S). Thanks to [START_REF] Agrachev | Introduction to Riemannian and sub-Riemannian geometry (from a Hamiltonian viewpoint[END_REF], this amounts to study the function q → μq ( B q ) near singular points. To this aim, we show that the asymptotics of this function is characterized by the one of the determinants of adapted bases at regular points (see Proposition 3.12). As a direct consequence, we deduce that dvolH R dµ (q) blows up when q approaches the singular set (see Proposition 3.15). In particular, dvolH R dµ is not essentially bounded near the singular set, that is, unlike the equiregular case, µ and vol H R are no longer commensurable. Going further in the regularity analysis, we find out that vol H R may even fail to be locally integrable with respect to µ and therefore vol H R may fail to be a Radon measure. More precisely, we exhibit a sufficient condition involving the nonholonomic order of dvolH R dµ and the algebraic structure of the distribution at a singular point for non-integrability of vol H R (see Proposition 4.4), and another one involving the usual order of functions and the codimension of the singular set (see Proposition 4.10). For instance, these conditions are satisfied when the Hausdorff dimension of R is not greater than the Hausdorff dimension of S or when S topologically splits M (see Corollaries 4.6 and 4.11). We also exhibit a sufficient condition for the integrability of vol H R (see Proposition 4.9), but there is a gap between integrability and non-integrability conditions. In Figure 1 we summarize the relations between the Hausdorff volume and µ in all cases.

For generic sub-Riemannian manifolds, we apply our technique and we characterize the integrability of the absolutely continuous part by comparing the dimension of the manifold to dimensions of free Lie algebras (see Proposition 6.1).

As for the singular part vol H S , the stratification assumption permits to focus on each equisingular submanifold N ⊂ S. For an equisingular submanifold N ⊂ S, we give an algebraic characterization of the Hausdorff dimension of N and we compare the Hausdorff volume with a smooth volume on the submanifold (see Theorem 5.3). We show actually that on the restricted metric space (N, d| N ) the situation is very similar to the one in equiregular manifolds: the Hausdorff volume is absolutely continuous with respect to any smooth volume on N and we have an expression of the Radon-Nikodym derivative in terms of the nilpotent approximation. Results of this part of the paper have been announced in [START_REF] Ghezzi | Hausdorff measure and dimensions in non equiregular sub-Riemannian manifolds[END_REF]. The structure of the paper is the following. In Section 2 we briefly recall Hausdorff measures on metric spaces and the basic concepts in sub-Riemannian geometry. Section 3 is devoted to the analysis of the Hausdorff volume in the equiregular case and of the Lebesgue decomposition of the Hausdorff volume in the non equiregular case. In Section 4 we perform the study of regularity of the Radon-Nikodym derivative and we provide sufficient conditions for integrability and non-integrability. Then, Section 5 deals with equisingular submanifolds by providing first a complete study of the algebraic and metric structure of such submanifolds, and then an analysis of the properties of the Hausdorff volume. Finally, in Section 6 we apply the methods of Section 4 to the study of the generic smooth case and we list some examples. We end with an appendix containing the proof of a technical result, Proposition A.1 which is a uniform Ball-Box Theorem on equisingular submanifolds and which is a key ingredient to study the behavior of dvolH R dµ at singular points.

Prop. 4.9 S ̸ = ∅ Q S < Q R volH not Radon volH ≪ µ volH ≪ µ volH , µ volH Radon commensurable volH ̸ ≪ µ volH R , µ volH ⊥ µ S = ∅ S ̸ = ∅ S ̸ = ∅ Q S = Q R Q S > Q R Prop.

Definitions

Hausdorff and smooth volumes

Let us first recall some basic facts on Hausdorff measures. Let (M, d) be a metric space. We denote by diam S the diameter of a set S ⊂ M . Let α ≥ 0 be a real number. For every set E ⊂ M , the α-dimensional Hausdorff measure H α of E is defined as

H α (E) = lim ϵ→0 + H α ϵ (E)
, where

H α ϵ (E) = inf { ∞ ∑ i=1 (diam S i ) α : E ⊂ ∞ ∪ i=1 S i , S i nonempty set, diam S i ≤ ϵ } ,
and the α-dimensional spherical Hausdorff measure is defined as S α (E) = lim ϵ→0 + S α ϵ (E), where

S α ϵ (E) = inf { ∞ ∑ i=1 (diam S i ) α : E ⊂ ∞ ∪ i=1 S i , S i is a ball, diam S i ≤ ϵ } .
For every set E ⊂ M , the non-negative number

D = sup{α ≥ 0 | H α (E) = ∞} = inf{α ≥ 0 | H α (E) = 0} is called the Hausdorff dimension of E. Notice that H D (E) may be 0, > 0, or ∞. By construction, for every subset S ⊂ M , H α (S) ≤ S α (S) ≤ 2 α H α (S), (3) 
hence the Hausdorff dimension can be defined equivalently using spherical measures. In the sequel we will call Hausdorff volume the spherical Hausdorff measure S dimH M and we will denote this measure by vol H .

Given a subset N ⊂ M , we consider the metric space (N, d| N ). Denoting by H α N and S α N the Hausdorff and spherical Hausdorff measures in this space, by definition we have

H α N (E) := H α (E ∩ N ) = H α N (E ∩ N ), S α N (E) := S α (E ∩ N ) ≤ S α N (E ∩ N ). (4) 
Notice that the inequality ( 4) is strict in general, as coverings in the definition of S α N are made with sets B which satisfy B = B(p, ρ) ∩ N with p ∈ N , whereas coverings in the definition of S α N include sets of the type B(p, ρ) ∩ N with p / ∈ N (S α N is very similar to centered Hausdorff measures, see [START_REF] Edgar | Centered densities and fractal measures[END_REF]). Moreover, thanks to (3), for every S ⊂ N , there holds

H α N (S) ≤ S α N (S) ≤ 2 α H α N (S). Hence H α (S) ≤ S α N (S) ≤ 2 α H α (S),
and S α N is absolutely continuous with respect to H α N . We will denote by vol N H the Hausdorff volume

S dimH N N .
When M is an oriented manifold we can introduce another kind of volume. We say that a measure µ is a smooth volume on M if there exists a positively-oriented non degenerate n-form ω ∈ Λ n M on M (i.e. ω is a volume form) such that, for every Borel set

E ⊂ M , µ(E) = ´E ω.
Finally we will say that two measures µ, ν on M are commensurable if µ, ν are mutually absolutely continuous, i.e., µ ≪ ν and ν ≪ µ, and if both Radon-Nikodym derivatives dµ dν and dν dµ exist and are locally essentially bounded. When it is the case, for every compact set K there exists C > 0 such that

1 C µ K ≤ ν K ≤ Cµ K .
In particular, thanks to (3), H α and S α are mutually absolutely continuous and commensurable.

Sub-Riemannian manifolds

Usually, a sub-Riemannian manifold is a triplet (M, ∆, g R ), where M is a smooth (i.e., C ∞ ) manifold, ∆ is a subbundle of T M of rank m < dim M and g R is a Riemannian metric on ∆. Using g R , the length of horizontal curves, i.e., absolutely continuous curves which are almost everywhere tangent to ∆, is welldefined. When ∆ is Lie bracket generating, the map d : M × M → R defined as the infimum of length of horizontal curves between two given points is a continuous distance (Rashevsky-Chow Theorem), and it is called sub-Riemannian distance.

In this paper we study sub-Riemannian manifolds with singularities. Thus it is natural to work in a larger setting, where the map q → ∆ q itself may have singularities. This leads us to the following generalized definition [START_REF] Agrachev | Introduction to Riemannian and sub-Riemannian geometry (from a Hamiltonian viewpoint[END_REF][START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF].

Definition 2.1. A sub-Riemannian structure on a manifold M is a triplet (U, ⟨•, •⟩, f ) where (U, ⟨•, •⟩) is a
Euclidean vector bundle over M (i.e., a vector bundle π U : U → M equipped with a smoothly-varying scalar product q → ⟨•, •⟩ q on the fibre U q ) and f is a morphism of vector bundles f : U → T M , i.e. a smooth map linear on fibers and such that, for every u ∈ U, π(f (u)) = π U (u), where π : T M → M is the usual projection.

Let (U, ⟨•, •⟩, f ) be a sub-Riemannian structure on M . We define the submodule D ⊂ Vec(M ) as

D = {f • σ | σ smooth section of U}, (5) 
and for q ∈ M we set D q = {X(q) | X ∈ D} ⊂ T q M . Clearly D q = f (U q ). The length of a tangent vector v ∈ D q is defined as

g q (v) := inf{⟨u, u⟩ q | f (u) = v, u ∈ U q }. ( 6 
)
An absolutely continuous curve γ :

[a, b] → M is horizontal if γ(t) ∈ D γ(t) for almost every t. If D is Lie bracket generating, that is ∀ q ∈ M Lie q D = T q M, (7) 
then the map d : M × M → R defined as the infimum of length of horizontal curves between two given points is a continuous distance as in the classic case. In this paper, all sub-Riemannian manifolds are assumed to satisfy the Lie bracket generating condition [START_REF] Bonfiglioli | Stratified Lie groups and potential theory for their sub-Laplacians[END_REF].

Remark 2.2. Definition 2.1 includes the following cases.

• Classic sub-Riemannian structures: in this case U is a subbundle of T M and f is the inclusion. With the notations used at the beginning of this section, this amounts to take U = ∆, and ⟨•, •⟩ = g R . Then the module D coincides with the module of smooth sections of the subbundle ∆ and D q has constant dimension. Moreover, for every q ∈ M and v ∈ D q , g q (v) = g R q (v, v).

• Sub-Riemannian structures associated with a family of vector fields X 1 , . . . , X m : in this case U = M × R m is the trivial bundle of rank m over M , ⟨•, •⟩ is the Euclidean scalar product on R m , and

f : M × R m → M is defined as f (q, u) = ∑ m i=1 u i X i (q).
Here D is the module generated by X 1 , . . . X m and g is given by

g q (v) = inf { m ∑ i=1 u 2 i v = m ∑ i=1 u i X i (q) } .
Let (U, ⟨•, •⟩, f ) be a sub-Riemannian structure on a manifold M , and D, g the corresponding module and quadratic form as defined in ( 5) and [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF]. In analogy with the classic sub-Riemannian case and to simplify notations, in the sequel we will refer to the sub-Riemannian manifold as the triplet (M, D, g). This is justified since all the constructions and definitions below rely only on D and g.

Given i ≥ 1, define recursively the submodule D i ⊂ Vec(M ) by

D 1 = D, D i+1 = D i + [D, D i ].
Fix p ∈ M and set

D i p = {X(p) | X ∈ D i }.
The Lie-bracket generating assumption implies that there exists an integer r(p) such that

{0} = D 0 p ⊂ D 1 p ⊂ • • • ⊂ D r(p) p = T p M. ( 8 
)
The sequence of subspaces ( 8) is called the flag of D at p. Set n i (p) = dim D i p and

Q(p) = r(p) ∑ i=1 i(n i (p) -n i-1 (p)). (9) 
This integer will play a crucial role for determining the Hausdorff dimension of (M, d). To write Q(p) in a different way, we define the weights of the flag (8) at p as the integers w 1 (p), . . . , w n (p) such that

w i (p) = s if dim D s-1 p < i ≤ dim D s p . Then Q(p) =
∑ n i=1 w i (p). We say that a point p is regular if, for every i, n i (q) is constant as q varies in a neighborhood of p. Otherwise, the point is said to be singular. The sub-Riemannian manifold is called equiregular if every point is regular.

When the dimensions n i (q) are constant on M , the module D i coincides with the module of vector fields

{X ∈ Vec(M ) | X(q) ∈ D i q ∀ q ∈ M },
i.e., vector fields that are tangent to the distribution q → D i q . Yet the identification between the module D i and the map q → D i q is no more meaningful when the dimension of D i q varies as a function of q (see the discussion in [6, page 48]). Indeed, in the rank-varying case, a vector field tangent to D i q at every q ∈ M may fail1 to be in the module D i . Definition 2.1 allows to take account of structures where the dimensions n i (q) (and in particular n 1 (q)) may vary.

Example 2.3 (Grushin plane). Let M = R2 , U = R 2 × R 2 endowed with the canonical Euclidean structure, and f be the morphism defined as follows. If σ 1 , σ 2 is a global orthonormal basis on U, we set f (σ 1 (x, y)) = ∂ x and f (σ 2 (x, y)) = x∂ y . Then D (x,y) is two dimensional for every x ̸ = 0, whereas dim D (0,y) = 1.

Remark 2.4. At a regular point p, the equality n i (p) = n i+1 (p) implies that the local distribution q → D i q is involutive, and so that n i (p) = n j (p) for any j ≥ i. From the Lie bracket generating assumption [START_REF] Bonfiglioli | Stratified Lie groups and potential theory for their sub-Laplacians[END_REF] we deduce n i (p) < n i+1 (p) for i < r(p), which in turn implies Q(p) ≤ n 2 .

Given any sub-Riemannian manifold (M, D, g) there always exist a (possibly very big) integer m and vector fields X 1 , . . . , X m such that D is globally generated by X 1 , . . . , X m and

g q (v) = inf { m ∑ i=1 u 2 i v = m ∑ i=1 u i X i (q) } for every q ∈ M, v ∈ T q M.
We call such a family X 1 , . . . , X m a (global) generating family for the sub-Riemannian structure (D, g). The existence of a generating family is a consequence of [START_REF] Agrachev | Introduction to Riemannian and sub-Riemannian geometry (from a Hamiltonian viewpoint[END_REF]Corollary 3.16]. For an alternative proof see also [START_REF] Sussmann | Smooth distributions are globally finitely spanned[END_REF].

Consider a generating family X 1 , . . . , X m for (D, g). A multi-index I of length |I| = j ≥ 1 is an element of {1, . . . , m} j . With any multi-index I = (i 1 , . . . , i j ) is associated an iterated Lie bracket

X I = [X i1 , [X i2 , . . . , [X ij-1 , X ij ] . . . ] (we set X I = X i1 if j = 1
). The set of vector fields {X I | |I| ≤ j} generates the module D j . As a consequence, if the values of X I1 , . . . , X In at p ∈ M are linearly independent, then

∑ i |I i | ≥ Q(p).
Let Y be a vector field. We define the length of Y by

ℓ(Y ) = min{i ∈ N | Y ∈ D i }.
In particular, ℓ(X I ) ≤ |I|. By an adapted basis to the flag (8) at p, we mean n vector fields Y 1 , . . . , Y n such that their values at p satisfy

D i p = span{Y j (p) | ℓ(Y j ) ≤ i}, ∀ i = 1, . . . ,

r(p).

In particular,

∑ n i=1 ℓ(Y i ) = Q(p).
As a consequence, a family of Lie brackets X I1 , . . . , X In such that X I1 (p), . . . , X In (p) are linearly independent is an adapted basis to the flag (8) at p if and only if

∑ i |I i | = Q(p).
Let h : U → R be a continuous function on a neighborhood of p. The nonholonomic order of h at p is

ord p (h) := inf{s ∈ (0, +∞) | h(q) = O(d(p, q) s )}.
If h is a smooth function, then ord p (h) admits an algebraic characterization, namely,

ord p (h) = min{s ∈ N | ∃ i 1 , . . . , i s ∈ {1 . . . , m} such that (X i1 X i2 • • • X is h)(p) ̸ = 0}. A smooth function h is called privileged at p if ord p (h) = max{s ∈ N | dh(D s p /D s-1 p ) ̸ = 0}, where D s p /D s-1 p is a vector subspace such that D s p = D s-1 p ⊕ (D s p /D s-1 p
). We say that coordinates φ = (x 1 , . . . , x n ) : U → R n are privileged at p if they are centered at p and linearly adapted (that is the coordinate vector fields are an adapted basis to the flag at p), and if every coordinate function x i is privileged at p.

Note that in this definition of privileged coordinates, the coordinate functions are not ordered by increasing nonholonomic order. However the set {ord p (x i ), i = 1, . . . , n} coincides with {w 1 (p), . . . , w n (p)}, so we can relabel the weights in such a way that ord p (x i ) = w i (p). We then say that the weights are labeled according to the coordinates φ.

For every point p ∈ M the metric tangent cone 2 to (M, d) at p exists and is isometric to (T p M, d p ) where d p is the sub-Riemannian distance associated with the nilpotent approximation of the structure at p (see [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF]Definition 5.15] for the definition of nilpotent approximation). This was shown in [START_REF] Mitchell | On Carnot-Carathéodory metrics[END_REF] for equiregular sub-Riemannian manifolds and in [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF] for the general case. Isometries between the metric tangent cone and (T p M, d p ) are given by privileged coordinates at p.

By construction, the metric tangent cone is endowed with a family of dilations δ λ with respect to which the distance d p is homogeneous. If φ : U → R n is a system of privileged coordinates at p then dilations are given by δ λ (x 1 , . . . , x n ) = (λ w1(p) x 1 , . . . , λ wn(p) x n ), where w i (p) = ord p (x i ).

We refer the reader to [START_REF] Agrachev | Introduction to Riemannian and sub-Riemannian geometry (from a Hamiltonian viewpoint[END_REF][START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF][START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF] for a primer in sub-Riemannian geometry.

Lebesgue decomposition of the Hausdorff volume

In this section we investigate the relation between the Hausdorff volume and a smooth volume on a sub-Riemannian manifold. We first recall the equiregular case, where the situation is well understood, then we consider the case where singular points are present. We write the Lebesgue decomposition of the Hausdorff volume with respect to the smooth volume and we start the analysis of both the absolutely continuous part and the singular part.

Equiregular case

Assume (M, D, g) is an equiregular connected sub-Riemannian manifold. Then q → Q(q) is constant on M (see ( 9)) and we denote by Q its constant value. Moreover at every point p ∈ M the metric tangent cone to (M, d), which is isometric to (T p M, d p ), has a structure of a Carnot group. Assume M is also oriented and let µ be a smooth volume on M . The associated volume form ω induces canonically a left-invariant volume form ωp on T p M . We denote by μp the smooth volume on T p M defined by ωp . To clarify this construction, we refer the reader to Proposition 5.1 in Section 5. µ(B(p,ϵ)) , whose value is

lim ϵ→0 vol H (B(p, ϵ)) µ(B(p, ϵ)) = 2 Q μp ( B p ) , ∀ p ∈ M, ( 10 
)
where B p denotes the ball centered at 0 and of radius 1 in T p M with respect to d p .

Remark 3.2. As we will see in Theorem 5.3 below, one can interpret the constant 2 in (10) as the diameter of the ball B p with respect to the distance d p . Since the nilpotent approximation is a Carnot group here, we then have 2

Q = diam dp ( B p ) Q = S Q dp ( B p ) (here S Q dp
denotes the spherical Hausdorff measure in T p M with respect to the distance d p ), which gives a clear interpretation to [START_REF] Franchi | On the structure of finite perimeter sets in step 2 Carnot groups[END_REF].

Theorem 3.1 is a special case of Theorem 5.3 proved in Section 5. Note that all the statements in Theorem 3.1 are well-known, but they have been proved only fragmentarily in several references: properties (i) and (iii) are stated in [START_REF] Mitchell | On Carnot-Carathéodory metrics[END_REF] (for a rigorous proof see [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF]), property (iv) in [START_REF] Agrachev | On the Hausdorff volume in sub-Riemannian geometry[END_REF]. Up to the authors' knowledge, property (ii) has never been stated as is and it is a consequence of basic covering arguments in geometric measure theory. In particular, this property is needed to apply the differentiation theorem for Radon measures [START_REF] Simon | Lectures on geometric measure theory[END_REF]Theorem 4.7 

H Q (B(p,ϵ)) µ(B(p,ϵ))
exists µ-almost everywhere and it coincides with the Radon-Nikodym derivative of H Q with respect to µ. Nevertheless, we do not have an explicit representation of such limit as we have for the spherical Hausdorff case in [START_REF] Franchi | On the structure of finite perimeter sets in step 2 Carnot groups[END_REF].

A first consequence of Theorem 3.1 is that the Radon-Nikodym derivative of vol H with respect to µ is continuous on M , see [1, Corollary 2 and Section 4.1]. This is due to the fact that both the nilpotent approximation at q and the tangent measure μq depend smoothly on q. Studying higher regularity of dvolH dµ is the main subject in [START_REF] Agrachev | On the Hausdorff volume in sub-Riemannian geometry[END_REF], to which we refer the interested reader.

A further consequence is that µ and vol H are commensurable (see the last remark in [START_REF] Mitchell | On Carnot-Carathéodory metrics[END_REF]). This follows directly by the fact that q → μq ( B q ) is positive and continuous on M , so that dvol H dµ (q) and its inverse dµ dvol H (q) are locally bounded.

In conclusion, when the manifold is equiregular, the Hausdorff volume essentially behaves as a smooth measure. This fails when singular points are present, as we see in the next section.

Non equiregular case

Assume (M, D, g) is an oriented sub-Riemannian manifold and µ is a smooth volume on M . The manifold is split into the disjoint union of two sets

M = R ∪ S,
where R, S denote respectively the set of regular and singular points. Since the functions q → dim D i q are lower semi-continuous, R is an open and dense subset of M and conversely S is a closed subset of empty interior.

We will assume in this paper that µ(S) = 0. This assumption is satisfied for a very wide class of sub-Riemannian manifolds: for instance for analytic sub-Riemannian manifolds, for generic sub-Riemannian structures on a given manifold (see Section 6.1), or when q → D q is a distribution of corank 1 [25, Proposition 3.3]. Nevertheless one can build up sub-Riemannian manifolds where µ(S) ̸ = 0 as in the next example.

Example 3.4. Let S ⊂ R 4 be any closed set having empty interior and positive Lebesgue measure. By Whitney's Extension Theorem (see for instance [START_REF] Madsen | From calculus to cohomology[END_REF]Proposition A.8]), there exists a function f ∈ C ∞ (R 4 ) such that S = f -1 (0). Consider the sub-Riemannian structure on R 4 for which the following vector fields are a generating family,

X 1 = ∂ 1 , X 2 = ∂ 2 + x 1 ∂ 3 + x 2 1 2 ∂ 4 , X 3 = f (x)∂ 4 .
One easily checks that the singular set coincides with S and thus it is of positive measure.

We are interested in properties of vol H = S dimH M , hence we first compute dim H M . Clearly, the Hausdorff dimension of M is max{dim H R, dim H S}. Then, using property (i) in Theorem 3.1 the Hausdorff dimension of the regular set can be computed algebraically as

dim H R = sup{dim H O, O connected component of R} = max q∈R Q(q).
This follows from the fact that R is a countable union of open connected components, and by the inequality Q(q) ≤ n 2 at every q ∈ R (see Remark 2.4). To remind its algebraic characterization, we denote by Q R the number max q∈R Q(q) (which equals dim H R). We present in Section 5 an analogous method to compute the Hausdorff dimension of S under some stratification assumptions.

Applying Theorem 3.1 to every connected component of R we obtain the following result.

Proposition 3.5. Let (M, D, g) be an oriented sub-Riemannian manifold and let µ be a smooth volume on

M . Assume µ(S) = 0. Then S Q R R ≪ µ, the Radon-Nikodym derivative of S Q R R
with respect to µ exists µ-almost everywhere, and it coincides with the density lim ϵ→0

S Q R (B(q,ϵ)) µ(B(q,ϵ)) for every q ∈ R. Moreover, if O is a connected component of R such that dim H O = Q R , then dS Q R R dµ (q) = 2 Q R μq ( B q ) for every q ∈ O. ( 11 
)
Remark 3.6. The measure S Q R R may not be a Radon measure on M (see Section 4 below). Thus the existence of a Radon-Nikodym derivative and the fact that it coincides with the density are not consequences of

S Q R R ≪ µ.
Remark 3.7. In the statement above we can replace

S Q R by vol H R . Indeed, if dim H S > Q R , then vol H = S dimH S .
As a consequence, vol H R ≡ 0 and vol H R (B(q, ϵ)) = 0, for every q ∈ R, so that the density becomes trivial. On the other hand, if dim

H S ≤ Q R then vol H R = S Q R R , that is, the two measures coincides. Remark 3.8. When there is a connected component O ⊂ R with dim H O < Q R , the density lim ϵ↓0 S Q R (B(q,ϵ)) µ(B(q,ϵ))
vanishes at every point q ∈ O and so

dS Q R R dµ ≡ on O.
Proof of Proposition 3.5. Apply Theorem 3.1 to each connected component of R. Then, by property (ii), S Q R , as a measure on the metric space (R, d| R ), is Radon, that is, S Q R is finite on compact subsets contained in R. Moreover, by property (iii), S Q R , as a measure on R, is absolutely continuous with respect to µ. Obviously, µ is also a Radon measure on M (and thus on R) which is also locally doubling (see [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF]). Thus we can apply the differentiation theorem for Radon measures (see for instance [26, Theorem 4.7 p.24] with X = R, µ 2 = vol H and µ 1 = µ) and deduce that, on R, the Radon-Nikodym derivative of S Q R with respect to µ coincides with the density lim ϵ→0

S Q R (B(q,ϵ))
µ(B(q,ϵ)) . In other words, for every Borel set E ⊂ R,

S Q R (E) = ˆE lim ϵ→0 S Q R (B(q, ϵ)) µ(B(q, ϵ)) dµ(q).
Since R is open and µ(M \ R) = 0, we deduce that for every Borel set E ⊂ M ,

S Q R R (E) = ˆE∩R lim ϵ→0 S Q R (B(q, ϵ)) µ(B(q, ϵ)) dµ(q),
which gives the conclusion.

Since R is open and Hausdorff measures are Borel regular, R and S are µ-and vol H -measurable. Hence for every set

E ⊂ M vol H (E) = vol H (E ∩ R) + vol H (E ∩ S),
or equivalently, vol H = vol H R +vol H S . Moreover, since µ(S) = 0, vol H S is concentrated on S whereas µ is concentrated on R. Therefore µ and vol H S are mutually singular. We thus get directly the following fact.

Corollary 3.9. Let (M, D, g) be an oriented sub-Riemannian manifold and let µ be a smooth volume on M . Assume µ(S) = 0. Then µ and vol H S are mutually singular and the Lebesgue decomposition of vol H with respect to µ is

vol H = vol H R +vol H S . As a consequence, (i) if dim H R < dim H S then vol H and µ are mutually singular; (ii) if dim H R > dim H S then vol H ≪ µ.
Corollary 3.9 provides the Lebesgue decomposition of vol H with respect to a smooth measure µ. In the sequel we are interested in studying the absolutely continuous part and the singular part of vol H . Note that the only case where vol H R ̸ ≡ 0 is when dim H R ≥ dim H S. In this case vol H R = S Q R R . Thus the latter is the measure we study in Section 4.

Stratification assumption

To go further in the characterization of vol H , the first question is how to compute the Hausdorff dimension dim H M and how to relate dim H M to algebraic properties of the sub-Riemannian structure.

Recall that to compute dim H R one simply considers R as the disjoint union of open sets where the growth vector (n 1 (q), . . . , n r(q) (q)) is constant and then compute the Hausdorff dimension of each component O ⊂ R by the algebraic formula

dim H O = r(q) ∑ i=1 i(n i (q) -n i-1 (q)).
This idea can be carried out on the whole manifold, provided that M can be stratified by suitable submanifolds. This motivates the following definition.

Let N ⊂ M be a smooth connected submanifold and q ∈ N . The flag at q of D restricted to N is the sequence of subspaces

{0} ⊂ (D 1 q ∩ T q N ) ⊂ • • • ⊂ (D r(q) q ∩ T q N ) = T q N. ( 12 
)
Set

n N i (q) = dim(D i q ∩ T q N ) and Q N (q) = ∑ r(q) i=1 i(n N i (q) -n N i-1 (q)). ( 13 
)
We say that N is equisingular3 if (i) for every i, the dimension n i (q) is constant as q varies in N ;

(ii) for every i, the dimension n N i (q) is constant as q varies in N . In this case, we denote by Q N the constant value of Q N (q), q ∈ N . We will see in Theorem 5.3 that Q N is actually the Hausdorff dimension of N . Remark 3.10. If N is an open connected submanifold of M then N is equisingular if and only if it is equiregular, that is, condition (i) is equivalent to condition (ii). For submanifolds N of dimension smaller than dim M being equisingular implies that N is contained in the singular set (see Example 3.14 below for a sub-Riemannian structure where the singular set is itself an equisingular submanifold). Definition 3.11. We say that the sub-Riemannian manifold (M, D, g) is stratified by equisingular submanifolds if there exists a locally finite stratification S = ∪ i S i where every S i is an equisingular submanifold.

In the rest of the paper we will make the assumption that (M, D, g) is stratified by equisingular submanifolds. The interest of such an assumption has already been raised by Gromov [16,1.3.A]. It holds true in particular for generic smooth sub-Riemannian manifolds and for analytic ones. It obviously implies µ(S) = 0 for any smooth measure µ, hence Corollary 3.9 and all the analysis of the previous section are valid. To shorten the notations we gather all the hypotheses we need on the sub-Riemannian manifold in the following assumption:

(A) The sub-Riemannian manifold (M, D, g) is stratified by equisingular submanifolds, M is oriented, and

Q(q) = Q R at every point q ∈ R.
As a first consequence of this assumption, we obtain dim H S = sup i dim H S i and vol H S = ∑ i vol H Si . Thus, to characterize vol H S , it suffices to understand what happens on each stratum. This will be done Section 5 where we develop the analysis of Hausdorff volumes on equisingular submanifolds started in [START_REF] Ghezzi | Hausdorff measure and dimensions in non equiregular sub-Riemannian manifolds[END_REF].

As concerns the regular part of the Hausdorff volume, note that all connected components O of R have the same Hausdorff dimension Q R , which implies that (11) holds for every q ∈ R. Also, it makes sense to study

S Q R R rather than vol H R . Indeed, if dim H S ≤ Q R then vol H = S Q R . Conversely, if dim H S > Q R then the absolutely continuous part vol H R vanishes identically, but S Q R R still satisfies Proposition 3.5.
We will focus our analysis on the regularity properties of the derivative dS Q R R dµ as they translate directly into properties of the measure S Q R R . In particular, S Q R R is commensurable to µ if and only if dS Q R R dµ is locally essentially bounded and bounded away for zero and S Q R R is a Radon measure if and only if dS Q R R dµ is locally integrable with respect to µ. To carry out the analysis of this Radon-Nikodym derivative the main tool is the proposition below.

For simplicity, we introduce the following notations. For two real numbers t and t ′ we write t

≍ C t ′ if t ′ /C ≤ t ≤ Ct ′ ,
where C > 0 is a constant. Moreover, given a family of vector fields X 1 , . . . , X m and a n-tuple I = (I 1 , . . . , I n ) of multi-indices we denote by X I the n-tuple of vector fields (X I1 , . . . , X In ) (where X Ij is the Lie bracket corresponding to the multi-index I j ). Proposition 3.12. Assume (A) and consider a generating family X 1 , . . . , X m for the sub-Riemannian structure. For every compact subset K ⊂ M , there exists a constant C > 0 such that

dS Q R R dµ (q) ≍ C 1 ν(q) ∀ q ∈ K ∩ R,
where

ν(q) = √ ∑ I∈F ω(X I )(q) 2 and F = { I = (I 1 , . . . , I n ) ∑ i |I i | = Q R } .
The proof is postponed to Section 5.3 . Actually, since

dS Q R R dµ (q) = 2 Q R μq ( Bq)
for q ∈ R, Proposition 3.12 follows from a particular instance of Proposition 5.7, see also Remark 5.8. Remark 3.13. Since the family F is finite, one easily computes the nonholonomic order of the function q → ν(q) at p ∈ S as ord p ν = min

I∈F ord p (ω(X I )).
Moreover, in the statement of Proposition 3.12, ν can be replaced by

ν(q) = max I∈F |ω(X I )(q)|.
Example 3.14 (the Martinet space). Let us compute ν on a specific example. Consider the sub-Riemannian structure on R 3 given by the generating family

X 1 = ∂ 1 , X 2 = ∂ 2 + x 2 1 2 ∂ 3 .
We choose ω = dx 1 ∧ dx 2 ∧ dx 3 , that is, the canonical volume form on R 3 . The growth vector is equal to (2, 2, 3) on the plane {x 1 = 0}, and it is (2, 3) elsewhere. As a consequence, S coincides with {x 1 = 0} and is equisingular, since n S 1 (0,

x 2 , x 3 ) = n S 2 (0, x 2 , x 3 ) = 1, n S 3 (0, x 2 , x 3 ) = 2.
At regular points we have Q R = 4 and the only adapted basis at regular points is

(X 1 , X 2 , [X 1 , X 2 ]). Then ν(x 1 , x 2 , x 3 ) ≍ C ν(x 1 , x 2 , x 3 ) = |x 1 |.
By Proposition 3.12, on R the Radon-Nikodym derivative dS Q R R dµ is locally equivalent to 1/ν. Henceforth it is sufficient to study essential boundedness and integrability of 1/ν. It turns out that this function is not locally essentially bounded around the singular set.

Proposition 3.15. Under assumption (A), for every p ∈ S and every neighborhood

U ⊂ M of p, essup dS Q R R dµ U = +∞.
As a consequence, S Q R R and µ are not commensurable when S ̸ = ∅.

Proof. Let I = (I 1 , . . . , I n ) ∈ F . Recall that if the values of X I1 , . . . , X In at a point q ∈ M are linearly independent, then

∑ i |I i | = Q R ≥ Q(q) (see Section 2.2). Let p ∈ S. Since Q R < Q(p)
, the vectors X I1 (p), . . . , X In (p) are linearly dependent. Thus ν(q) → 0 as q → p and the conclusion follows from Proposition 3.12.

Thus S Q R R and µ are never commensurable in non equiregular sub-Riemannian manifolds. It makes sense now to ask whether dS Q R R dµ is locally integrable with respect to µ. The answer to this question is more involved and is the object of Section 4. Remark 3.16. Let us mention that, on R, there is a smooth volume which is intrinsically associated with the sub-Riemannian structure (i.e., to the pair (D, g)), namely the Popp measure P. An explicit formula for this measure is given in [START_REF] Barilari | A formula for Popp's volume in sub-Riemannian geometry[END_REF]. More precisely, thanks to [5, Theorem 1], the Radon-Nikodym derivative dP dµ satisfies

dP dµ (q) ≍ C 1 ν(q) , for every q ∈ K ∩ R,
where K is any compact set in M . As a consequence, P and S Q R R are commensurable on M (P is extended to a measure on M by setting P S = 0). In particular, P and µ are not commensurable when S ̸ = ∅, and P is Radon if and only if S Q R R is.

Remark 3.17. In Proposition 3.12 and Proposition 3.15, the only conditions of assumption (A) needed are Q(q) = Q R for every q ∈ R and M oriented. The stratification assumption is redundant.

Local integrability of the Radon-Nikodym derivative

Thanks to Theorem 3.1,

dS Q R R
dµ is continuous on R and thus locally µ-integrable on R. Nevertheless, by Proposition 3.15 dS Q R R dµ explodes when approaching S. Therefore, the question remains whether dS Q R R dµ is locally µ-integrable around singular points, or equivalently whether S Q R R is a Radon measure. The aim of this section is to provide sufficient conditions for dS Q R R dµ to be locally µ-integrable or not around S. In Section 4.1 we express in some suitable coordinates an integral whose finiteness is equivalent to the local integrability of dS Q R R dµ . We then use this expression in Section 4.2 to deduce explicit algebraic conditions for both integrability and non-integrability of dS Q R R dµ .

Computation in local coordinates

Consider an equisingular submanifold N and a point p ∈ N . Thanks to Proposition 3.12, under assumption (A) the local µ-integrability of dS Q R R dµ near p is equivalent to the one of 1 ν . The latter can be conveniently characterized in well-chosen systems of coordinates. Lemma 4.1. Assume (A). Let N be an equisingular k-dimensional submanifold, p ∈ N , and φ = (y, z) ∈ R k × R n-k be local coordinates centered at p such that, near p, φ(N ) ⊂ {z = 0}.

Then dS Q R R dµ is locally µ-integrable near p if and only if, for R > 0 small enough, ˆR 0 λ n-k-1 ( ˆ|y|≤R ( ˆ{|z|=1} dσ(z) ν(Φ(y, λz)) ) dy ) dλ < +∞, ( 14 
)
where Φ = φ If moreover φ is a system of privileged coordinates at p, then dS Q R R dµ is locally µ-integrable near p if and only if, for R > 0 small enough,

ˆR 0 λ Q(p)-QN -1 ( ˆ∥y∥≤R ( ˆ{∥z∥=1} dσ(z) ν(Φ(y, δ λ z)) ) dy ) dλ < +∞, ( 15 
)
where ∥y∥ = max i∈{1,...,k}

|y i | wi(p) , ∥z∥ = max i∈{k+1,...,n} |z i | wi(p) , δ λ z = (λ w k+1 (p) z k+1 , . . . , λ wn(p) z n ),
w i (p) are the weights at p labeled according to the coordinates φ, and dσ(z) denotes the (n -k -1)-Lebesgue measure on {∥z∥ = 1}.

Remark 4.2. Since N is equisingular, the functions q → w i (q) are constants on N and the integers Q(q) and Q N = Q N (q) (see [START_REF] Ghezzi | A new class of (H k , 1)-rectifiable subsets of metric spaces[END_REF]) may be computed as

Q(q) = n ∑ i=1 w i (q) and Q N = k ∑ i=1 w i (q).
Proof. According to the notation in the statement above, we set φ = (y 1 , . . . , y k , z k+1 , . . . , z n ). This allows to distinguish which coordinates parameterize N , namely the first group y, and which ones are transversal to N , namely the second group z.

Let U be a small neighborhood of p. Thanks to the expression of dS Q R R dµ provided by Proposition 3.12, the finiteness of S Q R R (U ) reduces to the finiteness of the integral ´U 1 ν(q) dµ(q). Applying the change of variables φ in the integral and taking upper and lower bounds for | det JΦ(y, z)| near (0, 0), we obtain

S Q R R (U ) ≍ C ˆφ(U) 1 ν(Φ(y, z)) dydz = ˆy∈Ω1 (ˆz ∈Ω2 1 ν(Φ(y, z)) dz ) dy,
where we have written φ(U ) as

Ω 1 × Ω 2 , with Ω 1 ⊂ R k and Ω 2 ⊂ R n-k open subsets.
Since φ(U ) contains and is contained in sets of the form {|y| < R} × {|z| < R}, it is sufficient to consider the case where Ω 1 = {|y| < R} and Ω 2 = {|z| < R} for some small R > 0. Criterion [START_REF] Ghezzi | Hausdorff measure and dimensions in non equiregular sub-Riemannian manifolds[END_REF] follows directly by a change of coordinates z = λz, |z| = 1, in the integral on Ω 2 .

Assume now that the coordinates φ are privileged at p. As above, it is sufficient to consider the case where Ω 1 = {∥y∥ < R} and Ω 2 = {∥z∥ < R} for some small R > 0. Recall that in privileged coordinates, dilations take the form δ λ (y, z) = (λ w1(p) y 1 , . . . , λ w k (p) y k , λ w k+1 (p) z k+1 , . . . , λ wn(p) z n ).

By construction, the pseudo-norm ∥ • ∥ is homogeneous with respect to δ λ , and we have Ω 2 = {δ λ z | ∥z∥ = 1, λ ∈ [0, R)}. Thus, changing variables in the integral, we obtain

ˆy∈Ω1 (ˆz ∈Ω2 1 ν(Φ(y, z)) dz ) dy = ˆ∥y∥≤R ( ˆR 0 λ ∑ n j=k+1 wj -1 ( ˆ{∥z∥=1} dσ(z) ν(Φ(y, δ λ z)) ) dλ ) dy.

By Remark 4.2,

∑ n j=k+1 w j = Q(p) -Q N and we obtain criterion [START_REF] Gromov | Structures métriques pour les variétés riemanniennes[END_REF]. As pointed out in Remark 3.17, in Lemma 4.1 we do not need the stratification assumption, but only the other two conditions in assumption (A). Nevertheless, whenever M is stratified by equisingular submanifolds and p ∈ M , there exists a unique equisingular submanifold N containing p.

We end this section with the construction of a system of coordinate around p satisfying the assumptions of the previous lemma. This construction will also prove to be useful in Section 5.

Lemma 4.3.

Let N be an equisingular submanifold. Then there exist a neighborhood U of p and a smooth map

φ : U ∩ N → C ∞ (U, R n ) q → φ q : U → R n
such that, for every q ∈ U ∩ N , (I) φ q is a system of privileged coordinates centered at q;

(II) φ q (U ∩ N ) ⊂ {(x 1 , . . . , x n ) ∈ R n | x k+1 = • • • = x n = 0}, where k = dim N .
Moreover, for every q ∈ U ∩ N and for every q ′ ∈ U ,

(φ q (q ′ )) i = (φ p (q ′ )) i , i = k + 1, . . . , n. ( 16 
)
Proof. For every q ∈ N , let us consider the flag of D restricted to N

(D 1 q ∩ T q N ) ⊂ • • • ⊂ (D r q ∩ T q N ) = T q N.
Recall that the integers n N i = dim(D i q ∩ T q N ) do not depend on q in N . Thus, in a neighborhood U of p, there exist a family of vector fields Z 1 , . . . , Z k on U such that, for every q ∈ N and for every i = 1, . . . , r,

D i q ∩ T q N = span{Z j (q) | ℓ(Z j ) ≤ i}.
In particular, we have T q N = span{Z 1 (q), . . . , Z k (q)}, and

Q N = r ∑ i=1 i(n N i -n N i-1 ) = k ∑ i=1 ℓ(Z i ).
Possibly reducing U , since q → dim D i q is constant on N , there exist vector fields Z k+1 , . . . , Z n such that the family Z 1 , . . . , Z n is adapted to the flag of D at every q ∈ N ∩ U (see [START_REF] Capogna | Smoothness of subriemannian isometries[END_REF]).

Using these bases, we define for q ∈ N ∩ U , a local diffeomorphism Φ q : R n → M by

Φ q (x) = exp (x n Z n ) • • • • • exp (x 1 Z 1 ) (q). (17) 
The inverse φ q = Φ -1 q of Φ q provides a system of privileged coordinates at q (see [START_REF] Hermes | Nilpotent and high-order approximations of vector field systems[END_REF]) and in these coordinates N coincides locally with the set {x k+1 = • • • = x n = 0}. Moreover, the map (q, x) → Φ q (x) is smooth on N ∩ U , which completes the proof of points (I) and (II).

Finally, let us prove [START_REF] Gromov | Carnot-Carathéodory spaces seen from within[END_REF]. Let q ∈ U ∩N and q ′ ∈ U . We denote respectively by x and y the coordinates of q ′ centered at q and p, that is, q ′ = Φ q (x) = Φ p (y). By construction, the point exp (

x k Z k )•• • ••exp (x 1 Z 1 ) (q)
belongs to U ∩ N , and hence may be written as Φ p (z) with z k+1 = • • • = z n = 0. Therefore,

q ′ = Φ q (x) = exp (x n Z n ) • • • • • exp (x k+1 Z k+1 ) • exp (z k Z k ) • • • • • exp (z 1 Z 1 ) (p),
which implies y i = x i for i = k + 1, . . . , n, i.e. [START_REF] Gromov | Carnot-Carathéodory spaces seen from within[END_REF].

Sufficient conditions

In the sequel, we provide sufficient conditions to obtain either local integrability or non integrability of

dS Q R R dµ
around a fixed singular point. These conditions will be of different nature (either differential or metric), depending on whether they are obtained with [START_REF] Ghezzi | Hausdorff measure and dimensions in non equiregular sub-Riemannian manifolds[END_REF] or [START_REF] Gromov | Structures métriques pour les variétés riemanniennes[END_REF].

Note that by assumption (A), S admits a stratification by equisingular submanifolds, hence every singular point belongs to an equisingular submanifold which is determined in a unique way. Recall also from Proposition 3.12 that

ν(q) = √ ∑ I∈F ω(X I )(q) 2 and F = { I = (I 1 , . . . , I n ) ∑ i |I i | = Q R } .

Conditions on nonholonomic orders

Consider a singular point p ∈ S and an equisingular submanifold N ⊂ S containing p. Define

ϱ min (p, N ) = lim ϵ→0 min{ord q ν | q ∈ N ∩ B(p, ϵ)},
where ord q (h) is the nonholonomic order of the function h at q. Note that by Remark 3.13, ord p ν = min I∈F ord p (ω(X I )), so that

ϱ min (p, N ) = lim ϵ→0 min{ord q (ω(X I )) | q ∈ N ∩ B(p, ϵ), I ∈ F}.
Next result gives an algebraic sufficient condition for a neighborhood of p to have infinite S Q R measure. This condition involves the order of ν at singular points around p (ϱ min (p, N )), the flag of the distribution at p (Q(p)) and the flag of the distribution restricted to the singular set at p (Q N ).

Proposition 4.4. Assume (A). Let p ∈ S and let N be an equisingular submanifold containing

p. If ϱ min (p, N ) ≥ Q(p) -Q N , then dS Q R R dµ is not µ-locally integrable around p.
Proof. We will apply condition (15) with the coordinate system φ p = (y, z) built in Lemma 4.3. Fix R small enough. By definition, ν(Φ p (y,

δ λ z)) 2 = ∑ I∈F ω(X I )(Φ p (y, δ λ z)) 2 ,
where F is the family of n-tuples of multi-indices I = (I 1 , . . . , I n ) such that

∑ j |I j | = Q R .
Since p belongs to the singular set, for any family I ∈ F , the vectors X I1 (p), . . . , X In (p) are linearly dependent. Similarly, for every y near 0, the vectors X I1 (Φ p (y, 0)), . . . , X In (Φ p (y, 0)) are linearly dependent. As a consequence, ν(Φ p (y, 0)) ≡ 0.

Given y ∈ {∥y∥ ≤ R}, denote by ϱ(y) the greatest number such that there exists a constant

C y > 0 satisfying ν(Φ p (y, δ λ z)) ≤ C y λ ϱ(y) ,
for every λ ≤ 1 and ∥z∥ = 1. Thanks to [START_REF] Gromov | Carnot-Carathéodory spaces seen from within[END_REF], Φ p (y, z) = Φ q (0, z),

where q = Φ p (y, 0). Hence Φ p (y, δ λ z) = Φ q (0, δ λ z) = Φ q (δ λ (0, z)), and ϱ(y) is simply the nonholonomic order of ν at Φ p (y, 0) and, in particular, ϱ(y) ≥ ϱ min (we omit the dependance w.r.t. (p, N )). Assume ϱ min < ∞. Since q → ν 2 (q) is smooth, there exists C > 0 such that max ∥y∥≤R,∥z∥p=1 ν(Φ p (y, δ λ z)) ≤ Cλ ϱmin .

Thus ˆR 0 λ Q(p)-QN -1 ( ˆ∥y∥≤R ( ˆ{∥z∥=1} dσ(z) ν(Φ(y, δ λ z)) ) dy ) dλ ≥ C ˆ1 0 λ Q(p)-QN -1-ϱmin dλ.
Therefore, applying [START_REF] Gromov | Structures métriques pour les variétés riemanniennes[END_REF] in Lemma 4.1, condition ϱ min ≥ Q(p) -Q N gives the non integrability. If ϱ min = +∞, then we directly infer the conclusion, as the inequality

ˆR 0 λ Q(p)-QN -1 ( ˆ∥y∥≤R ( ˆ{∥z∥=1} dσ(z) ν(Φ(y, δ λ z)) ) dy ) dλ ≥ C ˆ1 0 λ Q(p)-QN -1-α dλ
holds for every positive integer α.

Remark 4.5. For every q = Φ p (y, 0) ∈ N and every I ∈ F, ord q (ω(X I )) ≥ Q(p) -Q R and thus

ϱ min (p, N ) ≥ Q(p) -Q R .
To see this, let X 1 , . . . , X m be a nilpotent approximation at q ∈ N of the generating family X 1 , . . . , X m . Denote by X I the family X I1 , . . . , X In , where I = (I 1 , . . . , I n ) and X Ij is the Lie bracket between X 1 , . . . , X m . Then ω(X I )(Φ p (y,

δ λ z)) = ω(X I )(Φ q (0, δ λ z)) = λ Q(q)-Q R ( ω( X I )(Φ q (0, δ λ z)) + λb I,q (λ, z)
) ,

where b I,q is a smooth function. Finally, the equisingularity of N ensures that Q(q) = Q(p).

Proposition 4.4, jointly with Remark 4.5 allows to deduce the following criterion for S Q R R not to be Radon.

Corollary 4.6. Assume (A). If dim

H S ≥ dim H R, then S Q R R is not a Radon measure.
Remark 4.7. Denoting by S = ∪S j the stratification of S by equisingular submanifolds, condition dim H S ≥ dim H R is equivalent to the existence of a stratum S j such that Q Sj ≥ Q R . Indeed, thanks to Theorem 5.3,

dim H S = max j dim H S j = max j Q Sj .
Therefore, such condition encodes a metric information, in the sense that the Hausdorff dimension is defined only through the metric structure of the manifold, and it bears an algebraic interpretation (and hence a direct way to be tested) in terms of Q R and the Q Sj .

Proof. Under the assumptions, there exists an equisingular submanifold N ⊂ S such that dim H N = dim H S. On the other hand, Q N = dim H N by Theorem 5.3. Using Remark 4.5, for every p ∈ N we have

ϱ min (p, N ) ≥ Q(p) -Q R ≥ Q(p) -Q N ,
hence the assumption of Proposition 4.4 is satisfied and S Q R R is not locally integrable around p.

As concerns sufficient conditions for local integrability, we use the same approach as in Proposition 4.4 and we look for uniform lower bounds on ν.

For a point p ∈ S and an equisingular submanifold N containing p, we define

ϱ max (p, N ) = inf { s ≥ 0 : inf y∈Ω1,∥z∥p=1 { lim inf λ→0 ν(Φ p (y, δ λ z)) λ s } > 0 } ,
where Φ p and Ω 1 are constructed in Lemma 4.3. By construction, ϱ min (p, N ) ≤ ϱ max (p, N ).

Remark 4.8. The number ϱ max = ϱ max (p, N ) is defined precisely to get a uniform lower bound on ν. More precisely, if ϱ max < ∞, there exists C > 0 such that, for every (y, z) ∈ Ω 1 × {∥z∥ p = 1} and λ ∈ [0, 1], there holds ν(Φ p (y,

δ λ z)) ≥ Cλ ϱmax . ( 18 
)
Unlike ϱ min , in general ϱ max does not bear an algebraic interpretation as a nonholonomic order. Nevertheless, it can be characterized in a more intrinsic way as

ϱ max = inf { s ≥ 0 : inf q∈B(p,ϵ)∩N { lim inf q→q,q / ∈S ν(q) d(q, N ) s } > 0 } .
As a direct consequence of (18) and Lemma 4.1, we deduce the following fact.

Proposition 4.9. Assume (A). Let p ∈ S and let N be an equisingular submanifold containing p. If

ϱ max (p, N ) < Q(p) -Q N then S Q R R is locally µ-integrable around p.
Notice that the hypothesis ϱ max (p, N ) < Q(p) -Q N implies in particular that ϱ max < ∞, and thus that in a neighborhood of p the set S coincides with N .

In general, condition ϱ max < Q(p) -Q N is not sharp, in the sense that there may be cases in which the condition fails and S Q R R is locally integrable (see Example 6.6). Actually, the study of the generic case (see the proof of Proposition 6.1) shows that the integrability does not necessarily require a bound on ϱ max . Nevertheless, when ν is homogeneous, we have ϱ max = ϱ min and thus Proposition 4.4 together with Proposition 4.9 provides a characterization of integrability. Namely, if ν is homogeneous, then

S Q R R is locally integrable at p ∈ N if and only if ϱ min < Q(p) -Q N .

Conditions on usual orders

Consider a singular point p ∈ S and an equisingular submanifold N ⊂ S containing p. Define

e min (p, N ) = lim ϵ→0 min{ord diff q (ω(X I )) | q ∈ N ∩ B(p, ϵ), I ∈ F},
where ord diff q is the usual notion of order of the differential calculus. In coordinates x, the order ord diff q h of a smooth function h is the biggest integer k such that all partial derivatives of h of order smaller than k are zero. Equivalently, it is the biggest integer such that locally h(x) = O(|x| k ). Obviously, e min (p, N ) ≤ ϱ min (p, N ).

Proposition 4.10. Assume (A). Let p ∈ S and let N be an equisingular submanifold of codimension

n -k ≥ 1. If e min (p, N ) ≥ n -k, then dS Q R R dµ is not locally µ-integrable around p.
Proof. The proof is similar to the one of Proposition 4.4, replacing ord q by ord diff q and (15) by ( 14).

Corollary 4.11. Assume (A). If S contains a submanifold of codimension 1, then

S Q R R is not a Radon measure.
Proof. By assumption (A), S is stratified by equisingular submanifolds. Therefore there exists an equisingular submanifold N ⊂ S of codimension one. Let p ∈ N . Take a coordinate system (y 1 , . . . , y n-1 , z) that allows to identify N with {z = 0}. For every I ∈ F, since ω(X I )(Φ p (y, z)) ≡ 0, it results from Malgrange Preparation Theorem that there exists C > 0 such that |ω(X I )(Φ p (y, z))| ≤ C|z|, for every y in a neighborhood of 0, and thus e min (p, N ) ≥ 1 = n -(n -1). Proposition 4.10 applies.

A sufficient condition of integrability similar to Proposition 4.9 can also be derived.

Hausdorff measures on submanifolds

Thanks to the analysis in Section 3.3, under assumption (A) the study of the singular part vol H S reduces to the study of the restriction of this measure to every equisingular stratum S i ⊂ S. Since vol H Si = 0 or +∞ if dim H S i ̸ = dim H M , we are actually led to study S dimH N N for an equisingular submanifold N . This is the object of this section.

We first describe the algebraic structure of an equisingular manifold N , and then give in Theorem 5.3 a complete description of S dimH N N . Finally we give an estimate of the Radon-Nikodym derivative of S dimH N N with respect to a smooth volume on N .

Algebraic structure associated with equisingular submanifolds

Recall that the metric tangent cone to (M, d) at any point p exists and it is isometric to (T p M, d p ), where d p denotes the sub-Riemannian distance associated with a nilpotent approximation at p (see [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF]).

The following proposition shows the relevance of equisingular submanifolds as particular subsets of (M, d) for which a metric tangent cone exists. Such metric space is isometrically embedded in a metric tangent cone to the whole M at the point. (ii) For every p ∈ N , the graded vector space

gr N p (D) := r(p) ⊕ i=1 (D i p ∩ T p N )/(D i-1 p ∩ T p N )
is a nilpotent Lie algebra whose associated Lie group 

Gr N p (D) is diffeomorphic to T p N .
sup p∈K 1 ϵ diam(N ∩ B(p, ϵ)) -diam dp (T p N ∩ B p ) ----→ ϵ→0 + 0; (19) 
sup p∈K 1 ϵ QN µ(N ∩ B(p, ϵ)) -μp (T p N ∩ B p ) ----→ ϵ→0 + 0. ( 20 
)
Remark 5.2. When N is an open submanifold of M , assuming N equisingular is equivalent to saying that N contains only regular points. In that case, most of Proposition 5.1 is well-known: point (i) follows by the fact that the nilpotent approximation is a metric tangent cone; point (ii) says that the tangent cone shares a group structure; point (iii) is trivial since diam dp ( B p ) = 2 and diam(B(p, ϵ)) = 2ϵ for small ϵ; and the continuity of p → μp ( B p ) in (iv) has been remarked in [START_REF] Agrachev | On the Hausdorff volume in sub-Riemannian geometry[END_REF]. Only the uniform convergence ( 20) is new in this case.

Proof. Note first that since the result is of local nature, it is sufficient that we prove it on a small neighborhood U ∩ N of a point p 0 ∈ N . It results from Lemma 4.3 that, for every p in a such a neighborhood, there exists a coordinate system φ p :

U p → R n on a neighborhood U p ⊂ M of p, such that φ p are privileged coordinates at p, p → φ p is smooth on U ∩ N , and N is rectified in coordinates φ p , that is φ p (N ∩ U p ) ⊂ {x ∈ R n | x k+1 = • • • = x n = 0}.

Proof of (i) and (ii).

Coordinates φ p allow to identify (T p M, d p ) with (R n , d p ). From [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF]Theorem 7.32] we have the following estimate, which is instrumental in the proof below. There exists two positive constants ϵ p , C p and an integer r such that, if x, y ∈ R n satisfy M p (x, y) := max( d p (0, x), d p (0, y)) < ϵ p , then

-C p M p (x, y)d(φ -1 p (x), φ -1 p (y)) 1/r ≤ d(φ -1 p (x), φ -1 p (y)) -d p (x, y) ≤ C p M p (x, y) d p (x, y) 1/r . ( 21 
)
Moreover, as noticed in [20, Sect. 2.2.2], since N is equisingular the functions p → ϵ p and p → C p are continuous on N and r does not depend on p ∈ N (r is the maximum of the weights w 1 (p), . . . , w n (p)). Now, using φ p we identify locally M with T p M ≃ R n and N with T p N ≃ R k × {0}. Therefore, whenever q 1 , q 2 ∈ U p ∩ N we have

d p (φ -1 p (q 1 ), φ -1 p (q 2 )) = d p | TpN (φ -1 p (q 1 ), φ -1 p (q 2 )),
and obviously d(q 1 , q 2 ) = d| N (q 1 , q 2 ). Hence ( 21) holds when we restrict d to N and d to T p N . This allows to conclude [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF]Proposition 8.12] that a metric tangent cone to (N, d| N ) at p exists and it is isometric to (T p N, d p | TpN ). The algebraic structure of gr N p (D) and the fact that Gr N p (D) is diffeomorphic to R k are obtained in exactly the same way as at regular point, see [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF]Sect. 4.4]. Thus (i) and (ii) are proved.

Proof of (iii). Let w i (p) be the weights at p labeled according to the coordinates φ p . Note that the dilations δ s : x → (s w1(p) x 1 , . . . , s wn(p) x n ), s > 0, do not depend on p ∈ N as N is equisingular. Thus the homogeneity of d p with respect to δ s and estimate [START_REF] Madsen | From calculus to cohomology[END_REF] imply that the function (p, x, y)

→ d p (x, y) is continuous on N × R n × R n . As a consequence, diam dp (T p N ∩ B p ) = sup { d p (x, y) | x, y ∈ R k , d p (0, x) and d p (0, y) ≤ 1
} is an upper semi-continuous function of p. Let us prove that is also lower semi-continuous. Fix p ∈ N and let (x,

y) ∈ R k × R k such that diam dp (T p N ∩ B p ) = d p (x, y). For q ∈ N we set α(q) = min ( d p (0, x) d q (0, x) , d p (0, y) d q (0, y)
)

.

By construction we have d q (0, δ α(q) x) and d q (0, δ α(q) y) ≤ 1, hence

diam dq (T q N ∩ B q ) ≥ d q (δ α(q) x, δ α(q) y) = α(q) d q (x, y).
When q → p, the continuity of q → d q (x, y) implies that α(q) → 1 and d q (x, y) → d p (x, y). As a result,

lim inf q→p diam dq (T q N ∩ B q ) ≥ d p (x, y) = diam dp (T p N ∩ B p ),
that is, the function p → diam dp (T p N ∩ B p ) is lower semi-continuous and then continuous.

To prove [START_REF] Jean | Entropy and complexity of a path in sub-Riemannian geometry[END_REF], we write

diam(N ∩ B(p, ϵ)) = sup { d(φ -1 p (x), φ -1 p (y)) | x, y ∈ φ p (B(p, ϵ)) ∩ R k } .
From the continuity of the constants in [START_REF] Madsen | From calculus to cohomology[END_REF] we deduce the existence of a constant C > 0 and a function ρ : R → R, ρ(ϵ) → 0 as ϵ → 0, which satisfy the following property: for every p ∈ K,

B dp (0, ϵ(1 -ρ(ϵ))) ⊂ φ p (B(p, ϵ)) ⊂ B dp (0, ϵ(1 + ρ(ϵ))), (22) 
and, if x, y belong to B dp (0, ϵ(1

+ ρ(ϵ))), then |d(φ -1 p (x), φ -1 p (y)) -d p (x, y)| ≤ C(ϵ(1 + ρ(ϵ))) 1+1/r .
As a consequence, the diameter of

N ∩ B(p, ϵ) satisfies diam dp ( T p N ∩ B dp (0, ϵ(1 -ρ(ϵ))) ) -C(ϵ(1 + ρ(ϵ))) 1+1/r ≤ diam(N ∩ B(p, ϵ)) ≤ diam dp ( T p N ∩ B dp (0, ϵ(1 + ρ(ϵ))) ) + C(ϵ(1 + ρ(ϵ))) 1+1/r , for every p ∈ K. From the homogeneity of d p , diam dp ( T p N ∩ B dp (0, ϵ(1 ± ρ(ϵ))) ) = ϵ(1 ± ρ(ϵ)) diam dp ( T p N ∩ B p ) ,
and we obtain (19) from the inequalities above. Thus point (iii) is proved.

Proof of (iv). By (ii) there exists a canonical isomorphism σ between ∧ k (T * p N ) and ∧ k (gr N p (D) * ) (see the construction in [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF]Section 10.5]). Let σ(ϖ p ) be the image under such isomorphism of the value ϖ p of ϖ at p. Then πp is defined as the left-invariant k-form on Gr N p (D) which coincides with σ(ϖ p ) at the origin. The next step is to show that the function p → μp (T p N ∩ B p ) is continuous on N . In coordinates φ p , we identify T p N and Gr N p (D) with R k × {0} ⊂ R n . Through this identification, σ(ϖ p ) coincides with ϖ p and may be written as

ϖ p (∂ x1 , . . . , ∂ x k )(dx 1 ∧ • • • ∧ dx k ) p . As a consequence πp = ϖ p (∂ x1 , . . . , ∂ x k ) dx 1 ∧ • • • ∧ dx k and μp = ϖ p (∂ x1 , . . . , ∂ x k )L k , where L k is the Lebesgue measure on R k . Continuity of p → μp (T p N ∩ B p ) on N reduces to continuity of p → L k (T p N ∩ B p ) on N .
As for the proof of the continuity of p → diam dp (T p N ∩ B p ), the crucial point is the homogeneity of d p . Fix p ∈ N and define the functions α, β : N → R as follows. For q ∈ N ,

α(q) = max{ d q (0, x) | x ∈ R k , d p (0, x) = 1}, β(q) = min{ d q (0, x) | x ∈ R k , d p (0, x) = 1}.
The continuity of q → d q implies that α and β are continuous. Moreover, by homogeneity of the distances d q , we have

δ β(q) B q ∩ R k ⊂ B p ∩ R k ⊂ δ α(q) B q ∩ R k . Recall that, for x ∈ R k δ s x = (s w1(p) x 1 , . . . , s w k (p) x k ) and that Q N = ∑ k i=1 w i (q) for every q ∈ N (see remark 4.2). Hence 1 α(q) QN L k ( B p ∩ R k ) ≤ L k ( B q ∩ R k ) ≤ 1 β(q) QN L k ( B p ∩ R k ).
Since α and β are continuous and converge to 1 as q → p,

L k ( B q ∩ R k ) converges to L k ( B p ∩ R k ) as q → p.
This proves the continuity of p → L k (T p N ∩ B p ) and so the one of p → μp (T p N ∩ B p ).

It remains to prove [START_REF] Jean | Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning[END_REF]. Let us write the measure µ in coordinates φ p ,

µ(N ∩ B(p, ϵ)) = ˆφp(N∩B(p,ϵ)) φ p * ϖ(∂ x1 , . . . , ∂ x k )(x) dx 1 ∧ • • • ∧ dx k .
Using [START_REF] Mitchell | On Carnot-Carathéodory metrics[END_REF] and the smoothness of the function (p, x) → φ p * ϖ(∂ x1 , . . . , ∂ x k )(x), we obtain the following inequalities,

ˆTpN∩B dp (0,ϵ(1-ρ(ϵ))) ( ϖ p (∂ x1 , . . . , ∂ x k ) -ρ(ϵ) ) dx 1 ∧ • • • ∧ dx k ≤ µ(N ∩ B(p, ϵ)) ≤ ˆTpN∩B dp (0,ϵ(1+ρ(ϵ))) ( ϖ p (∂ x1 , . . . , ∂ x k ) + ρ(ϵ) ) dx 1 ∧ • • • ∧ dx k .
The conclusion follows from

μp (T p N ∩ B p ) = 1 ϵ Q N μp (T p N ∩ B dp (0, ϵ)) = 1 ϵ Q N ˆTpN∩B dp (0,ϵ) ϖ p (∂ x1 , . . . , ∂ x k ) dx 1 ∧ • • • ∧ dx k . ( 23 
)

Hausdorff volume of equisingular submanifolds

Recall that vol 

lim ϵ→0 vol N H (N ∩ B(p, ϵ)) µ(N ∩ B(p, ϵ)) = diam dp (T p N ∩ B p ) QN μp (T p N ∩ B p ) , ∀ p ∈ N. ( 24 
)
Remark 5.4. When M is equiregular and connected, applying Theorem 5.3 to N = M we deduce Theorem 3.1.

Remark 5.5. Point 4 together with points (iii) and (iv) of Proposition 5.1 shows that the Radon-Nikodym derivative dvol N H dµ (q) is continuous on N . Before starting the proof of the theorem, we need to establish the following simple lemma. Lemma 5.6. Let N and µ be as in Theorem 5.3. Let p ∈ N . Assume there exists positive constants ϵ 0 and µ + > µ -such that, for every ϵ < ϵ 0 and every point q ∈ N ∩ B(p, ϵ 0 ), there holds

µ -diam(N ∩ B(q, ϵ)) QN ≤ µ(N ∩ B(q, ϵ)) ≤ µ + diam(N ∩ B(q, ϵ)) QN . ( 25 
)
Then, for every ϵ < ϵ 0 ,

µ(N ∩ B(p, ϵ)) µ + ≤ S QN N (B(p, ϵ)) ≤ µ(N ∩ B(p, ϵ)) µ - . ( 26 
)
Proof. Let ∪ i B(q i , r i ) be a covering of N ∩ B(p, ϵ) with balls centered at points in N of radius smaller than δ < ϵ 0 . If δ is small enough, every q i belongs to N ∩ B(p, ϵ 0 ) and, using [START_REF] Rifford | Sub-Riemannian Geometry and Optimal Transport[END_REF], there holds

µ(N ∩ B(p, ϵ)) ≤ ∑ i µ(N ∩ B(q i , r i )) ≤ µ + ∑ i diam(N ∩ B(q i , r i )) QN .
Hence, we have S QN N (B(p, ϵ)) ≥ µ(N ∩B(p,ϵ)) µ+ . For the other inequality, let η > 0, 0 < δ < ϵ 0 and let

∪ i B(q i , r i ) be a covering of N ∩ B(p, ϵ) such that q i ∈ N ∩ B(p, ϵ), r i < δ and ∑ i µ(N ∩ B(q i , r i )) ≤ µ(N ∩ B(p, ϵ)) + η.
Such a covering exists due to the Vitali covering lemma. Using as above [START_REF] Rifford | Sub-Riemannian Geometry and Optimal Transport[END_REF], we obtain

µ(N ∩ B(p, ϵ)) + η ≥ ∑ i µ(N ∩ B(q i , r i )) ≥ µ - ∑ i diam(N ∩ B(q i , r i )) QN . We then have S QN N,δ (B(p, ϵ)) ≤ N ∩µ(B(p,ϵ)) µ- + η µ-.
Letting η and δ tend to 0, we get the conclusion.

Proof of Theorem 5.3. Let p ∈ N and fix δ > 0. Set

µ ± (δ) = μp (T p N ∩ B p ) diam dp (T p N ∩ B p ) ± δ
Let K be the intersection of N with the closed ball of center p and radius δ. By Proposition 5.1, the functions q → diam dq (T q N ∩ B q ) and q → μq (T q N ∩ B q ) are uniformly continuous on K and convergences ( 19) and (20) are uniform on K. Therefore there exists ϵ 0 > 0 (depending only on δ) such that ϵ 0 < δ and, for every ϵ < ϵ 0 , for every q ∈ N ∩ B(p, ϵ), there holds

µ -(δ) diam(B(q, ϵ) ∩ N ) QN ≤ µ(B(q, ϵ) ∩ N ) ≤ µ + (δ) diam(B(q, ϵ) ∩ N ) QN .
Applying Lemma 5.6 we deduce that for every ϵ < ϵ 0 there holds

µ -(δ) ≤ S Q N N (B(p, ϵ)) µ(B(p, ϵ) ∩ N ) ≤ µ + (δ). (27) 
Therefore we infer that S Q N N is a Radon measure and, using a covering argument, that S QN and µ are mutually absolutely continuous, i.e., property 3. As δ goes to 0 we obtain that

lim ϵ↓0 S QN N (B(p, ϵ)) µ(B(p, ϵ) ∩ N ) = diam dp (T p N ∩ B p ) μp (T p N ∩ B p ) . ( 28 
)
Since the right-hand side of ( 28) is positive and continuous on N , for ϵ > 0 small enough,

0 < S QN (N ∩ B(p, ϵ)) < ∞, whence dim H N = Q N and vol N H = S Q N N .
As a consequence, [START_REF] Vershik | Nonholonomic dynamical systems, geometry of distributions and variational problems[END_REF] gives [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF]. Finally, we apply the differentiation theorem for Radon measures [START_REF] Simon | Lectures on geometric measure theory[END_REF]Theorem 4.7] (with

X = N , µ 1 = µ and µ 2 = vol N H ) to obtain that lim ϵ→0 vol N H (N ∩B(p,ϵ))
µ(N ∩B(p,ϵ)) coincides with the Radon-Nikodym derivative of vol N H with respect to µ.

Weak equivalent of q

→ μq (T q N ∩ B q )
We end this section by stating a result which gives a weak equivalent of the function q → μq (T q N ∩ B q ) appearing in Theorem 5.3. This is instrumental to determine whether the Radon-Nikodym derivative of vol N H with respect to µ is integrable or not. This result stems from the uniform Ball-Box Theorem, [START_REF] Jean | Uniform estimation of sub-Riemannian balls[END_REF] and [START_REF] Jean | Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning[END_REF]Theorem 4.7]. A related formula computing explicitly Popp's measure in equiregular manifolds has been given in [START_REF] Barilari | A formula for Popp's volume in sub-Riemannian geometry[END_REF].

Proposition 5.7. Let M be an oriented manifold with a volume form ω, and N ⊂ M be an oriented submanifold with a volume form ϖ. We denote by µ the associated smooth volume on N and we set k = dim N . Finally, let X 1 , . . . , X m be a generating family for a sub-Riemannian structure on M .

If N is equisingular, then for any compact subset K ⊂ M there exists a constant C > 0 such that, for every q ∈ N ∩ K, μq (T q N ∩ B q ) ≍ C ν(q), where ν(q) = max{

( ϖ ∧ dX I k+1 ∧ • • • ∧ dX In )
q (X I1 (q), . . . , X In (q)) }, the maximum being taken among all n-tuples (X I1 , . . . , X In ) in arg max{ω q (X I ′ 1 (q), . . . , X

I ′ n (q)) | ∑ i |I ′ i | = Q(q)}.
Remark 5.8. As a particular case of the proposition, if N is an open equisingular submanifold of M and ϖ = ω,

μq ( B q ) ≍ C max { |ω q (X I ′ 1 , . . . , X I ′ n )| | ∑ i |I ′ i | = Q(q)
} , for every q ∈ N ∩ K.

Remark 5.9. Proposition 5.7, together with Theorem 5.3, allows to give an estimate of the Radon-Nikodym derivative of vol N H with respect to µ. Indeed, there exists a constant C > 0 such that, for every q ∈ K ∩ N ,

dvol N H dµ (q) ≍ C 1 ν(q) . ( 29 
)
Proof. Let q be a point in N ∩K, and (X I1 , . . . , X In ) be a n-tuple of brackets in arg max{ω q (X I ′ 1 (q), . . . , X

I ′ n (q)) | ∑ i |I ′ i | = Q(q)} such that ν(q) = ( ϖ ∧ dX I k+1 ∧ • • • ∧ dX In )
q (X I1 (q), . . . , X In (q)).

Let x be the local coordinates defined by the diffeomorphism

x → exp(x n X In ) • • • • • exp(x 1 X I1 )(q),
and denote by Box 2 X (q, ϵ) the set of points whose coordinates satisfy |x i | ≤ ϵ |Ii| , i = 1, . . . , n. From Proposition A.1 (see Appendix), for ϵ small enough,

Box 2 X (q, ϵ/C) ⊂ B(q, ϵ) ⊂ Box 2 X (q, Cϵ),
where the positive constant C depends only on ω, K, and X 1 , . . . , X m . Let us write ν(q) as a limit,

ν(q) = lim sup ϵ→0 1 (2ϵ) Q(q) ˆBox 2 X (q,ϵ) (ϖ ∧ dX I k+1 ∧ • • • ∧ dX In )(∂ x1 , . . . , ∂ xn )dx 1 . . . dx n .
The inclusions above imply

ν(q) ≍ C lim sup ϵ→0 1 (2ϵ) Q(q) ˆB(q,ϵ) ϖ ∧ dX I k+1 ∧ • • • ∧ dX In . ( 30 
)
On the other hand, since N is equisingular, we can construct an adapted basis as in Lemma 4.3: choose vector fields Y 1 , . . . , Y k defined in a neighborhood of q such that Y i is tangent to N , Y i ∈ span{X Ij | |I j | ≤ ℓ(Y i )} and Y 1 , . . . , Y k is a basis adapted to the flag [START_REF] Gershkovich | On normal form of distribution jets[END_REF] restricted to N at q. Note that the vectors X I k+1 (q), . . . , X In (q) in T q M are transverse to T q N since ν(q) > 0. Then, up to a rescaling of Y 1 , . . . , Y k , we can assume that the n-tuple Y = (Y 1 , . . . , Y k , X I k+1 , . . . , X In ) satisfies condition (33) of Proposition A.1. Denote by y the coordinates defined by

y → exp(y n X In ) • • • • • exp(y k+1 X I k+1 ) • exp(y k Y k ) • • • • • exp(y 1 Y 1 )(q),
and by Box 2 Y (q, ϵ) the set of points whose coordinates satisfy

|y i | ≤ ϵ |Ii| , i = 1, . . . , n. From Proposition A.1, for ϵ small enough, Box 2 Y (q, ϵ/C) ⊂ B(q, ϵ) ⊂ Box 2 Y (q, Cϵ). ( 31 
)
Coordinates y are a particular kind of coordinates φ q constructed in Lemma 4.3. In particular, the submanifold N lies in the set {y k+1 = • • • = y n = 0} and, with a little abuse of notations,

Box 2 Y (q, ϵ/C) ∩ {y k+1 = • • • = y n = 0} ⊂ B(q, ϵ) ∩ N ⊂ Box 2 Y (q, Cϵ) ∩ {y k+1 = • • • = y n = 0}. ( 32 
)
As in the proof of Proposition 5.1, we use coordinates y to identify locally M with T q M and N with T q N . In particular, inclusions (32) imply

Box 2 Y (q, ϵ/C) ∩ R k ⊂ T q N ∩ B dp (0, ϵ) ⊂ Box 2 Y (q, Cϵ) ∩ R k .
Using this inclusion in [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF], we get, up to increasing C,

μq (T q N ∩ B q ) ≍ C 1 ϵ Q N ˆBox 2 Y (q,ϵ)∩R k ϖ q (∂ y1 , . . . , ∂ y k )dy 1 . . . dy k ≍ C ϖ q (∂ y1 , . . . , ∂ y k ).
Since ∂ yi (q) = Y i (q), i = 1, . . . , k, and since X I k+1 (q), . . . , X In (q) are transverse to T q N , we have

ϖ q (∂ y1 , . . . , ∂ y k ) = ϖ q (Y 1 (q), . . . , Y k (q)) = (ϖ ∧ dX I k+1 ∧ • • • ∧ dX In ) q (Y 1 (q), .
. . , Y k (q), X I k+1 (q), . . . , X In (q)).

The latter term can be written as a limit,

(ϖ ∧ dX I k+1 ∧ • • • ∧ dX In ) q (Y 1 (q), . . . , Y k (q), X I k+1 (q), . . . , X In (q)) = lim sup ϵ→0 1 (2ϵ) Q(q) ˆBox 2 Y (q,ϵ) (ϖ ∧ dX I k+1 ∧ • • • ∧ dX In )(∂ y1 , . . . , ∂ yn )dy 1 . . . dy n ≍ C lim sup ϵ→0 1 (2ϵ) Q(q) ˆB(q,ϵ) ϖ ∧ dX I k+1 ∧ • • • ∧ dX In ,
where we have used (31). The conclusion then follows from (30).

Applications

In this section we use the ideas of Section 4 to characterize local integrability of dS Q R R dµ in the generic smooth case. As it turns out, this property depends on the placement of the dimension of the manifold with respect to dimensions of free Lie algebras and on the Hausdorff dimension of certain equisingular submanifolds. We end by listing a number of examples illustrating several possible cases.

Generic smooth case

Let M be a n-dimensional smooth oriented manifold and let m ∈ N. We consider the set U m of sub-Riemannian structures (U, ⟨•, •⟩, f ) of rank m on M , i.e. such that rank U = m. Using local generating families we endow this set with the C ∞ -Whitney topology and we say that a sub-Riemannian structure of rank m is generic if it belongs to some residual subset of U m . Thus the analysis of the singular set of generic m-tuples of vector fields given in [START_REF] Vershik | Nonholonomic dynamical systems, geometry of distributions and variational problems[END_REF] provides the following description of the singular set of generic sub-Riemannian structures.

Introduce first some notations. Let L be the free Lie algebra with m generators. We use L s to denote the subspace generated by elements of L of length not greater than s, and ñs to denote the dimension of L s . Let r be the integer such that ñr-1 < n ≤ ñr .

Then the singular set S of a generic sub-Riemannian structure admits a locally finite stratification S = ∪ i∈N S i by equisingular submanifolds and min

i∈N codim S i = ñr -n + 1,
in particular, S is a µ-negligible set (for every smooth volume µ on M ). Moreover, at regular points the growth vector is the maximal one, i.e., (ñ 1 , . . . , ñr-1 , n). Proposition 6.1. Let M be a n-dimensional smooth oriented manifold, µ a smooth volume on M , and let (U, ⟨•, •⟩, f ) be a generic sub-Riemannian structure of rank m on M .

(i) If n = ñr then dS Q R R dµ is not locally integrable on M . (ii) If n < ñr then dS Q R R
dµ is locally integrable near every point of strata S i of minimal codimension, i.e., such that codim S i = ñr -n + 1.

Proof. The case n = ñr is a direct consequence of Corollary 4.11. Then, we consider the case n < ñr . Let N be a stratum of minimal codimension, i.e., codim

N = ñr -n + 1 ≥ 2. We set k = dim N = n -(ñ r -n + 1).
Let ω be a non degenerate n-form such that µ = ´ω. The construction in [START_REF] Gershkovich | On normal form of distribution jets[END_REF] allows to characterize N in the following way.

Denote by α 1 , . . . , α m a set of generators for the free Lie algebra L. Consider a sequence of multi-indices {I j } j∈N such that, for every s ∈ N, the family α I1 , . . . , α Iñ s generates L s . Fix a point p ∈ N and a local generating4 family (X 1 , . . . , X m ) of (U, ⟨•, •⟩, f ) near p. Possibly reordering multi-indices of length r, the vectors X I1 (p), . . . , X In-1 (p) are linearly independent. Then, one obtains adapted bases at regular points near p by taking X I1 , . . . , X In-1 and a last vector field chosen among X In , . . . , X Iñ r . There are n -k = ñr -n + 1 such bases, which we denote by X I k+1 , . . . , X I n (for the notation X I and ω(X I ) see Section 3.3). Then the map q → (ω(X I k+1 )(q), . . . , ω(X

I n )(q))
is a submersion at p and, locally,

N = {q | ω(X I k+1 )(q) = • • • = ω(X I n )(q) = 0}.
Note that the sub-Riemannian manifold satisfies assumption (A). By Proposition 3.12, it suffices to show that 1/ν is locally integrable near p. Set z i = ω(X I i ), i = k + 1, . . . , n. There exists functions y 1 , . . . , y k near p such that (y, z) is a system of local coordinates near p. In these coordinates, N is identified with the set

{(y, z) | z = 0} and ν(z) = √ z 2 k+1 + • • • + z 2 n .
Thus 1/ν is locally integrable near p, which ends the proof.

Examples

In this section we present several examples where assumption (A) is satisfied and one can directly tell whether S Q R is integrable or not using criteria in Section 4.

Recall that a sub-Riemannian structure (U, ⟨•, •⟩, f ) on an n-dimensional manifold M is called almost-Riemannian if the rank of U is n (see [START_REF] Agrachev | A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds[END_REF]). Example 6.2 (Generic almost-Riemannian structures). Let (U, ⟨•, •⟩, f ) be a generic almost-Riemannian structure on M . At regular points the structure is Riemannian, i.e., the growth vector is simply (n) and Q R = n. In particular, n = ñ1 and thus the first case of Proposition 6.1 applies and dS n R dµ is never locally integrable (with respect to a smooth volume) around singular points. As a consequence, S n R is never a Radon measure. Also, an alternative proof of this fact comes as a consequence of Corollary 4.6 or Corollary 4.11.

We next build examples of almost-Riemannian structures which are not generic and for which S n is or fails to be a Radon measure. Example 6.3 (Non generic almost-Riemannian structures). We consider the almost-Riemannian structure on R 3 for which a global generating family is

X 1 (x 1 , x 2 , x 3 ) = ∂ 1 , X 2 (x 1 , x 2 , x 3 ) = ∂ 2 , X 3 (x 1 , x 2 , x 3 ) = (x 2 1 + x 2 2 )∂ 3 ,
and the canonical volume form ω = dx 1 ∧ dx 2 ∧ dx 3 . The singular set S coincides with {(x 1 , x 2 , x 3 ) | x 1 = x 2 = 0} and Q R = 3. The growth vector at a singular point p is (2, 2, 3), Q(p) = 5, and the growth vector of the flag restricted to S is (0, 0, 1), whence Q S = 3. Hence the Hausdorff dimension of R 3 (endowed with the sub-Riemannian distance) is 3 and vol H = S 3 . Therefore conditions of Corollary 4.6 are satisfied and dS 3 R dµ is not integrable near a singular point. In other words, small neighborhoods of singular points have infinite Hausdorff volume.

One could also obtain the conclusion by applying Proposition 4.10 since the only adapted basis at regular points is

X 1 , X 2 , X 3 . Indeed, ν(x 1 , x 2 , x 3 ) ≍ x 2 1 + x 2 2 , and ν is homogeneous of degree 2. Note that ϱ min (p, S) = ϱ max (p, S) = 2 = Q(p) -Q S .
Consider now the analogue structure in higher dimension, that is, the almost-Riemannian structure on R 4 for which a global generating family is

X 1 (x) = ∂ 1 , X 2 (x) = ∂ 2 , X 3 (x) = ∂ 3 , X 4 (x) = (x 2 1 + x 2 2 + x 2 3 )∂ 4 ,
where x = (x 1 , x 2 , x 3 , x 4 ), and the canonical volume form

ω = dx 1 ∧ dx 2 ∧ dx 3 ∧ dx 4 . The singular set is S = {x ∈ R 4 | x 1 = x 2 = x 3 = 0} and Q R = 4.
The growth vector at a singular point p is [START_REF] Agrachev | A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds[END_REF][START_REF] Agrachev | A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds[END_REF][START_REF] Balogh | Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups[END_REF], Q(p) = 6, and the growth vector of the flag restricted to S is (0, 0, 1), whence Q S = 3. Hence the Hausdorff dimension of R 4 (endowed with the sub-Riemannian distance) is 4 and vol H = S 4 . The only adapted basis at regular points is X 1 , X 2 , X 3 , X 4 , which gives ν(x) ≍ x 2 1 + x 2 2 + x 2 3 , i.e., ν is homogeneous of degree 2 and ϱ min (p, S) = ϱ max (p, S) = 2 < Q(p) -Q S . Then by Proposition 4.9 dS 4 dµ is integrable near any singular point. Equivalently, S 4 is a Radon measure. Example 6.4 (the Martinet space). Recall the sub-Riemannian structure of Example 3.14, where M = R 3 and a global generating family is

X 1 = ∂ 1 , X 2 = ∂ 2 + x 2 1 2 ∂ 3 .
The singular set is the plane S = {x ∈ R Recall that the parameter ϱ min used to characterize non integrability admits a lower bound, namely ϱ min ≥ Q(p) -Q R (see Remark 4.5). We next see an example showing that ϱ min can be greater than this bound.

Example 6.5. Consider the sub-Riemannian structure on R 5 for which a global generating family is

X 1 = ∂ 1 , X 2 = ∂ 2 + x 1 ∂ 3 + x 2 1 ∂ 5 , X 3 = ∂ 4 + (x k 1 + x k 2 )∂ 5 ,
with k ∈ N, and the canonical volume form

ω = dx 1 ∧ dx 2 ∧ dx 3 ∧ dx 4 ∧ dx 5 . Computing Lie brackets one obtains X 12 = [X 1 , X 2 ] = ∂ 3 + 2x 1 ∂ 5 , X 13 = kx k-1 1 ∂ 5 , X 23 = kx k-1 2 ∂ 5 , X 112 = 2∂ 5 .
Hence at regular points the growth vector is [START_REF] Agrachev | A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds[END_REF][START_REF] Barilari | A formula for Popp's volume in sub-Riemannian geometry[END_REF], Q R = 7, and the singular set is S = {x 1 = x 2 = 0}. At a singular point p the growth vector is [START_REF] Agrachev | A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds[END_REF][START_REF] Balogh | Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups[END_REF][START_REF] Barilari | A formula for Popp's volume in sub-Riemannian geometry[END_REF], Q(p) = 8 and the growth vector of the flag restricted to S is (1, 2, 3), which gives Q S = 6. Hence the Hausdorff dimension of R 5 (endowed with the sub-Riemannian distance) is 7 and the Hausdorff volume is vol H = S 7 . At regular points there are two adapted bases X 1 , X 2 , X 3 , X 12 , X 13 and X 1 , X 2 , X 3 , X 12 , X 23 , which implies that

ν(x 1 , x 2 , x 3 , x 4 , x 5 ) ≍ √ x 2(k-1) 1 + x 2(k-1) 2 .
Thus ν is homogeneous of order k- We end by illustrating a case where ϱ min < Q(p)-Q S < ϱ max < ∞ and vol H is locally integrable, showing that the condition on ϱ max given in Proposition 4.9 is not sharp. Example 6.6. Consider the sub-Riemannian structure on R 4 for which a global orthonormal frame is

X 1 (x) = ∂ 1 , X 2 (x) = ∂ 2 + x 1 ∂ 3 + (x 2 1 x 2 3 -x 1 x 2 2 )∂ 4 ,
and the canonical volume form ω = dx 1 ∧ dx 2 ∧ dx 3 ∧ dx 4 . Computing Lie brackets one obtains

X 12 (x) = ∂ 3 + (2x 1 x 2 3 -x 2 2 )∂ 4 , X 112 (x) = 2x 2 3 ∂ 4 , X 212 (x) = (4x 2 1 x 3 -2x 2 )∂ 4 .
Hence, the singular set is S = {x ∈ R 4 | x 2 = x 3 = 0}, at regular points the growth vector is [START_REF] Agrachev | Introduction to Riemannian and sub-Riemannian geometry (from a Hamiltonian viewpoint[END_REF][START_REF] Agrachev | A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds[END_REF][START_REF] Balogh | Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups[END_REF] and Q R = 7. At a singular point p the growth vector is (2, 3, 3, 4), Q(p) = 8, and the growth vector of the flag restricted to S is (1, 1, 1, 2), which gives Q S = 5. Thus the Hausdorff dimension of R 4 (endowed with the sub-Riemannian distance) is 7 and the Hausdorff volume is vol H = S 7 . At regular points there are two adapted bases X 1 , X 2 , X 12 , X 112 and X 1 , X 2 , X 12 , X 212 , therefore

ν(x) ≍ √ ω 1 (x) 2 + ω 2 (x) 2 ,
where

ω 1 (x) = det(X 1 , X 2 , X 12 , X 112 ) = 2x 2 3 and ω 2 (x) = det(X 1 , X 2 , X 12 , X 212 ) = 3x 2 1 x 2 3 -2x 2 .
According to the notation in Proposition 4.1, coordinates y = (x 1 , x 4 ) (of weights 1, 4 at p = 0 respectively) parameterize the singular set, whereas coordinates z = (x 2 , x 3 ) (of weights 1, 2 at p respectively) are transversal to S. Apply the coordinate change (y, z) → (y, z) where z = (ω 2 (x), x 3 ) = (x 2 , x 3 ). Then,

ν(y, δ λ z) 2 = ν(x 1 , λx 2 , λ 2 x 3 , x 4 ) = 4λ 8 x 4 3 + λ 2 x2
2 , and one easily gets ϱ min (p, S) = 1, ϱ max (p, S) = 4. Thus ϱ min (p, S) < Q(p) -Q S = 3 < ϱ max (p, S) and neither the condition of Proposition 4.4 nor the one of Proposition 4.9 is satisfied. However, taking a sufficiently small neighborhood U of p we have

S 7 R (U ) ≍ ˆU 1 ν(x) dx ≍ ˆ[-1,1] 4 1 √ ω 1 (x) 2 + ω 2 (x) 2 dx ≍ ˆ[-1,1] 2 1 √ x2 2 + x 4 3 dx 2 dx 3 < ∞.
Thus S 7 = S 7 R is a Radon measure.

A Appendix

We show here a technical result which is needed in Section 5.3 to provide the local equivalent of dS Q N N dµ . Proposition A.1. Let M be oriented, ω be a volume form on M , K be a compact subset of M , and X 1 , . . . , X m be a generating family for (D, g). There exist a constant C > 0 and a function η : K → (0, +∞) such that the following holds for every p ∈ K.

Let X = (X I1 , . . . , X In ) be a n-tuple in arg max{ω p (X

I ′ 1 (p), . . . , X I ′ n (p)) | X I ′ 1 , . . . , X I ′ n s.t. ∑ i |I ′ i | = Q(p)}. Consider another n-tuple of vector fields Y = (Y 1 , . . . , Y n ) such that, for i = 1, . . . , n, Y i ∈ span{X Ij : |I j | ≤ ℓ(Y i )}, i.e. Y i = ∑ |Ij |≤ℓ(Yi) Y j i X Ij ,
where all components Y j i are smooth functions satisfying, for s ∈ N,

∥Y (s) (p)∥ and ∥(Y (s) ) -1 (p)∥ ≤ 2, (33) 
Y (s) (p) being the matrix

Y (s) (p) = { ( Y j i (p) ) {i,j | ℓ(Yi)=|Ij |=s} if {i, j | ℓ(Y i ) = |I j | = s} ̸ = ∅ 1 otherwise.
Then, for any ϵ ≤ η(p) there holds:

Box i Y (p, ϵ/C) ⊂ B(p, ϵ) ⊂ Box i Y (p, Cϵ), i = 1, 2, ( 34 
)
where Yi) , i = 1, . . . , n}.

Box 1 Y (p, ϵ) = { exp ( ∑ i y i Y i ) (p) | |y i | ≤ ϵ ℓ(Yi) , i = 1, . . . , n } , Box 2 Y (p, ϵ) = {exp(z 1 Y 1 ) • • • • • exp(z n Y n )(p) | |z i | ≤ ϵ ℓ(
Remark A.2. Notice that any n-tuples X and Y satisfying the hypothesis of the proposition at a point p form a basis adapted to the flag (8) of the distribution at p. Also, Y = X satisfies the hypothesis and in this case the inclusions (34) for i = 2 result from the uniform Ball-Box Theorem, [START_REF] Jean | Uniform estimation of sub-Riemannian balls[END_REF] and [START_REF] Jean | Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning[END_REF]Theorem 4.7].

Let us introduce some notations. Fix p ∈ M . Recall that the weights w i = w i (p), i = 1, . . . , n, are defined by setting w i = s if dim D s-1 p < i ≤ dim D s p . The largest of these integers, i.e. w n (p), is an upper semi-continuous function of p, and hence it admits a maximum w ∈ N on the compact set K. Thus w i (p) ≤ w for every p ∈ K and i = 1, . . . , n. Using these weights w i we also define the pseudo-norm ∥ • ∥ p on R n by ∥x∥ p = max(|x 1 | 1/w1 , . . . , |x n | 1/wn ).

Notice that any n-tuple of vector fields Y = (Y 1 , . . . , Y n ) verifying the hypothesis of Proposition A.1 satisfies, up to reordering, ℓ(Y i ) = w i , for every i. We will always suppose in this section that Y and X have been ordered in that way. In particular |I i | = w i , for every i.

Let x = (x 1 , . . . , x n ) be a system of privileged coordinates at p and let us denote by d x p the distance of the nilpotent approximation at p defined by means of the coordinates x. Then d(p, q) = d x p (0, x(q)) + o( d x p (0, x(q))), (

where x(q) are the coordinates of the point q (see for instance [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF]). Y and Box 2 Y respectively: y = y(q) are the coordinates of the point q satisfying q = exp

( ∑ i y i Y i ) (p),
and z = z(q) are the coordinates of the point q satisfying

q = exp(z 1 Y 1 ) • • • • • exp(z n Y n )(p).
The inclusions (34) are equivalent to 1 C ∥y(q)∥ p ≤ d(p, q) ≤ C∥y(q)∥ p and 1 C ∥z(q)∥ p ≤ d(p, q) ≤ C∥z(q)∥ p for d(p, q) small enough.

Since the coordinates y and z are privileged coordinates at p, using (35) we get that the inclusions (34) are also equivalent to x i = ψ i (y), i = 1, . . . , n, and let ψ i (y) be the homogeneous part of ψ i (y) of degree w i (that is, the sum of monomials of weighted degree w i in the Taylor expansion of ψ i (y)). Then Proof. This lemma may be seen as a consequence of [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF]Proposition 5.20]. We give here a direct proof. Let us use the system of coordinates x to identify a neighborhood of p in M with a neighborhood of 0 in R n . We have d x p (0, x) = lim where as usual δ s x = (s w1 x 1 , . . . , s wn x n ). Hence d y p (0, y) = lim s→0 + d(0, δ 1/s ψ(δ s y)). The conclusion follows from lim s→0 + δ 1/s ψ(δ s y) = ψ(y).
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Proof of Proposition A.1. We already know that (34) holds with Y = X and i = 2. Let Y be a n-tuple of vector fields satisfying the hypothesis of Proposition A.1. We will prove that (34) holds for Y with i = 1, the proof with i = 2 being similar. Let x and x ′ be the coordinates associated with Box 1 Y and Box 2 X respectively, and assume that the change of coordinate formulas are x ′ = ψ(x). From (36) and Lemma A.3, it suffices to show that there exists a constant C ′ > 0, independent of p and of X , such that 1 C ′ ∥x∥ p ≤ ∥ ψ(x)∥ p ≤ C ′ ∥x∥ p for any x ∈ R n .

(37)

By definition of ψ(x), there holds exp

( - ∑ i x i Y i ) • exp(ψ 1 (x)X I1 ) • • • • • exp(ψ n (x)X In )(p) = p.
Remind that Y i = ∑ wj ≤wi Y j i X Ij . Taking the homogeneous terms of weighted degree zero in the equality above, we obtain This inequality together with (40) gives exactly (37), which ends the proof.
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  y) = d x p (0, ψ(y)),where ψ(y) = ( ψ 1 (y), . . . , ψ n (y)).

  ψ(δ s y)),

M

  • exp( ψ 1 (x) X I1 ) • • • • • exp( ψ n (x) X In )(p) = p.Set y j = ∑ {i : wi=wj } x i Y j i (p). The Campbell-Hausdorff formula allows to expand the product above as follows,n ∑ j=1 ( ψ j (x) -y j ) X Ij (p) + ∑ |I|≤wn ∑ α,β c I α,β y α1 • • • y αs ψ β1 (x) • • • ψ βr (x) X I (p) = 0,(38)where the second sum is taken over all the multi-indices α = (α 1 , . . . , α s ) and β = (β 1 , . . . , β r ) such that s + r > 1 and w(α) + w(β) = |I| (we use the notation w(α) for w α1 + • • • + w αs ). Note that this implies that all w αi and w βi are smaller than |I|. The structural constants c I α,β do not depend on p but only on the coefficients of the Campbell-Hausdorff series. More precisely, there exists a constant C w depending only on the maximum value w of w n on K such that |c I α,β | ≤ C w for every I, α, β appearing in (38) at any point p ∈ K. Now, for every multi-index I there holdsX I (p) = ∑ |Ii|=|I| X i I (p) X Ii (p)whereX i I (p) = ω(X I1 , . . . , X Ii-1 , X I , X Ii+1 , . . . , X In )(p) ω(X I1 , . . . , X In )(p) .The choice of the family X = (X I1 , . . . , X In ) ensures that, for every I and i such that|I i | = |I| we have |X i I (p)| ≤ 1.Plugging the expression of X I (p) into (38), we obtainn X i I (p)y α1 • • • y αs ψ β1 (x) • • • ψ βr (x)   X Ii (p) = 0. (39)Note that these equalities are in triangular form: all the indices α j and β j appearing in the ith equality are smaller than i. Since moreover all the coefficients in the above equality are bounded independently of p, we get the following change of coordinates formulas, for i = 1, . . . , n,ψ i (x) = ∑ α s.t. w(α)=wi a ′ α (p)y α1 • • • y αs = ∑ α s.t. w(α)=wi a α (p)x α1 • • • x αs , where a α (p) = ∑ w(β)=wi a ′ β (p)Y α1 β1 (p) • • • Y αs βs (p).The coefficients a ′ α (p) are bounded independently of p, therefore it follows from hypothesis (33) that it is also the case for a α (p): there exists a constant C ′ w depending only on w such that |a α (p)| ≤ C ′ w for any p ∈ K and any α such that w(α) ≤ w. Let N be the number of multi-indices α such that w(α) ≤ w and setC ′ = n(N C ′ w) 1/ w. There holds sup{∥ ψ(x)∥ p | p ∈ K, ∥x∥ p = 1} ≤ C ′ ,and since every ψ i (x) is a weighted homogeneous polynomial of degree w i , we obtain∥ ψ(x)∥ p ≤ C ′ ∥x∥ p . (40)Now observe that hypothesis (33) implies that the vectors Y i (p) = ∑ wj =wi Y j i (p) X Ij (p), i = 1, . . . , n, form a basis of T p M and that the change-of-basis matrix M (p) between ( X I1 (p), . . . , X In (p)) and ( Y 1 (p), . . . , Y n (p)) has coefficients M ij (p) that are bounded independently of p. Identity (39) can then be rewritten asn ji (p) ψ j (x) -x i + M ji (p)X j I (p)x α1 • • • x αs ψ β1 (x) • • • ψ βr (x)   Y i (p) = 0.Using the above reasoning in which we exchange the role of x and ψ coordinates, we obtain, up to enlarging the constant C ′ , ∥x∥ p ≤ C ′ ∥ ψ(x)∥ p .

  p.24] and ensures that dvol H Remark 3.3. Properties (i), (ii), (iii) hold true if we replace vol H by H dimH M . In particular, applying the differentiation theorem for Radon measures[START_REF] Simon | Lectures on geometric measure theory[END_REF] Theorem 4.7 p.24] we get that (i) the limit lim ϵ→0

dµ (p) coincides with lim ϵ→0 volH (B(p,ϵ)) µ(B(p,ϵ)) .

  3 | x 1 = 0} which is equisingular and has codimension 1. The growth vector at any singular point p is (2, 2, 3), Q(p) = 5 and the growth vector restricted to S is (1, 1, 1), whence Q S = 4. Since Q R = 4, the Hausdorff dimension of the Martinet space is 4 and the Hausdorff volume is vol H = S 4 . The only adapted basis at regular points isX 1 , X 2 , [X 1 , X 2 ], whence ν(x) ≍ |x 1 |,in particular ν is homogeneous and ϱ min (p, S) = ϱ max (p, S) = 1. Either integrating directly or applying Corollary 4.11 one infers that dS 4

R

dµ is not integrable near singular points.

  R if and only if k > 2. Applying Proposition 4.4 and Proposition 4.9, dS 7 dµ is locally integrable around singular points if and only if k ≤ 2.

1 and ϱ min (p, S) = ϱ max (p, S) = k-1. In particular ϱ min (p, S) > Q(p)-Q

For instance, on M = R, take the module D ⊂ Vec R generated by X(x) = x

∂x. Then the vector field Y (x) = x∂x is clearly tangent to the distribution x → Dx but does not belong to D.

in Gromov's sense, see[START_REF] Gromov | Structures métriques pour les variétés riemanniennes[END_REF] 

Note that in our previous paper [14, Definition 1], these submanifolds are called strongly equiregular.

For instance, taking a local orthonormal frame σ 1 , . . . , σ k on U, set X i = f • σ i .
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