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1 Introduction
In this paper, we study existence and uniqueness of backward stochastic differential
equations (BSDE) solutions when terminal time is random and when the natural fil-
tration is initially enlarged. This mathematical modeling is motivated by the following
financial problem: we study the financial hedging strategy for an American contingent
claim in a market with asymmetrical information.
BSDEs were first introduced by E. Pardoux and S. Peng in 1990 [25]. As they have a
large panel of applications, such equations have been developed since the 90’s, espe-
cially in mathematical finance, modeling hedging problems as well as optimization and
control problems. They also appear in several other fields such as stochastic control
(see S. Peng [27], N. El Karoui, S. Peng and M.C. Quenez [10], and X. Zhou and
J. Yong [29]) or problems linked with PDEs (see E. Pardoux [23] and G. Barles, R.
Buckdahn and E. Pardoux [5]).

BSDEs are useful in our framework since these equations naturally appear when
describing hedging problems. We study hedging of contingent claims with random
exercise time and we model it with BSDEs with random terminal time. Such equations
were introduced by S. Peng (1991) [26], and developed by R.W.R. Darling and E.
Pardoux (1997) [7], P. Briand and Y. Hu (1998) [6], E. Pardoux (1999) [24], M. Royer
(2004) [28] among others, and by E. Pardoux (1995) [22] for BSDEs with jumps and
random terminal time.

Asymmetrical information within the market is modeled with initial enlargement
of filtration. Theory has been developed by J. Jacod [15], T. Jeulin [17] and M. Yor
[30]. It is often used to model insider trading (see A. Grorud and M. Pontier [14],
who used this model to construct a statistical test to detect insider traders, or J.
Amendinger’s work [4, 3] and his coauthors).

Existence and uniqueness of BSDEs solutions is stated in [11], when terminal time
is constant and under an initial enlargement of filtration. This corresponds to the case
of an insider who wants to hedge a European option and has an additional informa-
tion about prices at a future time T ′, that is greater than the terminal time T of the
hedging problem. This information leads to an initial enlargement of the standard
Brownian filtration, and is supposed to satisfy a standard hypothesis for enlargement
of filtration denoted by (H3). The main result states that such an insider has no other
strategy for hedging a European option with terminal exercise time T , than if he had
not the additional information.

In the present work, we consider the same framework: hedging problems for an
insider trader. Instead of deterministic terminal time (European-type options) we
consider contingent claims with random terminal time (American-type options), such
as standard American options or other exotic options with random exercise. For this
purpose, we have to consider BSDEs with a random terminal time horizon, under an
initial enlargement of the Brownian filtration.

In Section 2, we detail the financial motivation and we present the convenient
model.
We prove in Section 3 that A. Eyraud-Loisel’s results stated in [11] remain true when
the hedging terminal time is a random stopping time. We assume that standard
existence and uniqueness hypotheses are fulfilled, following the approach of E. Pardoux
(1999) in [24] who studied BSDEs with random terminal time without enlargement
of filtration (i.e. under the natural Brownian filtration). We obtain existence and
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uniqueness results for the BSDE with initial enlargement of filtration under hypothesis
(H3) for a bounded random terminal time.
In the case of a deterministic time horizon, existence and uniqueness of the solution
holds true when the terminal time of the hedging problem is strictly smaller than the
time of the information (T < T ′). In Subsection 3.1, usual stopping techniques are
used to derive same results for a random time horizon, defined as a stopping time a.s.
bounded by T < T ′.
In Subsection 3.2 results are extended to all stopping times a.s. strictly bounded by
T ′. In that case, existence results do not exist for a problem with deterministic horizon
T ′, and more technical approximation tools are needed to prove existence of a solution
and state Theorem 3.6.

Financial interpretation of results developed in Sections 3.1 and 3.2 is given in
Section 4. It financially means that an agent who has an initial additional information
satisfying hypothesis (H3) will have the same hedging strategy as a non informed
agent, for a contingent claim with random terminal time, as it was previously proved
for a constant terminal time. This result extends results from [11] to more general
claims traded on the market (hedging of American standard or Lookback options for
instance), and is consistent with the result for a fixed terminal time. It still differs
from the conclusions obtained in a wealth optimization point of view by A. Grorud
and M. Pontier who stated that under the same initially enlarged filtration, an insider
trader has a different strategy from a non informed trader.

2 Model

2.1 Financial Motivation
Let W be a standard d-dimensional Brownian motion, and let

(
Ω, (Ft)t≥0, IP

)
be a

filtered probability space, with Ω = C(IR; IRd). Let (Ft)0≤t≤T be the natural filtration
of Brownian motion W . We consider a financial market with d risky assets, whose
prices are driven by the following diffusion processes:

Sit = Si0 +

∫ t

0

Sis b
i
s ds+

∫ t

0

Sis(σ
i
s, dWs) , t ≥ 0, , i = 1, ..., d

and where the bond (or riskless asset) evolves according to the standard equation:
S0
t = 1 +

∫ t
0
S0
srsds. Parameters b, σ, r are supposed to be bounded, adapted, and to

take values respectively in IRd, IRd×d, IR. Matrix σt is invertible dt⊗ dIP a.s. and the
Doléans-Dade exponential E(−σ−1(b − r1).W ) is supposed to be integrable. These
are the usual conditions to have existence of a risk-neutral probability (which implies
no-arbitrage).

A financial agent has a positive initial wealth Y0 at time t = 0, and he wishes to hedge
a contingent claim with terminal payoff ξ at uncertain time horizon τ , with maturity
T .
τ is a F-stopping time. Generally, τ is not given, it may depend on the option owner’s
strategic decision. It may in particular be the optimal stopping time determined thanks
to price processes Snell envelope notion (see N. El Karoui et al. [9], N. El Karoui [8]
and I. Karatzas and S. Shreve [21]). In the present study the stopping time may be
any stopping time, not necessarily the optimal stopping time.
If the agent is a standard American option’s seller with strike K, and pay-off ξ =
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(Sτ∧T − K)+, τ is the stopping time representing the time when the buyer of the
option decides to exercise his option. The seller wants to hedge against the risk of this
option, and so wants to get ξ at random time τ : Yτ∧T = ξ. (from the seller’s point
of view, it is even sufficient that Y is larger or equal than ξ).

The consumption is here supposed to be zero. Wealth at time t is Yt =
∑d
i=0 θ

i
tS
i
t .

The standard self-financing hypothesis can be written as :

dYt =

d∑
i=0

θitdS
i
t .

It means that the consumption is only financed with the profits realized by the port-
folio, and not by outside benefits. Then, the agent’s wealth satisfies the following
equation :

dYt = θ0tS
0
t rtdt+

d∑
i=1

θit S
i
t b
i
t dt+

d∑
i=1

θitS
i
t(σ

i
t, dWt).

We denote by πit = θitS
i
t the amount of wealth invested in the ith asset for i = 1, ..., d,

and we notice that θ0tS0
t = Yt −

∑d
1 π

i
t. We denote also by πt = (πit, i = 1, .., d) the

portfolio (or strategy), and so the total wealth can be written as a solution of the
following stochastic differential equation :

dYt = Yt rt dt+ (πt, bt − rt1) dt+ (πt, σt dWt),

where 1 is the vector with all coordinates equal to 1. The previous line can also be
rewritten by integrating from t ∧ τ to T ∧ τ :

YT∧τ − Yt∧τ =

∫ T∧τ

t∧τ
Ys rs ds+

∫ T∧τ

t∧τ
(πs, bs − rs1) ds+

∫ T∧τ

t∧τ
(πs, σs dWs) a.s. ,

which naturally becomes:

Yt∧τ = YT∧τ −
∫ T∧τ

t∧τ
[Ys rs + (πs, bs − rs1)]︸ ︷︷ ︸

−f(s,Ys,Zs)

ds−
∫ T∧τ

t∧τ
(σ∗sπs︸ ︷︷ ︸
Zs

, dWs) a.s.

The wealth equation has been written this way as a BSDE with random terminal time.
A first interest of writing the problem as a BSDE is to model the previous hedging
problem with a unique equation. Another interesting aspect is that such a tool does
not use the notion of equivalent martingale measure to solve the hedging problem (see
N. El Karoui, S. Peng and M.-C. Quenez [10]).

We consider a market with asymmetrical information. There may be two different
types of agents in this market: normally informed agents, whose information at time
t is modeled by the standard Brownian filtration Ft, and informed agents, who have
access to an additional information on the market. More precisely, we suppose that
an informed agent knows, at time t = 0, the realization of a random variable L ∈ FT ′ ,
concerning prices at time T ′, where T ′ ≥ T (in general T ′ > T ). The filtration
representing his information at time t is obtained by enlarging the natural filtration
of the Brownian motion.

Yt =
⋂
s>t

(Fs ∨ σ(L)).
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Given that the actualized assets prices are martingales in the initial probability space
under a risk-neutral probability, it would be interesting and natural to check if they
still have similar properties in the larger space. So we wonder under which condition
we have the following useful property :

Hypothesis (H’) If (Mt)0≤t≤T is a given (F· , IP)-martingale (or semi-martingale),
then (Mt)0≤t≤T is a (Y· , IP)-semi-martingale.

This well-known problem has been introduced and studied by T. Jeulin and M. Yor
[19, 18, 20], next by J. Jacod [15], and later by J. Amendinger [2] and A. Grorud
and M. Pontier [13]. In the current paper, we will work with the stronger following
assumption :

Hypothesis (H3) There exists a probability Q equivalent to IP under which Ft and
σ(L) are independent, ∀t < T ′.

Remark that (H3) implies (H′) (see for example J. Amendinger [2] or A. Grorud
and M. Pontier [13]). Among the remarkable consequences of this hypothesis, we can
notice that W is a (Y,Q)-Brownian motion (see J. Jacod [15]). Another very impor-
tant tool that holds under hypothesis (H3) is a martingale representation theorem for
(Y,Q)-martingales with respect to Brownian motion W , stated in J. Jacod and A.N.
Shiryaev [16] (Theorem III.4.33 p. 189), and used as a key tool in the proof of the
main result in [11].

Questions that naturally arise when dealing with additional information are : will
informed agents hedge the option as non informed agents or will they have a different
hedging strategy?
The case of European contingent claims was studied in [11], where the existence and
uniqueness problem of solution was solved for a BSDE with fixed horizon, under an
initial enlargement of filtration. Under hypothesis (H3), it was proved that an in-
formed agent will have a unique hedging strategy for a European option, which is the
same as a non informed agent. The main financial question is: is it still the case for
American-type options, where the hedging horizon is random? This turns out to be
mathematically: does the BSDE with random terminal time under enlarged filtration
have a unique solution? Is this solution adapted to the small filtration? In other words,
is this solution the same as the solution of the BSDE under the natural filtration?

2.2 Mathematical formulation
Mathematically speaking, from a more general point of view, we are looking for a
solution of the following BSDE with random terminal time :

Yt∧τ = ξ +

∫ T∧τ

t∧τ
f(s, Ys, Zs) ds−

∫ T∧τ

t∧τ
(Zs, dWs) , ∀0 ≤ t ≤ T, (1)

which belongs to the enlarged σ-algebra (Yt)0≤t≤T , and where

• ξ ∈ L2(Yτ ) is the terminal condition,

• f : Ω× [0, T ]× IRk × IRk×d −→ IRk is the driver,

• Yt ∈ IRk, is the total wealth of the portfolio at time t,
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• Zt ∈ IRk×d, represents the portfolio investments at time t.

One of the fundamental results on solutions of BSDEs with random terminal time is
an existence and uniqueness theorem given by E. Pardoux [23] under some Lipschitz
hypotheses and monotonicity conditions on the driver function. P. Briand and Y. Hu
[6] improved the result in the one-dimensional case and M. Royer [28] reduced again
the hypotheses on monotonicity conditions.
Remark : In these financial settings, Yt is the total wealth of the portfolio at time t,
and Zt represents the portfolio investments at time t. Hence we have k = 1. So for
simplicity reasons, as we deal with a financial application, we will only write results
here with Y ∈ IR, although all the mathematical results can be generalized to the
multi-dimensional case Y ∈ IRk.

3 BSDEs with random terminal time under en-
larged filtration

3.1 Stopping time a.s. bounded by T < T ′

We first consider a stopping time τ , a.s. bounded by T . In other words, τ ≤ T < T ′.
This is the usual case for financial applications such as hedging. We also require
classical assumptions on the F-progressively measurable generator f(., y, z) :
(A 1) f is Lipschitz with respect to z (Lipschitz constant denoted by K),

(A 2) f is continuous with respect to y and ∃ an increasing function ϕ : IR+ −→ IR+

such that
|f(t, y, 0)| ≤ |f(t, 0, 0)|+ ϕ(|y|), IP a.s. ,∀t, y,

(A 3) f is monotonous with respect to y: ∃µ ∈ IR such that

< y − y′, f(t, y, z)− f(t, y′, z) >≤ µ|y − y′|2, IPa.s., ∀t, y, y′, z,

(A 4) IEIP(
∫ T
0
|f(t, 0, 0)|2dt) <∞.

We denote by (Ω, F , P ) a filtered probability space which stands either for the stan-
dard space (Ω,F , IP) or for the enlarged space (Ω,Y,Q).
We define, for any time A ∈ R∗+, the following spaces of F-progressively measurable
processes :

M2
P,F
(
0, A; IRd) =

{
IRd-valued F-adapted process ψ; IEP

(∫ A

0

‖ψs‖2ds
)
<∞

}

S2
P,F
(
0, A; IR

)
=

{
IR-valued F-adapted process ψ; IEP

(
sup

0≤s≤A
|ψs|2

)
<∞

}
We look for a solution of the following BSDE with random terminal time:

Yt∧τ = ξ +

∫ τ

t∧τ
f(s, Ys, Zs)ds−

∫ τ

t∧τ
(Zs, dWs) , ∀ 0 ≤ t ≤ T . (2)
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Definition 3.1
A ( Ω, F , P )-solution (or a solution on ( Ω, F , P )) to equation (2) is a pair of F-
progressively measurable processes IR× IRd-valued

(
Yt, Zt

)
0≤t≤T such that

1. Z ∈M2
P,F

(
0, T ; IRd

)
,

2. On the set {t ≥ τ}, we have Yt = ξ and Zt = 0,

3. ∀t ∈ [0, T ], we have Yt∧τ = Yτ +
∫ τ
t∧τ f(s, Ys, Zs) ds −

∫ τ
t∧τ (Zs, dWs).

We look for a solution successively on the standard space (Ω,F , IP) and on the enlarged
space (Ω,Y,Q). Under the natural Brownian filtration, previous hypotheses on the
driver f guarantee existence and uniqueness of a (Ω,F , IP)-solution. (see E. Pardoux
[23] for a proof).
The following theorem states that under the same hypotheses on the driver f , asking
for an additional integration hypothesis under the new probability Q, BSDE (2) with
random terminal time also has a unique solution in the enlarged space (Ω,Y,Q).

Theorem 3.2
Under hypotheses (A1) to (A4) on f , and if IEQ(

∫ T
0
|f(s, 0, 0)|2 ds) < ∞, then for

all ξ ∈ L2
Q(Yτ ), the BSDE

Yt∧τ = ξ +

∫ τ

t∧τ
f(s, Ys, Zs)ds−

∫ τ

t∧τ
(Zs, dWs) , ∀ 0 ≤ t ≤ T

has a unique (Ω,Y,Q)-solution.

Proof. We use existence and uniqueness Theorem of [11] to define
(
Yt, Zt

)
0≤t≤T ∈

M2
Q,Y
(
0, T ; IR

)
×M2

Q,Y
(
0, T ; IRd

)
as the unique Yt-adapted solution of the following

BSDE

∀ t ∈ [0, T ], Yt = ξ +

∫ T

t

1ls≤τ f(s, Ys, Zs)ds −
∫ T

t

(Zs, dWs) ,

Next we derive the existence result in the enlarged space.
Suppose now that there exists two (Ω,Y,Q)-solutions to equation (2), denoted by(
Y 1
t , Z

1
t

)
t∈[0,T ]

and
(
Y 2
t , Z

2
t

)
t∈[0,T ]

. We apply Itô’s formula to eλs|Ŷs|2, where (Ŷt)t∈[0,T ]

stands for Y 1
t − Y 2

t and λ ≥ 2µ+K2. We obtain

IEQ

(
eλ(t∧τ)|Ŷt∧τ |2

)
≤ (K2 + 2µ− λ) IEQ

(∫ T

0

eλs|Ŷs|2 ds
)
.

This implies uniqueness of Y inM2
Q,Y
(
0, T ; IR

)
.

After replacing Ŷ by 0 in the equation satisfied by (Ŷ , Ẑ), we obtain ∀ t ∈ [0, T ],∫ τ

t∧τ

(
f(s, Y 1

s , Z
1
s )− f(s, Y 1

s , Z
2
s )
)
ds =

∫ τ

t∧τ
(Ẑs, dWs) .

Given that a martingale can be equal to a finite variation process if and only if it is a
null process, this yields to uniqueness of Z inM2

Q,Y
(
0, T ; IRd

)
. �
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Corollary 3.3
Under the same hypotheses as in Theorem 3.2, the unique (Ω,Y,Q)-solution (Yt, Zt)0≤t≤T
of BSDE (2) satisfies

(Yt)0≤t≤T ∈ S2
Q,Y(0, T, IR).

Proof. From Itô’s formula and Burckholder-Davis-Gundy’s inequality, and using
assumptions (A1) to (A4), we obtain

1

2
IEQ

(
sup

0≤t≤T
|Yt|2

)
≤ IEQ

(
|ξ|2
)

+ IEQ

(∫ T

0

|f(s, 0, 0)|2 ds
)

+ (1 + 2µ+K2) IEQ

(∫ T

0

|Ys|2 ds
)

+ 2C2

BDG IEQ

(∫ T

0

‖Zs‖2 ds
)
,

which is finite thanks to hypotheses on ξ and f , and as the unique solution (Y,Z) of
the BSDE (2) is inM2

Q,Y
(
0, T ; IR

)
×M2

Q,Y
(
0, T ; IRd

)
. �

3.2 Stopping time a.s. strictly bounded by T ′

We extend here the results of section 3.1 to the case τ < T ′ but not τ ≤ T < T ′.
Here we can not use directly any existence result for a fixed deterministic horizon.
Consequently, we construct a Cauchy sequence of processes defined as solutions of
BSDEs with random terminal times τn, bounded by deterministic times Tn < T ′. The
limit process will satisfy the required properties.
Let τ be a F-stopping time, a.s. strictly bounded by T ′: τ < T ′.
We want to solve the following BSDE

Yt∧τ = ξ +

∫ τ

t∧τ
f(s, Ys, Zs)ds −

∫ τ

t∧τ
(Zs, dWs) , ∀ 0 ≤ t ≤ T ′ . (3)

Classical assumptions on the F-progressively measurable generator f(., y, z) still hold
true. More precisely, assumptions (A1), (A3) and (A4) are supposed to be satisfied,
as in the previous section. But (A2) is replaced by the following assumption (A2’):

(A2’) f is continuous with respect to y and for the same constant K :

|f(t, y, z)| ≤ |f(t, 0, 0)|+K|y|+K ‖ z ‖, IP a.s. ,∀t, y,

Definition 3.4
A ( Ω, F , P )-solution (or a solution on ( Ω, F , P )) to equation (3) is a pair of F-
progressively measurable processes IR× IRd-valued

(
Yt, Zt

)
0≤t≤T ′ such that

1. (Y,Z) ∈ S2
P,F

(
0, T ′; IR

)
×M2

P,F

(
0, T ′; IRd

)
,

2. On the set {t ≥ τ}, we have Yt = ξ and Zt = 0,

3. ∀t ∈ [0, T ′], we have Yt∧τ = Yτ +
∫ τ
t∧τ f(s, Ys, Zs) ds −

∫ τ
t∧τ (Zs, dWs).
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As previously, we look for a solution successively on the standard space (Ω,F , IP) and
on the enlarged space (Ω,Y,Q).

For each n ∈ N, we introduce a sequence of processes, solutions of equation (3), with
terminal value ξn = ξ 1lτ≤Tn and random terminal time τn = Tn ∧ τ , instead of τ ,
where Tn = T ′ − 1

n
. In other words, {(Y nt , Znt ); t ≥ 0} is the solution of the following

BSDE

Y nt = ξn +

∫ τn

t∧τ
f(s, Y ns , Z

n
s )ds−

∫ τn

t∧τ
(Zns , dWs), 0 ≤ t ≤ Tn. (4)

According to existence and uniqueness results of Theorem 3.2 proved in previous sub-
section, equation (4), whose random terminal time is bounded by T ′ − 1

n
< T ′, has

a unique solution inM2
Q,Y(0, Tn; IR)×M2

Q,Y(0, Tn; IRd).
Moreover, {(Y nt , Znt ); t ∈ [Tn, T

′]} is defined by{
Y nt = ξn, ∀t > τn,
Znt = 0, ∀t > τn.

Hence (Zn) ∈M2
Q,Y(0, T ′; IRd), and (Y n) ∈M2

Q,Y(0, T ′; IR), ∀n ∈ N∗.

Lemma 3.5 (Y n, Zn) satisfies the following inequality, for any λ ≥ 2µ+ 2K2 + 3
2
,

IEQ

(
eλ(t∧τ)|Y nt∧τ |2

)
≤ eλT

′
EQ
(
|ξ|2
)

+ IEQ

(∫ τ

0

eλs|f(s, 0, 0)|2ds
)
,

and also
IEQ

(
sup

0≤t≤τ
eλt|Y nt |2 +

∫ τ

0

eλs|Y ns |2 ds+

∫ τ

0

eλs ‖ Zns ‖2 ds

)
≤ C IEQ

(
eλτ |ξ|2 +

∫ τ

0

eλs|f(s, 0, 0)|2 ds
)
.

Proof. Let (Y n)n∈N∗ denote the sequence defined in Equation (4). For the first
inequality, applying Itô’s formula to eλs|Y ns |2 between t ∧ τ and τn as well as using
standard inequalities lead to the following inequality, ∀t ≤ Tn,

eλ(t∧τ)|Y nt∧τ |2 +

∫ τn

t∧τ
eλs
(
λ|Y ns |2+ ‖ Zns ‖2

)
ds

≤ eλτn |ξn|2 + 2

∫ τn

t∧τ
eλs
(
µ|Y ns |2 +K|Y ns |× ‖ Zns ‖

)
ds− 2

∫ τn

t∧τ
eλs(Y ns , Z

n
s dWs)

+2

∫ τn

t∧τ
eλs|Y ns | × |f(s, 0, 0)|ds . (5)

So one has

IEQ

(
eλ(t∧τ)|Y nt∧τ |2

)
≤ IEQ

(
eλτn |ξn|2

)
+ IEQ

(∫ τn

t∧τ
eλs|f(s, 0, 0)|2ds

)
. (6)

For the second inequality, an application of Burkholder-Davis-Gundy’s inequality to
equation (5) gives ∀η, ε > 0:

IEQ

[
(1− η) sup

0≤t≤τ
eλt|Y nt |2 +

∫ τn

0

eλs
(

(λ− 2µ− εK2 − 1)|Y ns |2 + (1− 1

ε
) ‖ Zns ‖2

)
ds

]
≤ IEQ

(
eλτn |ξn|2

)
+ IEQ

∫ τn

0

eλs|f(s, 0, 0)|2ds+ 2C2
BDGIEQ

∫ τn

0

eλs ‖ Zns ‖ ds.
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Taking ε = 2 and η = 1/2 provides the following :

IEQ

(
sup

0≤t≤τ
eλt|Y nt |2 +

∫ τn

0

eλs|Y ns |2ds+

∫ τn

0

eλs ‖ Zns ‖2 ds
)

(7)

≤ 2IEQ

((
eλτn |ξn|2

)
+ IEQ

∫ τn

0

eλs|f(s, 0, 0)|2ds+ 2C2
BDG

∫ τn

0

eλs ‖ Zns ‖ ds
)
.

In order to get an upper bound on the last term, we apply Itô’s formula on eλs|Y ns |2
and take expectation under Q :

IEQ

(∫ τn

0

eλs ‖ Zns ‖2 ds
)
≤ 2

(
IEQ

(
eλτn |ξ|2

)
+ IEQ

(∫ τn

0

eλs|f(s, 0, 0)|2ds
))

.

Replace it in inequality (7), and obtain finally :

IEQ

(
sup

0≤t≤τ
eλt|Y nt |2 +

∫ τn

0

eλs|Y ns |2ds+

∫ τn

0

eλs ‖ Zns ‖2 ds
)

≤
(
2 + 8C2

BDG

)(
IEQ

(
eλτn |ξn|2

)
+ IEQ

∫ τn

0

eλs|f(s, 0, 0)|2ds
)
. (8)

�

Under the Brownian filtration, previous hypotheses on the driver f guarantee existence
and uniqueness of the solution for ξ ∈ L2

P(Fτ ) (see E. Pardoux [23], or [24] Theorem 4.1
p. 23). As in the previous section, requiring an additional integration hypothesis under
the new probability Q is sufficient to insure that the BSDE with random terminal time
has also a unique solution in the enlarged space (Ω,Y,Q).

Theorem 3.6
Suppose that τ < T ′ a.s. and IEQ(

∫ T
0
|f(s, 0, 0)|2 ds) < ∞. Consider ξ ∈ L2

Q(Yτ ).
Then, under the hypotheses (A1), (A2’), (A3) and (A4) on f ,

1. the BSDE

Yt∧τ = ξ +

∫ τ

t∧τ
f(s, Ys, Zs)ds −

∫ τ

t∧τ
(Zs, dWs) , ∀ 0 ≤ t ≤ T ′

has a (Ω,Y,Q)-solution (Yt, Zt)0≤t≤T ′ , satisfying for any λ ≥ 2µ+ 2K2 + 3
2

IEQ

(
sup

0≤t≤τ
eλt|Yt|2 +

∫ τ

0

eλt|Yt|2dt+

∫ τ

0

eλt ‖ Zt ‖2 dt
)

≤ C IEQ

(
eλτ |ξ|2 +

∫ τ

0

eλt|f(t, 0, 0)|2dt
)
. (9)

2. (Yt, Zt)0≤t≤T ′ is the unique (Ω,Y,Q)-solution of (3), satisfying (9).

Proof. Proof is given in Appendix. �

3.3 BSDEs with jumps
For simplicity reasons in the proofs, we have chosen to develop these Theorems only
for BSDEs driven by a Brownian motion. Nevertheless, these results can easily be
extended to the case of BSDEs driven by both a Brownian motion and a Poisson
measure, as same results have been proved by A. Eyraud-Loisel [11] in the case of a
fixed terminal time. Proofs are similar.
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4 Financial Interpretation

4.1 Hedging by an informed agent
We supposed on the beginning a no-arbitrage market, with in particular σ invertible.
This allows us to deduce from the solution (Yt, Zt) of the BSDE strategy πt of the
portfolio in the risky assets.
The main consequence of Theorem 3.6 is that an informed agent will have a unique
hedging strategy for any contingent claim which satisfies the corresponding hypothe-
ses. In particular, this applies to any claim for which the exercise time is a bounded
stopping time (maturity strictly bounded by T ′, time at which the private information
is revealed). This is very often the case for most financial contingent claims traded
in the market. It is presented in the following paragraph for American and Lookback
options. This extends the financial conclusions of A. Eyraud-Loisel (2005) [11].

The obtained results mean that information L ∈ FT ′ satisfying (H3) does not
provide any additional hedging strategy to the informed agent. Actually, for a ξ ∈ Fτ ,
such asymmetrically informed agents will have a unique admissible hedging strategy,
respectively F and Y-adapted. As the BSDE is the same for both agents, a F-adapted
solution for the non informed agent is also a solution of the enlarged BSDE (as it is
also adapted to the enlarged filtration), so it is the unique solution. In other words,
the strategy of the informed agent is adapted to the small filtration F . Then both
agents have the same hedging strategy.

Remark : Let us notice that obtaining this result only strictly until T ′ is not very
surprising. Indeed, results can not be generalized until T ′. This is mathematically
due to the enlargement of filtration hypotheses, which can hold only strictly until T ′.
Financially, it is quite easy to find some examples of contingent claims with terminal
time T ′, where an information on time T ′ provides a different hedging strategy. Let us
take for instance a digital option, 1lST ′≤K and suppose that the additional information
is given by L = ST ′ or even 1lST ′∈[a,b]. Then, the insider trader will hedge this option
by doing nothing if ST ′ > K and investing in the non risky asset otherwise, which is
different from what would do an ordinary non informed agent.

4.2 Examples
Most of contingent claims traded in the market do not have one only fixed exercise
time (as European options), but rather have an exercise period (as for American
or American-type Lookback options for instance). Therefore the terminal time of
the hedging problem is a random stopping time. So it is interesting to generalize
existing results on BSDE with enlarged filtration for fixed terminal time to the case
of random terminal time. In the particular case of standard American and American-
type Lookback options, driver f satisfies the required hypotheses of Theorems 3.2 and
3.6.

4.2.1 American options

If we set the financial problem of hedging an standard American-type vanilla option
with maturity T < T ′, when the exercise time τ may occur at any time before T , the
obtained BSDE is a BSDE with random terminal time. In an enlarged filtration, we
can solve the BSDE as stated in the previous results (Theorem 3.2 as τ ≤ T < T ′).

11



The generator is in this case the following :

f(s, y, z) = −rsy −
bs − rs
σs

z. (10)

And the payoff has the form ξ = (Sτ −K0)+ for a call and (K0 − Sτ )+ for a put.
In order to satisfy the hypotheses required in Theorem 3.2, we have to check some

properties on coefficients: (A1) needs
(

sup
s≥0

|bs − rs|
σs

)
to be finite ; (A2’) is verified

with setting K =

(
sup
s≥0

rs

)
∨
(

sup
s≥0

|bs − rs|
σs

)
; for (A3) we set µ =

(
sup
s≥0

(−rs)
)
;

and (A4) is satisfied since f(t, 0, 0) = 0.

As a conclusion, ξ ∈ L2
(Fτ ),

(
sup
s≥0

(−rs)
)

and
(

sup
s≥0

|bs − rs|
σs

)
finite are sufficient

conditions to ensure existence and uniqueness of an hedging portfolio for an American
option with or without an additional information satisfying hypothesis (H3).
Remark : In this financial application, f(t, 0, 0) = 0. Consequently, we can write in
this case (see inequality (9) for instance) :

IEQ

(
eλt|Yt|2

)
≤ eλT

′
EQ
(
|ξ|2
)

IEQ

(
sup

0≤t≤τ
eλt|Yt|2

)
+ IEQ

(∫ τ

0

eλt|Yt|2dt+

∫ τ

0

eλt ‖ Zt ‖2 dt
)
≤ C IEQ

(
eλτ |ξ|2

)
,

which provides in particular an upper bound on the expected wealth process and the
expected maximum wealth process.

4.2.2 Simulation

Let us restrict to the one-dimensional case and consider constant values for parameters
r, b, σ. Then, on time interval [0, T ′], assets are given by

S0
t = ert,

S1
t = S1

0 e

(
b−σ

2
2

)
t
eσWt .

We study a put with exercise time τ and payoff (K0−S1
τ )+. We recall that τ does not

need to be the optimal time. We set for example τ = inf
0≤t≤T

{t |S1
t /∈ [a1, a2]}, where

T < T ′ and a1 < S1
0 ≤ K0 < a2.

We consider the related BSDE Yt∧τ = YT ′∧τ −
∫ T ′∧τ
t∧τ

(
r Ys + b−r

σ
Zs
)
ds −

∫ T ′∧τ
t∧τ Zs dWs

Yτ = (K0 − S1
τ )+ .

Then Yt is the market value at time t whereas πt = Zt
σ

represents the amount of
wealth invested in the risky asset. (πt)0≤t≤T ′ is the strategy common to both informed
and non informed agents.

[26], [24], [6] and [28] proved that solutions of BSDEs with a random terminal time are

12



strongly linked to the viscosity solutions of associated elliptic PDEs. In this particular
case, the related PDE is an ordinary differential equation : 0 = u(x) − u′(x) − σ2

2 r
u′′(x) when x ∈ [a1, a2]

u(x) = K0 − x when x = a1 or a2.

Its solution can be explicitly computed :

u(x) = λ1 e
α1 x + λ2 e

α2 x, where

α1 =
1+

√
1+ 2σ2

r
2

α2 =
1−
√

1+ 2σ2
r

2

λ1 = (K0−a1) ea2α2 − (K0−a2) ea1α2

ea1α1+a2α2 − ea2α1+a1α2

λ2 = − (K0−a1) ea2α1 + (K0−a2) ea1α1

ea1α1+a2α2 − ea2α1+a1α2
.

In Lemma 4.4 of [28], it is proved that, when τ is the exit time of a bounded set,

Yt∧τ = u(S1
t∧τ ) , for 0 ≤ t ≤ T ′.

Moreover, applying Itô’s formula to u(Xt) and identifying the solution by uniqueness,
we obtain that {

Zt = σ u′(S1
t ) if t ≤ τ ,

Zt = 0 if τ < t ≤ T ′ .

We performed simulations with the following parameters :

S1
0 K0 a1 a2 T T ′ b r σ

90 90 85 95 5 6 0.025 0.02 0.3

Time parameters are given in month, whereas prices are given in euro.

4.2.3 Lookback options

Another example is American-style Lookback option: an option with maturity T < T ′

which pays at exercise the supremum of the price process among the last 2 months
before exercise. So ξ has mathematically the form: ξ = supt∈[τ−2,τ ] St.
Applying Itô and Burkholder-Davis-Gundy on the SDE of the price process provides
that ξ ∈ L2

(Fτ ). Besides, the generator f is the same as in the equation (10). So
with the same conditions on the parameters, we can apply Theorem 3.2 or 3.6 to this
case of Lookback options also.
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4.2.4 Special contingent claim

Theorem 3.6 gives a mathematical generalization to Theorem 3.2, but does not seem
to have additional financial applications taking examples into existing products on the
market.
Although, as options, or more generally contingent claims, are financial contracts
where both parts state the conditions at the beginning, one can easily imagine a
simple American-type contingent claim where the exercise period would be specified
as "any time before T ′, but strictly before". Then the question of having an additional
information on prices at time T ′ does or does not give an additional hedging strategy
would be more accurate. Theorem 3.6 gives the answer, stating that it does not differ
from the previous case: there is no additional strategy for the informed agent.

Acknowledgements: The authors are thankful to Professor Ying Hu, whose
comments and ideas where very helpful to achieve the proof of Theorem 3.6. They
are sincerely grateful to Professor Monique Pontier for her careful readings and to
Professor Martin Schweizer for his pertinent comments.

5 Special Remark
K. Akdim and M. El Otmani’s article [1] entitled "Studying anticipation on financial
markets by BSDE with random terminal time" is mostly inspired, and even copied from
the preprint of the present article, referred here by its preprint [12] entitled "BSDE
with random terminal time under Enlarged Filtration, and Financial Applications".
It rewrites results contained in the last chapter of A. Eyraud-Loisel’s PhD Thesis [?]
defended in December 2005 constituted by an article co-written with Manuela Royer,
which has been in submission processes since December 2005, but which was published
in 2006 in ISFA working papers WP 2034 (2006) [12]. Their paper rewrites all of our
results as if they were new, using the same arguments and the same structure, without
even citing our previous work, whereas they knew it precisely : in fact we sent
them our working paper by email several months before their submission, upon their
request.
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Appendix: Proof of Theorem 3.6

Existence
Step 1. Consider m > n, and define ∆Yt = Y mt − Y nt , ∆Zt = Zmt − Znt . Let
λ ≥ 2µ+ 2K2 + 3

2
.

First prove that (Y n)n∈N∗ (respectively (Zn)n∈N∗) is a Cauchy sequence inM2
Q,Y(0, T ′; IR)

(resp. inM2
Q,Y
(
0, T ′; IRd

)
). They will be convergent in the same spaces.

• Consider t ≤ Tn. Applying Itô’s formula to eλt |∆Yt|2 between t∧τ and τn = Tn∧τ
leads to

IEQ

(
eλ(t∧τ) |∆Yt∧τ |2

)
+ IEQ

∫ τn

t∧τ
eλs
(
λ|∆Ys|2+ ‖ ∆Zs ‖2

)
ds (11)

≤ IEQ

(
eλτn

(
|ξm − ξn|2

))
+ 2IEQ

∫ τn

t∧τ
eλs
(
µ|∆Ys|2 +K|∆Ys|× ‖ ∆Zs ‖

)
ds .

As λ ≥ 2µ+K2, it follows

IEQ

(
eλ(t∧τ) |∆Yt∧τ |2

)
≤ eλT

′
IEQ
(
|ξm − ξn|2

)
= IEQ

(
|ξ|21lTn<τ≤Tm

)
.

As τ < T ′ a.s., the right hand term tends to 0 as n goes to infinity according to domi-
nated convergence Theorem. Hence ∆Yt∧τ goes to 0 in L2

Q(Yτ ) as n tends to infinity.

• Consider now the case when t ∈ [Tn, Tm]. Then Y nt = ξn, and

∆Yt = ξm − ξn +

∫ τm

t∧τ
f(s, Y ms , Zms )ds−

∫ τm

t∧τ
(Zms , dWs).

Apply Itô’s formula to eλt|∆Yt|2 between t ∧ τ and τm.
Notice that Zns = 0 ∀ s ≥ Tn, and Zms = ∆Zs for s ≥ t.
It follows :

eλ(t∧τ)|∆Yt∧τ |2 +

∫ τm

t∧τ
eλs
(
λ|∆Ys|2+ ‖ ∆Zs ‖2

)
ds

≤ eλτm |ξm − ξn|2 + 2

∫ τm

t∧τ
eλs
(
µ|∆Ys|2 +K|∆Ys|× ‖ ∆Zs ‖

)
ds

+2

∫ τm

t∧τ
eλs|∆Ys| × |f(s, ξn, 0)|ds− 2

∫ τm

t∧τ
eλs(∆Ys,∆ZsdWs) . (12)

Taking Q-expectation of the previous inequality, noticing that martingale term has
expectation 0, and using standard inequalities gives the following :

IEQ

(
eλ(t∧τ)|∆Yt∧τ |2

)
≤ eλT

′
IEQ

(
|ξm − ξn|2

)
+ IEQ

(∫ τm

τn

eλs |f(s, ξn, 0|2ds
)
, (13)

as λ ≥ 2µ+K2 + 1.
Besides, from assertion (A2’),

|f(s, ξn, 0)|2 ≤ 2|f(t, 0, 0)|2 + 2K|ξn|2 ≤ 2|f(t, 0, 0)|2 + 2K|ξ|2 .
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Consequently, hypotheses of Theorem 3.6 provide the Q-integrability of
eλs|f(s, ξn, 0|2ds. Moreover, given that τm − τn tends to zero Q a.s. when n goes to
infinity, the right term of (13) tends to zero as n tends to infinity. This proves that
∆Yt (respectively ∆Zt ) also tends to zero in L2

Q(Yτ ) (resp. inM2
Q,Y(0, T ′; IRd)) by

taking the limit as n tends to infinity in inequality (12).

• Finally consider the case when t ∈ [Tm, T
′]. As said previously, Y mt −Y nt = ξm−ξn

converges Q a.s. to zero as n tends to infinity, so in this case ∆Yt also goes to 0 in
Q-probability. Hence (Y nt )n≥0 is a Cauchy sequence in Q-probability.

• To conclude the first step, a-priori estimates proved in Lemma 3.5 are needed. It
provides an upper bound of the expected wealth process Y under probability Q, when-
ever ξ ∈ L2

Q(Yτ ). Lemma 3.5 establishes the expected inequalities only for (Y n, Zn).
Identical results for the solution has to be obtained by taking the limit. For this
purpose, taking conditional expectation of equation (5) leads to :

eλ(t∧τ)|Y nt∧τ |2 ≤ eλT
′
IEQ

(
|ξ|2 +

∫ T ′

0

|f(s, 0, 0)|2ds

∣∣∣∣∣Yt∧τ
)
.

This proves that |Y n|2 is dominated by a Q-integrable process independent of n, and
the same is true for sup0≤t≤τ e

λt|Y nt |2 . It yields also to a domination of |∆Y |2.
Applying dominated convergence Theorem, it implies that Y n is a Cauchy sequence
inM2

Q,Y(0, T ′; IR). Taking the limit in equation (11) proves that the same holds for
∆Zt, and that (Znt )n≥0 is also a Cauchy sequence inM2

Q,Y(0, T ′; IRd).
Define then (Y,Z) as the limit of the sequence (Y n, Zn)n≥0.

Step 2. Study of the limit (Y,Z).
First prove that it satisfies the BSDE (3).
Taking the limit in equation (6) as n tends to infinity, we obtain finally

IEQ

(
eλ(t∧τ)|Yt∧τ |2

)
≤ eλT

′
EQ
(
|ξ|2
)

+ IEQ

(∫ τ

0

eλs|f(s, 0, 0)|2ds
)
,

which provides the first inequality.
Taking the limit as n goes to infinity in equation (8) leads to :

IEQ

(
sup

0≤t≤τ
eλt|Yt|2 +

∫ τ

0

eλs|Ys|2ds+

∫ τ

0

eλs ‖ Zs ‖2 ds
)

≤
(
2 + 8C2

BDG

)(
IEQ

(
eλτ |ξ|2

)
+ IEQ

∫ τ

0

eλs|f(s, 0, 0)|2ds
)
.

As process (Y,Z) is defined as the limit of the sequence (Y n, Zn)n≥0, this process
satisfies equation (3). So it is a solution of the BSDE (f, ξ, τ), and it satisfies Equation
(9): existence is proved.

Uniqueness
Let (Y,Z) and (Y ′, Z′) be two solutions, which satisfy equations (3) and (9). Let
(Ȳ , Z̄) = (Y − Y ′, Z − Z′). It follows from Itô’s formula applied between t ∧ τ and
τ ∧ Tn = τn, and from assumptions (A1), (A2′), (A3) and (A4) that, for all λ ∈ R
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and for t ≤ Tn,

e(λt∧τ)|Ȳt∧τ |2 +

∫ τn

t∧τ
eλs
(
λ|Ȳs|2+ ‖ Z̄s ‖2

)
ds

≤ eλτn |Ȳτn |
2 + 2

∫ τn

t∧τ
eλs
(
µ|Ȳs|2 +K|Ȳs|× ‖ Z̄s ‖

)
ds

−2

∫ τn

t∧τ
eλs(Ȳs, Z̄sdWs). (14)

Combining the above inequality with

2K|Ȳs|× ‖ Z̄s ‖≤‖ Z̄s ‖2 +K2|Ȳs|2 ,

it implies

eλ(t∧τ)|Ȳt∧τ |2 ≤ eλτn |Ȳτn |
2 + (2µ+K2 − λ)

∫ τn

t∧τ
eλs|Ȳs|2ds− 2

∫ τn

t∧τ
eλs(Ȳs, Z̄sdWs).

As (Ws)0≤s<T ′ is a (Y,Q)-Brownian motion, the last term is a (Y,Q)-martingale on
[0, Tn]. Since it is null at Tn, its expectation under Q is null. Hence

EQ

(
eλ(t∧τ)|Ȳt∧τ |2

)
≤ EQ

(
eλτn |Ȳτn |

2
)
∀t ∈ [0, Tn].

eλτn |Ȳτn |2 is dominated by eλT
′ (

2 sup0≤t≤T ′ |Yt|2 + 2 sup0≤t≤T ′ |Y ′t |2
)
, which is Q-

integrable (by definition of a solution). By dominated convergence Theorem, since τn
goes to τ , and Tn goes to T ′ as n goes to infinity, we deduce

EQ

(
eλ(t∧τ)|Ȳt∧τ |2

)
≤ EQ

(
eλτ |Ȳτ |2

)
.

Given that Yτ = Y ′τ = ξ, it is obvious then that Ȳτ = 0. This proves that ∀t ≤ τ ,
Ȳt = 0, Q a.s. It is also true for t ≥ τ , as Yt = Y ′t = ξ by Definition 3.4. Then Ȳt = 0
∀t ∈ [0, T ′] (YT ′ = Y ′T ′ = ξ as τ < T ′ a.s.; so this also holds for T ′).
Replace Ȳt by 0 in equation (14), and obtain Z̄t = 0 ∀t ∈ [0, T ′], Q a.s. Uniqueness is
proved, and this ends the proof of Theorem 3.6.
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