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Abstract

We propose a new sixth-order finite volume scheme to solve the bidimensional linear
steady-state Stokes problem on staggered unstructured meshes and complex geometries.
The method is based on several classes of polynomial reconstructions to accurately eva-
luate the diffusive fluxes, the pressure gradient, and the velocity divergence. The main
difficulty is to handle the div-grad duality to avoid numerical locking and oscillations.
A new preconditioning technique based on the construction of a pseudo-inverse matrix
is also proposed to dramatically reduce the computational effort. Several numerical
simulations are carried out to highlight the performance of the new method.

Keywords: Stokes equations, incompressible fluid, finite volume, high-order scheme,
preconditioning

1. Introduction

The Stokes problem together with the Darcy system are two classical prototype mo-
dels of mixed problems where the pressure function derives from the divergence-free
velocity constraint. The finite volume method turns to be a natural framework to design
built-in conservation schemes since the pioneer book of Patankar [39] and we refer to the
textbook of Ferziger and Peric [17] for an overview of the finite volume for the Navier-
Stokes equations. A large range of schemes has been developed to provide both accurate
and stable solutions where one can distinguish different kinds of approach namely stag-
gered or collocated discretizations, structured grids or unstructured meshes for complex
geometries, and coupled or segregated velocity and pressure leading to a saddle point
problem or a projection method in the divergence-free space (see the introductions of
[22, 44] for a short overview). Another fundamental challenge concerns the precondition-
ing of the linear system deriving from the space discretization.

Second-order methods are a standard in industry for the computation of incompress-
ible flow and in commercial software development. There exists an important liter-
ature and books on the subject using the finite difference [8, 41], the finite element
[43, 52, 7, 23, 54], or the finite volume approach [39, 20, 53, 49, 15, 5]. However, there
are fewer papers on higher order approximations (greater than the second-order of ac-
curacy). Very high-order schemes for incompressible fluid flow have been developed
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using the finite difference framework using the Padé methodology (the so-called compact
scheme) [25] on staggered structured grids (see [29, 22] and references herein) for the
fourth-order case, and more recently for the sixth-order case [4]. Finite element [23, 19]
and discontinuous Galerkin methods [34, 16, 36] also received important contributions
to achieve very high-order approximation both in time and space.

Accurate finite volume approximations are receiving considerable attention to com-
pute approximations for the Euler system and the compressible Navier-Stokes equations
in two- and three-dimensional geometries [38, 33, 28, 12] but the incompressible case is
far from being so well-developed. Pereira et al. [40] and Smirnov et al. [51] proposed
a fourth-order finite volume method on structured grids based on the Padé technique
and several very high-order schemes have been developed involving compact stencils to
provide accurate approximations [42, 26, 31, 18]. The major drawback of the compact
technology derives from the restriction to structured grids since it turns to be very com-
plicated for unstructured meshes. Up to our knowledge, the use of very high-order finite
volume methods for the (Navier)-Stokes problem with unstructured meshes has only been
tackled in [37, 44] introducing fourth-order and sixth-order schemes based on the appli-
cation of a mesh-free technique (Moving Least Squares refereed as FV-MLS method) to
the finite volume framework.

In the present paper we propose a new sixth-order finite volume method for the
steady-state incompressible Stokes equations with unstructured meshes based on the
technology initially developed for the convection-diffusion problem in [9, 6]. We use
a staggered discretization with a primal unstructured mesh for the pressure and the
associated diamond mesh for the velocity to avoid the Rhie-Chow interpolation [46, 49].
The coupled velocity-pressure approach is employed to avoid the pressure correction
intermediate step to provide the divergence-free velocity [22]. Moreover, we do not
treat the steady-state as the asymptotic limit of an artificial time marching problem
but we directly solve the linear system associated to the saddle point problem. The main
difficulty is to achieve an efficient approximation of the solution taking into account the
divergence-free velocity constraint to determine the pressure. The method is based, on
the one hand, in different kinds of polynomial reconstructions to compute the viscous
flux, the pressure gradient, and the velocity divergence up to a sixth-order of accuracy
and, on the other hand, in a matrix-free formulation using the residual method as in
[9, 6]. Unlike the popular second-order methods, the underlying global matrix is not
symmetric hence the classical argument to guarantee the existence of divergence-free
numerical approximations does not hold any longer. Nevertheless, we show that the
method enables to carry out accurate approximations and the algebraic solver (here
GMRES) converges to the steady-state solution. A new kind of preconditioning matrix
is also given based on the original method proposed in [9]. The preconditioning technique
has been adapted to the specific diamond structure of the dual mesh and we numerically
prove the efficiency of our preconditioner.

The document is divided in seven sections. After the introduction, we present in Sec-
tion 2 all the geometrical ingredients and notations we need to develop the generic finite
volume scheme. We detail in Section 3 the different types of polynomial reconstructions
to achieve local sixth-order representations of the underlying solution, the numerical
fluxes and the numerical scheme and in Section 4 we present the new preconditioning
procedure. In Section 5 we address the numerical assessments to show the robustness
and accuracy of the proposed techniques and in Section 6 we present the simulation of a
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polymer extruder apparatus. We end the document with some conclusions.

2. Finite volume for the Stokes equations

Let Ω be an open bounded polygonal domain of R2 with boundary BΩ and x “
px1, x2q. We seek functions U “ pU1, U2q ” pU1pxq, U2pxqq, the velocity field, and P ”
P pxq, the pressure, solutions of the steady-state flow of an incompressible Newtonian
fluid governed by the Stokes equations

∇ ¨ p´µ∇U ` PI2q “ f, in Ω, (1)

∇ ¨ U “ 0, in Ω, (2)

where the dynamic viscosity µ ” µpxq and the source term f “ pf1, f2q ” pf1pxq, f2pxqq
are given regular functions. The tensor ∇U is defined as r∇U sαβ “

BUα
Bxβ

, α, β “ 1, 2,

and I2 stands for the identity matrix in R2ˆ2. The system (1-2) is completed with the
Dirichlet boundary condition

U “ UD, on BΩ, (3)

where UD “ pU1,D, U2,Dq ” pU1,Dpxq, U2,Dpxqq is a given regular function on BΩ which
satisfies the compatibility condition

ż

BΩ

UD ¨ n ds “ 0,

with n “ pn1, n2q the outward unit normal vector on BΩ. Moreover, uniqueness for the
pressure is guaranteed by the additional constraint

ş

Ω
P dx “ 0.

2.1. Primal and diamond meshes

The primal mesh of Ω, that we denote byM, is a partition of Ω into I non-overlapping
convex polygonal cells ci, i P CM “ t1, . . . , Iu, and adopt the notations we detail hereafter
(see Fig. 1, left):

• for any cell ci, i P CM, we denote by Bci its boundary and by |ci| its area; the
reference cell point is denoted by mi which can be any point in ci (in the present
work we shall consider the centroid);

• two cells ci and cj share a common edge eij whose length is denoted by |eij | and
nij “ pn1,ij , n2,ijq is the unit normal vector to eij outward to ci, i.e. nij “ ´nji;
the reference edge point is mij which can be any point in eij (in the present work
we consider the midpoint); if an edge of ci belongs to the boundary, the index j is
tagged by the letter D;

• for any cell ci, i P CM, we associate the index set νpiq Ă t1, ¨ ¨ ¨ , IuY tDu such that
j P νpiq if eij is a common edge of cells ci and cj or with the boundary if j “ D.
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Figure 1: Notation for the primal mesh (left) and for the diamond mesh (right).

The diamond mesh of Ω, that we denote by D, derives from the primal meshM and
is constituted of K non-overlapping diamond-shape cell (which degenerate to triangles
in the boundary) ck, k P CD “ tI ` 1, . . . , I ` Ku. Indeed, for each inner primal edge
eij corresponds a unique cell of the diamond mesh defined by the reference points mi

and mj and the vertices of the edge (the dual cell associated to a boundary edge eiD is
defined by the reference point mi and the vertices of the edge).

The notation for the diamond mesh follows the notation introduced for the primal
mesh where we substitute the index i P CM by k P CD and the index j P νpiq by ` P νpkq
(see Fig. 1, right). In particular mk is any point in ck (in the present work we shall
consider the centroid) and mk` is any point in ek` (in the present work we consider the
midpoint).

To define the association between diamond cells and primal edges, we introduce the
correspondence operator ΠD such that for given arguments pi, jq, i P CM, j P νpiq, we
associate the corresponding diamond cell index k “ ΠDpi, jq P CD. In the same way, for
each diamond edge, we introduce the correspondence operator ΠM such that for given
arguments pk, `q, k P CD, ` P νpkq, we associate the corresponding primal cell index
i “ ΠMpk, `q P CM.

The numerical integrations on the edges are performed with Gaussian quadrature
where for the primal edges eij , i P CM, j P νpiq, we denote by qij,r, r “ 1, . . . , R, their
Gauss points and for the diamond edges ek`, k P CD, ` P νpkq, we denote by qk`,r,
r “ 1, . . . , R, their Gauss points, both sets with weights ζr, r “ 1, . . . , R (see Fig. 2).

2.2. Generic finite volume scheme

To provide the generic very high-order finite volume scheme, we first integrate equa-
tion (1) over each diamond cell ck, k P CD, and then apply the divergence theorem,
yielding

ż

Bck

p´µ∇U ` PI2qn ds “

ż

ck

f dx,
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Figure 2: Gauss points on the edges of the primal cells (dashes lines) and on the edges of the diamond
cells (solid lines).

which can be rewritten in the scalar form as
ż

Bck

p´µ∇Uβ ¨ n` Pnβq ds “

ż

ck

fβ dx, β “ 1, 2.

Considering the Gaussian quadrature with R points, i.e. of order 2R, for the line inte-
grals, we get the residual expression

ÿ

`Pνpkq

|ek`|

|ck|

«

R
ÿ

r“1

ζr
`

FUβ,k`,r ` FPβ,k`,r
˘

ff

´ fβ,k “ O
`

h2R
k

˘

, β “ 1, 2, (4)

with the physical fluxes given by

FUβ,k`,r “ ´µpqk`,rq∇Uβpqk`,rq ¨ nk`, FPβ,k`,r “ P pqk`,rqnβ,k`,

hk “ max`Pνpkq |ek`|, and fβ,k an approximation of order 2R of the mean value of fβ
over cell ck (if cell ck is not triangular, we split it into sub-triangles which share the cell
centroid as a common vertex and apply the quadrature rule on each sub-triangle as in
[13]).

We now integrate equation (2) over each primal cell ci and apply again the divergence
theorem, yielding

ż

Bci

U ¨ n ds “ 0.

Considering again Gaussian quadrature with R points for the line integrals, we get the
residual expression

ÿ

jPνpiq

|eij |

|ci|

R
ÿ

r“1

ζr F∇
ij,r “ Oph2R

i q, (5)

with the physical flux given by

F∇
ij,r “ Upqij,rq ¨ nij

and hi “ maxjPνpiq |eij |.
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3. Polynomial reconstructions and high-order finite volume scheme

The polynomial reconstruction is a powerful tool to provide an accurate local repre-
sentation of the underlying solution and was initially introduced in [1, 2] for hyperbolic
problems. In [9] a new methodology was proposed in the context of convection-diffusion
problems in order to achieve very accurate approximations of the gradient fluxes and to
take into account the boundary conditions. The authors introduced different types of
polynomial reconstructions namely the conservative reconstruction in cells and on Dirich-
let boundary edges and the non-conservative reconstruction on inner edges, in order to
compute approximations of the convective and the diffusive fluxes. We now adapt this
technology for the specific Stokes problem where the main difficulty is to handle the two
meshes.

3.1. Stencil and data

A stencil is a collection of cells situated in the vicinity of a reference geometrical entity,
namely an edge or a cell where the number of elements of the stencil shall depend on
the degree d of the polynomial function we intend to construct. For each diamond edge
ek`, k P CD, ` P νpkq, we associate the stencil Sk` consisting of the indices of neighbor
diamond cells. Analogously, we associate the stencil Sk for each diamond cell ck, k P CD,
and the stencil Si for each primal cell ci, i P CM, consisting of the indices of neighbor
dual and primal cells, respectively.

Remark 1. A polynomial reconstruction of degree d requires nd “ pd ` 1qpd ` 2q{2
coefficients. So, in practice, a stencil consists of the Nd closest cells to each geometrical
entity (edge or cell) in the respective mesh, with Nd ě nd (we consider Nd « 1.5nd for
the sake of robustness).

Now, we want to compute the polynomial reconstructions based on the data of the
associated stencil. To this end, we assume that vectors U1 “ pU1,kqk“I`1,...,I`K , U2 “

pU2,kqk“I`1,...,I`K , and P “ pPiqi“1,...,I gather the approximations of the mean values of
U1 and U2 over the diamond cells and P over the primal cells, i.e.

U1,k «
1

|ck|

ż

ck

U1 dx, U2,k «
1

|ck|

ż

ck

U2 dx, Pi «
1

|ci|

ż

ci

P dx.

3.2. Conservative reconstruction for primal cells

For each primal cell ci, i P CM, the local polynomial approximation of the underlying
solution P based on vector P of degree d is defined as

P ipxq “ Pi `
ÿ

1ď|α|ďd

Rαi rpx´miq
α ´Mα

i s ,

where α “ pα1, α2q with |α| “ α1 ` α2 and the convention xα “ xα1
1 xα2

2 , vector Ri “
pRαi q1ď|α|ďd gathers the polynomial coefficients, and Mα

i “
1
|ci|

ş

ci
px´miq

α dx in order

to guarantee the conservation property

1

|ci|

ż

ci

P ipxq dx “ Pi.
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For a given stencil Si, we consider the quadratic functional

EipRiq “
ÿ

qPSi

«

1

|cq|

ż

cq

P ipxq dx´ Pq

ff2

. (6)

We denote by pRi the unique vector which minimizes the quadratic functional (6) and

we set pP ipxq the polynomial which corresponds to the best approximation in the least
squares sense.

3.3. Conservative reconstruction for diamond cells

For each diamond cell ck, k P CD, the local polynomial approximation of the under-
lying functions U1 and U2 based on vectors U1 and U2 of degree d are defined as

Uβ,kpxq “ Uβ,k `
ÿ

1ď|α|ďd

Rαβ,k rpx´mkq
α ´Mα

k s , β “ 1, 2,

where vectorRβ,k “ pRαβ,kq1ď|α|ďd gathers the polynomial coefficients andMα
k “

1
|ck|

ş

ck
px´

mkq
α dx in order to guarantee the conservation property

1

|ck|

ż

ck

Uβ,kpxq dx “ Uβ,k.

For a given stencil Sk, we consider the quadratic functional

Eβ,kpRβ,kq “
ÿ

qPSk

«

1

|cq|

ż

cq

Uβ,kpxq dx´ Uβ,q

ff2

. (7)

We denote by pRβ,k the unique vector which minimizes the quadratic functional (7) and

we set pUβ,kpxq the polynomial which corresponds to the best approximation in the least
squares sense.

3.4. Non-conservative reconstruction for inner diamond edges

For each inner diamond edge ek`, k P CD, ` P νpkq, the local polynomial approxima-
tions of degree d of the underlying functions U1 and U2 are defined as

Uβ,k`pxq “
ÿ

0ď|α|ďd

Rαβ,k`px´mk`q
α, β “ 1, 2,

where vector Rβ,k` “ pRαβ,k`q0ď|α|ďd gathers the polynomial coefficients (notice that in
this case |α| starts with 0 since no conservation property is required). For a given stencil
Sk` with #Sk` elements and vector ωβ,k` “ pωβ,k`,qqq“1,...,#Sk` of the positive weights of
the reconstruction, we consider the quadratic functional

Eβ,k`pRβ,k`q “
ÿ

qPSk`

ωβ,k`,q

«

1

|cq|

ż

cq

Uβ,k`pxq dx´ Uβ,q

ff2

. (8)

We denote by rRβ,k` the unique vector which minimizes the quadratic functional (8) and

we set rUβ,k`pxq the polynomial which corresponds to the best approximation in the least
squares sense.
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3.5. Conservative reconstruction for diamond boundary edges

We treat the boundary diamond edges in a particular way in order to take into account
the Dirichlet boundary conditions prescribed for the velocity. For each boundary diamond
edge ekD, k P CD, the local polynomial approximations of degree d of the underlying
functions U1 and U2 are defined as

Uβ,kDpxq “ Uβ,kD `
ÿ

1ď|α|ďd

Rαβ,kD rpx´mkDq
α ´Mα

kDs , β “ 1, 2,

where vector Rβ,kD “ pRαβ,kDq1ď|α|ďd gathers the polynomial coefficients, Uβ,kD is an
approximation of the mean value Uβ,D of order 2R over the diamond boundary edge ekD,
and Mα

kD “
1

|ekD|

ş

ekD
px´mkDq

α dx in order to guarantee the conservation property

1

|ekD|

ż

ekD

Uβ,kDpxq ds “ Uβ,kD.

For a given stencil SkD with #SkD elements and vector ωβ,kD “ pωβ,kD,qqq“1,...,#SkD
of

the positive weights of the reconstruction, we consider the quadratic functional

Eβ,kDpRβ,kDq “
ÿ

qPSkD

ωβ,kD,q

«

1

|cq|

ż

cq

Uβ,kDpxq dx´ Uβ,q

ff2

. (9)

We denote by pRβ,kD the unique vector which minimizes the quadratic functional (9) and

we set pUβ,kDpxq the polynomial which corresponds to the best approximation in the least
squares sense.

Remark 2. The motivation for introducing the weights in the case of a non-conservative
polynomial reconstruction and in the case of a conservative polynomial reconstruction for
Dirichlet boundary edges, is presented in [9] as well as the importance to set larger values
for the adjacent cells.

3.6. High-order finite volume scheme

This subsection is dedicated to design high-order numerical flux approximations based
on the polynomial reconstructions presented in the previous subsections to provide the
global residual operator.

3.6.1. Numerical fluxes

For a given polynomial degree d and the associated stencils which guarantee the
d-consistency property (see [9]), four numerical fluxes situations arise:

• for an inner diamond edge ek`, the fluxes at the quadrature point qk`,r write

FUβ,k`,r “ ´µpqk`,rq∇ rUβ,k`pqk`,rq ¨ nk` and FPβ,k`,r “ pP ipqk`,rqnβ,k`, β “ 1, 2,

with the correspondence i “ ΠMpk, `q;
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• for a boundary diamond edge ekD, the fluxes at the quadrature point qkD,r write

FUβ,kD,r “ ´µpqkD,rq∇ pUβ,kDpqkD,rq¨nkD and FPβ,kD,r “
pP ipqkD,rqnβ,kD, β “ 1, 2,

with the correspondence i “ ΠMpk,Dq;

• for an inner primal edge eij , the flux at the quadrature point qij,r writes

F∇
ij,r “

pU1,kpqij,rqn1,ij ` pU2,kpqij,rqn2,ij ,

with the correspondence k “ ΠDpi, jq;

• for a boundary primal edge eiD, the flux at the quadrature point qiD,r writes

F∇
iD,r “ U1,DpqiD,rqn1,iD ` U2,DpqiD,rqn2,iD.

3.6.2. Residual operators

For any vector Φ “ pU1,U2,Pq in R2K`I , we define the residual operators for each
diamond cell ck, k P CD, as

Gβk pΦq “
ÿ

`Pνpkq

|ek`|

|ck|

«

R
ÿ

r“1

ζr
`

FUβ,k`,r ` FPβ,k`,r
˘

ff

´ fβ,k, β “ 1, 2,

and for each primal cell ci, i P CP , as

G∇i pΦq “
ÿ

jPνpiq

|eij |

|ci|

R
ÿ

r“1

ζrF∇
ij,r,

which correspond to the finite volume scheme (4-5) cast in residual form. Gathering all

the components of the residuals in vectors GβpΦq “
´

Gβk pΦq
¯

k“I`1,...,I`K
and G∇pΦq “

`

G∇i pΦq
˘

i“1,...,I
, we introduce the global affine operator from R2K`I into R2K`I , given

by

HpΦq “
`

G1pΦq,G2pΦq,G∇pΦq
˘T
,

such that vector Φ‹ “ pU‹1,U‹2,P‹qT P R2K`I , solution of the problemHpΦq “ 0, provides
a constant piecewise approximation of U1, U2, and P .

4. A new preconditioning technique

This section is dedicated to the development of a new efficient preconditioning method
to solve the underlying affine problem.
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4.1. Matrix-free problem and preconditioning

The underlying operator corresponding to the Stokes problem takes the form

HpΦq “ AΦ´ B “
„

A BT

C 0

 „

U
P



´

„

F
V



“ 0 (10)

where U “ pU1,U2q
T P R2K gathers the two unknown velocity components, F “

pF1, F2q
T P R2K with Fβ “ pfβ,kqk“I`1,...,I`K , β “ 1, 2, gathers the source term, and

V P RI gathers the prescribed normal velocities on the boundary. Since the matrix A
is unknown (and we do not want to explicitly assemble it), we use linear solvers which
only require the residual term such as the GMRES method [48, 47].

The preconditioning of the matrix-free problem is a critical stage to dramatically
reduce the computational effort and achieve accurate approximations for the affine sys-
tem. Numerous techniques have been developed, namely the multigrid preconditioner
[32, 27] and the SIMPLE-type preconditioner [30, 45]. Also a very popular method for
preconditioning the system uses matrix

P “
„

A 0
0 S



, (11)

where S “ CA´1BT is the Schur complement ofA with respect to A [22]. Indeed, using P
as a preconditioning matrix theoretically provides the solution with at most four GMRES
iterations as proven in [35]. Most of the preconditioning techniques have been proposed
for the saddle point problem when C “ B corresponding to a “symmetric” discretization
which preserves the duality between the divergence and the gradient operators. Such a
situation arises in many first- and second-order finite volume discretizations such as the
DDFV method [10, 11] or in the context of the finite element method [50]. Unfortunately,
such symmetry does not hold any longer in the case of very high-order finite volume
discretizations and there exists literature which provides compatibility conditions for
system (10) to provide existence of a solution [3, 24].

In the present work, two major difficulties arise for applying such preconditioning
technique. First, the matrices A, B, and C are not available since we consider a matrix-
free problem. Second, the computation of A´1 and S´1 (or an incomplete version such
as ILU) requires an important computational effort which turns unsustainable for large
linear systems. To overcome these problems, we first introduce a simple and compu-
tationally fast approximation of matrices A, B, and C and then propose an efficient
preconditioning technique as an extension of the one proposed in [9].

4.2. Approximations for unknown matrices A, B, and C

We introduce the approximation rA P R2Kˆ2K ofA using a Patankar-like discretization
(also very similar to the FV4 scheme as in [14]) given by

rApk ´ I, k ´ Iq “ rApk `K ´ I, k `K ´ Iq “
ÿ

`Pνpkq

|ek`|

|ck|

µpmk`q

|mkm`|
, k P CD,

for the diagonal entries and by

rApk ´ I, `´ Iq “ rApk `K ´ I, ``K ´ Iq “ ´
|ek`|

|ck|

µpmk`q

|mkm`|
, k P CD, ` P νpkq,
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for the extra-diagonal non-null entries.
In the same way, we introduce the approximation rB P RIˆ2K of B given by (using

local indices)

rBpi, k ´ Iq “
ÿ

`Pνpkq with
ΠMpk,`q“i

|ek`|

|ck|
n1,k`, i P CM, k P CD,

rBpi, k `K ´ Iq “
ÿ

`Pνpkq with
ΠMpk,`q“i

|ek`|

|ck|
n2,k`, i P CM, k P CD,

and the approximation rC P RIˆ2K of C given by (using local indices)

rCpi, k ´ Iq “
|eij |

|ci|
n1,ij , i P CM, j P νpiq, k “ ΠDpi, jq,

rCpi, k `K ´ Iq “
|eij |

|ci|
n2,ij , i P CM, j P νpiq, k “ ΠDpi, jq.

Note that we do not have, a priori, B “ C since B depends on the diamond mesh while
C depends on the primal mesh.

4.3. Incomplete inverse matrix

In [9], we have proposed a new preconditioning technique based on the evaluation
of an incomplete inverse sparse matrix. We here propose an important extension to
generalize that idea and introduce a simple way to compute an approximation of A´1.
Let us denote by M a square matrix in Rnˆn and denote by EM piq, i “ 1, . . . , n, the
index set of the non-null entries of row i, that is, j P EM piq if and only if Mpi, jq ‰ 0.

Definition 1. We say that matrix M has a symmetric structure if EM piq “ EMT piq,
i “ 1, . . . , n, and two matrices M , N have the same structures if EM piq “ EN piq, i “
1, . . . , n.

Definition 2. For a given square matrix M P Rnˆn, the admissible pair pi, jq, i P
t1, . . . , nu, j P EM piq, is of type T0 if

EM piq X EM pjq “ H,

and of type T1 if there exists a unique k ‰ i, j such that

EM piq X EM pjq “ k, EM piq X EM pkq “ j, EM pjq X EM pkq “ i.

We say that matrix M enjoys the T0 property (resp. T1) if all the admissible pairs are
of type T0 (resp. T1).

Let M and N be two square matrices in Rnˆn with the same symmetric structure, i.e.
Epiq “ EM piq “ EN piq, i “ 1, . . . , n, and let R “ NM . One can verify the following
properties:

11



• each diagonal element of R is given by

Rii “ NiiMii `
ÿ

jPEpiq

NijMji, i “ 1, . . . , n; (12)

• @i “ 1, . . . , n and @j P Epiq, if pi, jq if of type T0 then

Rij “ NijMjj `NiiMij ; (13)

• @i “ 1, . . . , n and @j P Epiq, if pi, jq if of type T1 then

Rij “ NijMjj `NikMkj `NiiMij , (14a)

Rik “ NikMkk `NijMjk `NiiMik, (14b)

with k “ Epiq X Epjq.

Of course, matrix R may contain other non-null entries than the ones associated to the
admissible pairs pi, jq but the idea is to only consider such pairs to design the incomplete
inverse. To this end, we have the following definition.

Definition 3. Assume that M has a symmetric structure such that for each non-null
entry Mij, the pair pi, jq is of type T0 or T1. We say that M admits an incomplete left
inverse matrix M : if

• the matrix M : has the same structure than M and

• let R be defined by Rii “ 1 and Rij “ 0, i “ 1, . . . , n, j P EM piq, then M :M
:
“ R

where relation
:
“ means that we require the equality only for the entries Rij, i “

1, . . . , n, j P tiu Y Epiq.

In other words, we seek an incomplete left inverse matrix M : which have the same struc-
ture than M such that the product gives the identity matrix for indices corresponding
to the non-null entries of M . Such a specific structure enables to easily compute the
incomplete left inverse as we present in the following theorem.

Theorem 1. Let M : be the left incomplete inverse of M P Rnˆn. Then @i “ 1, . . . , n,
@j P EM piq:

• if pi, jq is of type T0, there exists a coefficient χij such that

M :

ij “ χijM
:

ii with χij “ ´
Mij

Mjj
; (15)

• if pi, jq is of type T1, there exist coefficients χij, χik, with k “ EM piq X EM pjq,
solution of the linear system

„

Mjj Mkj

Mjk Mkk

 „

χij
χik



“ ´

„

Mij

Mik



(16)

such that
M :

ij “ χijM
:

ii, M :

ik “ χikM
:

ii. (17)
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Moreover, we have

M :

ii “
1

Mii `
ř

jPEM piq χijMji
.

Proof. If pi, jq is of type T0, relation (13) yields M :

ijMjj `M :

iiMij “ 0 then M :

ij “

´
Mij

Mjj
M :

ii hence M :

ij “ χijM
:

ii with χij “ ´
Mij

Mjj
. Assume now that pi, jq is of type T1.

Then, relation (14) yields

M :

ijMjj `M
:

ikMkj `M
:

iiMij “ 0,

M :

ikMkk `M
:

ijMjk `M
:

iiMik “ 0,

that we rewrite as
„

Mjj Mkj

Mjk Mkk



«

M :

ij

M :

ik

ff

“ ´M :

ii

„

Mij

Mik



.

Solving the linear system (16), we provide coefficients χij , χik and relations (17) hold.
From relation (12), we have

1 “M :

iiMii `
ÿ

jPEM piq

M :

ijMji.

Having the coefficients χij in hand, we compute the diagonal entries M :

ii with

1 “M :

iiMii `
ÿ

jPEM piq

χijMjiM
:

ii.

Hence we deduce

M :

ii “
1

Mii `
ř

jPEM piq χijMji
.

At last we compute M :

ij , i “ 1, . . . , n, j P EM piq with equations (15) and (17). l

Definition 4. Let N be a Rnˆn matrix and M a matrix of symmetric structure with
entries of type T0 or T1. We say that M : is a left incomplete inverse preconditioning
matrix of N when we solve M :pNx´ bq “ 0 in place of solving Nx´ b “ 0.

Remark 3. Notice that the usual expression “preconditioning matrix” given for example
in [48] refers to M and not to M´1 since one solves Nx “ b using preconditioning tech-
nique such as ILU or diagonal matrix where M is simpler than N . In particular, we do
not compute M´1 explicitly, except for some very elementary cases (diagonal matrices).
On the other hand, we use the expression “incomplete inverse preconditioning matrix”
to underline that explicitly compute M : and perform the preconditioning multiplying M :

with N to reduce the conditioning number of the global linear system. This yields great
advantages since the preconditioning procedure just requires, in practice, the product of a
sparse matrix with a vector that could be efficiently parallelized.

13



co

ck

cℓ

ck cℓ

co

cp

Figure 3: Correct configuration (left) for a triangular mesh where the corresponding diamond cells ck
and c` share a unique cell co, and undesirable configuration (right) where the diamond cells ck and c`
share two cells, co and cp.

4.4. Projection operators TM and TD
In the numerical section, we need to introduce two projection operators for filtering

the matrices in the sense that we shall cancel some extra-diagonal entries to suit to a
specific pattern deriving from the mesh connectivities. For a given primal mesh M, we
define operator TM on matrices M P RIˆI setting

rTMpMqsii “Mii; rTMpMqsij “Mij , j P νpiq; rTMpMqsij “ 0, otherwise.

In short, the operator keeps the extra-diagonal entries belonging to the adjacent cells
and cut the other entries. Notice that TM pTMpMqq “ TMpMq which justifies the term
projection. Moreover, we highlight that νpiq plays the role of Epiq.

Theorem 2. Assume that the primal mesh is a Delaunay triangulation with I cells such
that there do not exist three triangles where each triangle is adjacent with the two others
as shown in Fig. 3, right panel. Then for any matrix M P RIˆI , associated to the
triangular mesh M, the projection result of TMpMq enjoys the T0 property.

Proof. Let ci be a cell and j P νpiq. If νpiq X νpjq ‰ H then there exists a cell cq
q P νpiq X νpjq which share an edge with the two other triangles, i.e. triangles ci, cj , cq
corresponds to the configuration of Fig. 3, left panel. Since we assume that such situation
is excluded hence q P νpiq X νpjq “ H and TMpMq enjoys the T0 property. l

In the same way, for the associated diamond mesh D and any matrix M P RKˆK , we
define the operator TD by

rTDpMqskk “Mkk; rTDpMqsk` “Mk`, ` P νpkq; rTDpMqsk` “ 0, otherwise.

To deal with the vectorial case (velocity) with matrix M P R2Kˆ2K of the form

M “

„

M11 M12

M21 M22



,

we extend operator TDpMq setting

TDpMq “

„

TDpM11q 0
0 TDpM22q



.
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Theorem 3. Assume that a triangular primal mesh satisfies the condition of Theorem 2.
Then for any matrix M P RKˆK , the projection result of TDpMq enjoys the T1 property.

Proof. For any triangular primal cell we have three diamond cells, lets say ck, c`, and
cp which share two sides between themselves, i.e. ck shares an edge with c` and another
edge with cp, hence tcpu Ă νpkq X νp`q. We claim that there is not another cell (lets say
co) such that cells ck and c` share a common edge with cell co, as shown in Fig. 3, right
panel. Indeed, if there exists such a cell co different of cp, then co contains a common
edge of ck and c`. In the present work we assume that such undesirable configuration is
excluded. In conclusion, νpkq X νp`q “ tcpu such that ck and c` are of type T1. l

Remark 4. Notice that the projection result TDpMq of a matrix M P RKˆK is of type
T1 only if the primal mesh is a triangular mesh. On the other cases, p.e. quadrilateral
meshes, matrix TDpMq is of type T0.

In the next section, we detail how we compute the incomplete inverse preconditioning
matrix rP: based on the approximations rA, rB, and rC and on the procedure we have
described before.

5. Numerical results

This section is dedicated to quantitatively and qualitatively assess the robustness
and accuracy of the proposed method. Time consumption and computational scalability
assessments are also provided in order to prove the effectiveness of the method and its
capacity to be highly parallelizable.

To perform the numerical tests, we consider a fluid with viscosity µ “ 1 flowing in
a unit square domain Ω “ s0, 1r

2
. In order to check the implementation of the method

and assess the convergence rates, we manufacture an analytical solution for the given
problem setting

U1pxq “
1

2
p1´ cospπx1qq sinpπx2q, U2pxq “

1

2
sinpπx1q pcospπx2q ´ 1q ,

P pxq “
1

2
cos

´π

2
px1 ` x2q

¯

.

Then, the source terms are given by

f1pxq “ ´
π2

2
p2 cospπx1q ´ 1q sinpπx2q ´

π

4
sin

´π

2
px1 ` x2q

¯

,

f2pxq “
π2

2
sinpπx1q p2 cospπx2q ´ 1q ´

π

4
sin

´π

2
px1 ` x2q

¯

.

Boundary conditions derive from the exact solution, namely on the top side we prescribe
UDpx1, 1q “ p0,´ sinpπx1qq, x1 P s0, 1r, while we set UDp1, x2q “ psinpπx2q, 0q, x2 P s0, 1r
on the right side. For the other sides, the homogeneous Dirichlet boundary condition
UDpxq “ p0, 0q, on tBΩ : x1 ‰ 1, x2 ‰ 1u is prescribed. We plot in Fig. 4 the isocontours
of the x-component of the velocity, U1, and of the y-component of the velocity, U2, the
isocontours of the magnitude of the velocity, ||U ||, and the isocontours of the pressure, P .
In all the simulations we have carried out, the weights in functional (8) are set ωβ,k`,q “ 3,
k P CD, ` P νpkq, q P Sk`, β “ 1, 2, if ek` is an edge of cq and ωβ,k`,q “ 1, otherwise,
following [9].
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Figure 4: Isocontours of the x-component (top, left) and the y-component of the velocity (top, right),
isocontours of the velocity magnitude (bottom, left), and isocontours of the pressure (bottom, right).
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5.1. Accuracy and convergence rates assessment

We first assess the accuracy and the convergence rates of the numerical approximation
using the manufactured solution. Vectors U‹β “ pU‹β,kqkPCD , β “ 1, 2, and P‹ “ pP ‹i qiPCM

gather the approximate mean values while vectors Uβ “ pUβ,kqkPCD , β “ 1, 2, and
P “ pP iqiPCM gather the exact mean values of the solution given by

Uβ,k “
1

|ck|

ż

ck

Uβ dx, β “ 1, 2, and P i “
1

|ci|

ż

ci

P dx.

The L1-norm errors are given by

Eβ1 pDq “

ÿ

kPCD

|U‹β,k ´ Uβ,k||ck|

ÿ

kPCD

|ck|
, β “ 1, 2, and EP1 pMq “

ÿ

iPCM

|P ‹i ´ P
‹
´ P i||ci|

ÿ

iPCM

|ci|
,

and the L8-norm errors are given by

Eβ8pDq “ max
kPCD

|U‹β,k ´ Uβ,k|, β “ 1, 2, and EP8pMq “ max
iPCM

|P ‹i ´ P
‹
´ P i|.

where P
‹

is the mean value of the values gather in vector P‹,

P
‹
“

ÿ

iPCM

P ‹i |ci|

ÿ

iPCM

|ci|
,

since the GMRES procedure does not guarantee a solution of null mean value.

Remark 5. One can verify that the problem given by equations (1-2) is singular for the
pressure since if P a solution, then P ` C, C P R, is also a solution. We have consider
no Dirichlet condition for the pressure (or other procedure to fix the singularity) since
we have noticed that the GMRES procedure always finds the null mean value solution.
However, such property does not hold for a preconditioned GMRES and therefore no
convergence is achieved (the C value does not converge when we consider a finner mesh
although the gradient of P is well evaluated). To overcome the problem, we simply fix P ‹i
subtracting the mean value of P‹ such that one gets a unique piecewise approximation of
P with a null mean value.

We evaluate the convergence rate of the L1-norm (and L8-norm error) between two
different and successive finer primal meshes M1 and M2, with I1 and I2 cells, respec-
tively, as

OP1 pM1,M2q “ 2
| logpEP1 pM1q{E

P
1 pM2qq|

| logpI1{I2q|
.

In the same way, we define the convergence order between two different and successive
finer diamond meshes D1 and D2 with K1 and K2 cells, respectively, as

Oβ1 pD1,D2q “ 2
| logpEβ1 pD1q{E

β
1 pD2qq|

| logpK1{K2q|
.
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Figure 5: A coarse uniform triangular Delaunay mesh (left) and the associated diamond mesh (right).

As a first test, we carry out simulations with successive finer regular triangular De-
launay meshes (see Fig. 5, left) and the associated diamond meshes (see Fig. 5, right).
We report in Tables 1, 2, and 3 the L1- and L8-norm errors and the convergence rates
using the P1, P3, and P5 polynomial reconstructions, respectively, where the number of
unknowns (the same as degrees of freedom) is DOF “ K for U1 and U2 and DOF “ I

for P . The notation E1 is a generalization which stands for Eβ1 or EP1 depending on the
variable we are dealing with (Uβ or P , respectively). The same convention is valid for
E8, O1, and O8.

The P1 polynomial reconstruction provides a second-order approximation for the
velocity and a first-order approximation for the pressure. The scheme based on the P3

reconstruction achieved an effective fourth-order approximation for the velocity and a
third-order (slightly better) approximation for the pressure and scheme based on the
P5 reconstruction achieved a sixth- and fifth-order approximations for the velocity and
the pressure, respectively. We also mention that no oscillations or numerical locking are
reported in all the experiences.

Scheme robustness and accuracy assessments with deformed meshes are also of crucial
importance in order to check the method capacity to handle complex meshes still pre-
serving high-order convergence rates. To this end, we consider successive finer deformed
quadrilateral meshes (see Fig. 6) applying a random displacement of each inner vertex of
structured meshes controlled by a deformation factor (see the detailed procedure in [9]).
In the present experience, we choose a test case with 30% of deformation. We report in
Tables 4, 5, and 6 the L1- and L8- norm errors and convergence rates using the P1, P3,
and P5 polynomial reconstructions, respectively (the meaning of DOF is the one just
presented).

We observe that the scheme correctly handles complex meshes and the convergence
rates are optimal both for the velocity and for the pressure. We achieved up to a sixth-
order convergence rate for the velocity using the P5 polynomial reconstruction and no
oscillations were noticed in all the tests.
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Table 1: Errors and convergence rates for the P1 scheme with uniform triangular Delaunay primal
meshes.

DOF E1 O1 E8 O8

U1

363 1.23E´03 — 9.54E´03 —
1454 3.34E´04 1.88 2.22E´03 2.10
6135 7.96E´05 1.99 6.80E´04 1.64
24719 1.90E´05 2.06 1.35E´04 2.33

U2

363 1.24E´03 — 5.31E´03 —
1454 3.42E´04 1.86 1.88E´03 1.50
6135 7.78E´05 2.06 5.10E´04 1.81
24719 1.91E´05 2.01 1.22E´04 2.05

P

230 5.23E´02 — 2.32E´01 —
944 2.23E´02 1.20 1.36E´01 0.76
4038 9.32E´03 1.20 6.32E´02 1.05
16374 4.21E´03 1.14 3.43E´02 0.87

Table 2: Errors and convergence rates for the P3 scheme with uniform triangular Delaunay primal
meshes.

DOF E1 O1 E8 O8

U1

363 3.83E´05 — 1.56E´04 —
1454 1.98E´06 4.27 1.34E´05 3.54
6135 1.08E´07 4.04 8.81E´07 3.78
24719 6.42E´09 4.05 4.58E´08 4.24

U2

363 3.89E´05 — 1.88E´04 —
1454 2.04E´06 4.25 1.43E´05 3.71
6135 1.07E´07 4.09 6.78E´07 4.24
24719 6.41E´09 4.04 4.75E´08 3.81

P

230 1.24E´03 — 6.86E´03 —
944 1.34E´04 3.15 1.34E´03 2.32
4038 1.17E´05 3.36 1.23E´04 3.29
16374 1.29E´06 3.15 1.82E´05 2.73
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Table 3: Errors and convergence rates for the P5 scheme with uniform triangular Delaunay primal
meshes.

DOF E1 O1 E8 O8

U1

363 1.34E´06 — 1.59E´05 —
1454 1.40E´08 6.57 1.57E´07 6.66
6135 1.48E´10 6.32 1.01E´09 7.01
24719 2.66E´12 5.77 1.70E´11 5.87

U2

363 1.34E´06 — 1.69E´05 —
1454 1.44E´08 6.53 1.58E´07 6.74
6135 1.49E´10 6.35 1.31E´09 6.66
24719 2.76E´12 5.73 1.84E´11 6.12

P

230 4.39E´05 — 4.11E´04 —
944 6.91E´07 5.88 9.19E´06 5.38
4038 1.32E´08 5.45 1.12E´07 6.07
16374 3.65E´10 5.13 4.42E´09 4.62
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Figure 6: A coarse deformed quadrilateral mesh (left) and the associated diamond mesh (right).
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Table 4: Errors and convergence rates for the P1 scheme with deformed quadrilateral primal meshes.

DOF E1 O1 E8 O8

U1

220 2.06E´03 — 6.78E´03 —
840 4.58E´04 2.24 1.93E´03 1.88
3280 1.08E´04 2.12 5.65E´04 1.80
12960 2.62E´05 2.06 1.48E´04 1.95

U2

220 1.94E´03 — 8.35E´03 —
840 4.36E´04 2.23 3.52E´03 1.29
3280 1.08E´04 2.05 7.74E´04 2.22
12960 2.63E´05 2.06 2.44E´04 1.68

P

100 6.75E´02 — 2.23E´01 —
400 2.41E´02 1.48 1.55E´01 0.53
1600 9.07E´03 1.41 6.83E´02 1.18
6400 4.02E´03 1.17 3.61E´02 0.93

Table 5: Errors and convergence rates for the P3 scheme with deformed quadrilateral primal meshes.

DOF E1 O1 E8 O8

U1

220 6.05E´05 — 3.64E´04 —
840 3.25E´06 4.36 1.98E´05 4.35
3280 1.83E´07 4.22 1.88E´06 3.46
12960 1.11E´08 4.08 9.87E´08 4.29

U2

220 5.65E´05 — 2.97E´04 —
840 3.06E´06 4.35 2.12E´05 3.94
3280 1.80E´07 4.16 1.50E´06 3.89
12960 1.12E´08 4.04 1.25E´07 3.61

P

100 2.10E´03 — 1.03E´02 —
400 1.89E´04 3.47 1.81E´03 2.51
1600 1.60E´05 3.56 2.22E´04 3.03
6400 1.65E´06 3.28 3.09E´05 2.85

Table 6: Errors and convergence rates for the P5 scheme with deformed quadrilateral primal meshes.

DOF E1 O1 E8 O8

U1

220 3.08E´06 — 2.26E´05 —
840 3.38E´08 6.73 1.97E´07 7.08
3280 4.37E´10 6.38 5.28E´09 5.31
12960 6.35E´12 6.16 5.62E´11 6.61

U2

220 2.72E´06 — 1.46E´05 —
840 3.14E´08 6.66 3.20E´07 5.70
3280 4.43E´10 6.26 3.37E´09 6.68
12960 6.36E´12 6.18 6.11E´11 5.84

P

100 5.84E´05 — 3.18E´04 —
400 1.35E´06 5.44 2.12E´05 3.91
1600 2.92E´08 5.53 4.73E´07 5.48
6400 8.03E´10 5.18 1.63E´08 4.86
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5.2. Assessment of the preconditioning technique

We devote this subsection to assess the quality of the preconditioning technique pro-
posed in Section 4. Two topics are here considered: the use of approximate matrices rA,
rB, and rC deriving from a Patankar-like discretization to compute an approximation of P
and the use of the incomplete inverse matrix for preconditioning. To do so, we consider
four situations.

• Accordingly to Section 4, matrix P defined by relation (11) stands for the ideal
preconditioning matrix as shown in [35]. Nevertheless, computation P´1 is not
possible since the Schur complement S is not invertible. To overcome such a dif-
ficulty, we add a slight perturbation setting Sε “ CA´1BT ` εI with ε ą 0 small
enough (we take ε “ 10´8 in the numerical tests). Since Sε is now invertible, we
define

P´1
ε “

„

A´1 0
0 S´1

ε



.

• To evaluate the impact of the approximate matrices deriving from the Patankar-
like discretization, we shall consider a preconditioning matrix rP based on rA, rB,
and rC. One more time, the Schur complement rS “ rC rA´1

rBT is not invertible and
we slightly perturbe the matrix setting rSε “ rS ` εI such that rPε is invertible and
we set

rP´1
ε “

«

rA´1 0

0 rS´1
ε

ff

.

• To assess the efficiency of the incomplete inverse procedure, we substitute the
inverse operator ¨´1 by the ¨: one. To deal with the Schur matrix, we use projector

operator TM defined in subsection 4.4 and we set
p

rS “ TM

´

rC rA: rBT
¯

. Indeed,

matrix rC rA: rBT has non-null entries which do not correspond to adjacent cells hence

we apply the TM projector to guarantee that matrix
p

rS enjoys the T0 property given

by definition 2. Since
p

rS now satisfies the T0 property and rA satisfies the T0 or T1

properties, we can apply the ¨: operator and we define

rP: “

«

rA: 0

0
p

rS:

ff

.

• For the last issue, we want to substitute the inverse operator ¨´1 by the ¨: when
one employs the exact matrices A, B, and C of the linear system (10). Since
S does not enjoy the T0 property and A does not enjoy the T0 or T1 properties
for quadrilateral or triangular primal meshes, respectively, a specific treatment is
required to apply the ¨: operator. For matrix A we simply apply the TD operator
setting pA “ TDpAq. To build an approximation of the Schur matrix, we define
pS “ T0

`

C pA:BT
˘

which turns to be a matrix of type T0. We then define the
incomplete inverse preconditioning matrix by

P: “

«

pA: 0

0 pS:

ff

.
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Remark 6. We do not explicitly build the matrices A, B, and C since the method only
deals with operator H. Nevertheless it is possible to recover the matrix by computing
HpΦq where Φ spans the canonical basis. In that way, we obtain all the columns of the
matrices. Of course, such a technique is not computationally interesting but it enables to
evaluate explicitly all the matrices to carry out the numerical tests of this subsection.

5.2.1. Efficiency assessments of the preconditioning matrices

To perform the simulations, we consider a uniform triangular Delaunay mesh with 944
primal cells and its associated diamond mesh with 1454 cells corresponding to a linear
system with 3852 unknowns. We plot in Fig. 7 the residual curves of the GMRES method
for P1, P3, and P5 polynomial reconstructions, where Riter is the L2-norm residual at
iteration iter, with no preconditioning and with preconditioning, where for the latter we
consider the four preconditioning matrices just presented. The main observations are the
following.

• The exact inverse matrix P´1
ε enables to determine the exact solution in 4 itera-

tions as expected and the small perturbation controlled by ε does not perturb the
convergence. The preconditioner is efficient for all the reconstructions and sug-
gest that approximation of P´1

ε will provide a very good matrix for reducing the
conditioning number of matrix A.

• The use of any preconditioning matrix dramatically reduces the number of iter-
ations with respect to the identity matrix (no preconditioning). We also remark
that the number of iterations is mainly the same, independent of the polynomial
degree reconstruction since the number of unknowns is preserved (only the sten-
cil size changes, hence the matrix connectivity) with the exception of the non-
preconditioning case where the computational effort increases with the polynomial
degree.

• Substituting the exact matrices A, B, and C with their respective approximations
and using the exact inverse matrix rP´1

ε provides excellent results, even with higher
degree. For the global system with 3832 unknowns we just need about 80 iterations
to provide the solution. In other word, the use of Patankar-like matrices to perform
the preconditioning of the matrix-free problem is very efficient.

• We now deal with the incomplete inverse preconditioning matrix using the exact
matrices or the approximated matrices. We observe that the two incomplete inverse
matrices provide approximatively the same iterations numbers which means that
the loose of performance may be essentially imputed to the inverse procedure and
not the matrix approximation. In all the situations, we cut by 3 or 4 the number of
iterations but we recall that the preconditioning procedure is highly parallelizable
since it just corresponds to a sparse matrix product with a vector.

As an overall conclusion, the use of the Patankar-like matrices in substitution of the real
matrices is very efficient and the incomplete inverse preconditioning enables to substan-
tively reduce the number of iterations of the GMRES procedure.
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Figure 7: Comparison of the residual curves of the GMRES method with different preconditioning
matrices for P1 (top), P3 (middle), and P5(bottom) polynomial reconstructions.
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Figure 8: Comparison of the residual curves of the GMRES method with and without preconditioning
matrix for P1 polynomial reconstructions.

5.2.2. Convergence and saturation for fine meshes

We now turn to assess the preconditioning using rP: when dealing with bigger linear
systems. For that purpose, we consider a uniform triangular Delaunay mesh with 16374
primal cells and 24719 diamond cells corresponding to 65812 unknowns.

We plot in Fig. 8 the residual curves of the GMRES method with no preconditioning
and with the preconditioning matrix rP: for the P1 reconstruction while we present the
results for the other reconstruction in Table 7 where NITER is the number of iterations
to achieve a residual of Riter ă 10´14, TE is the execution time (normalized for the sake
of comparison), and TPREC is the percentage of TE in the preconditioning of the residual
vectors during the GMRES procedure.

We observe that the non-preconditioning version converges very slowly and the depen-
dance on the polynomial degree is noticeable. On the contrary, the new preconditioning
procedure is low sensitive to the polynomial degree. We also note the very low com-
putational cost of the preconditioning procedure, the huge differences of running time
between with and without preconditioning, and the increase of the computational effort
just by 20% and 60% fot the P3 and P5 versions, respectively, which demonstrates the
great advantage to perform high-order approximation on coarse meshes when comparing
with second-order approximations on fine meshes. Of course fine meshes could be neces-
sary to capture specific structures of the solution (vortex, obstacle, discontinuities) but
the very high-order approximation should be privileged when possible.

Table 7: Number of GMRES iterations and execution time using uniform triangular Delaunay meshes.

NITER TE TPREC [%]

P1
Id 8792 1.36 —
rP: 4700 1 3.4

P3
Id 25000* 3.63* —
rP: 4651 1.18 2.9

P5
Id 43000* 9.15* —
rP: 4662 1.61 2.3

* Estimated value
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In spite of that positive conclusion, a more representative preconditioning matrix
based on the second-order discretization should be considered in the future. Indeed, the
matriz approximations rA, rB, and rC derive from a Patankar-like discretization which is
non-consistent for unstructured meshes.

We carried out the same simulation using deformed quadrilateral meshes and we
noticed the same effectiveness of the proposed preconditioning as for the presented tests.

5.3. Scalability and time consumption

Multithreading/multicore implementation is of crucial importance when dealing with
a large number of unknowns and long running times (larger than several hours for in-
stance). Computers are equipped with multicore processors and GPU cards allowing
efficient time simulations cut by running specific portions of the code in parallel. High
Performance Computing aims to take advantage of algorithms supporting the multi-
threading so we have developed and implemented a parallel version of the method using
the openMP framework for a small multicore machine to assess the scalability and the
potentiality to be parallelized for large multicore machines.

5.3.1. Speed-up assessment

For each simulation, we evaluate the following parameters:

• TPREC — execution time to build the preconditioning matrix;

• TGMRES — execution time to solve the linear system using the GMRES method
(including the preconditioning, the Krylov basis construction, and the residual
vectors computation);

• TE — execution time of the entire simulation;

• Sn — speedup with n cores given by

Sn “
TE,1

TE,n
, (18)

where TE,1 is the execution time with one CPU core and TE,n is the execution time
with n CPU cores;

• En — strong efficiency with n cores (also given in percentage) is defined as

En “
Sn
n
. (19)

All the time parameters correspond to the wall-clock time and the measurements are
given in seconds. The efficiency of an algorithm is related to the relative usage of each
allocated core. Very scalable algorithms have high values of efficiency and the Amdahl’s
Law predicts the speed-up with n cores as

Sn “
1

1´ Pn `
Pn
n

. (20)
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Figure 9: Speed-ups and efficiency using uniform triangular Delaunay meshes with P1 polynomial re-
constructions.

where Pn is the fraction of the algorithm running in parallel. Notice that, according to
Amdahl, a linear speed-up is not usually achieved since it implies a full parallel algo-
rihtm, which is not always possible. Moreover, the Amdahl’s Law does not take into
account some effects such as syncronization, overhead, or cache saturation, which can
reduce the speed-up or even increase it. In fact, a superlinear speed-up (Sn ą n) is,
in practice, possible since more CPUs implies a larger available cache memory, avoiding
cache saturation effects. Since we do not know, a priori, the value of Pn, we cannot
predict the speed-up using the Amdahl’s Law. Instead, we obtain Pn using equation (20)
for a given speed-up and number of cores, as a indicator of the quality of the scalability.

Simulations were carried out with uniform Delaunay meshes and we perform the
computation with n “ 1, 2, 4, 8 cores. Having TE,1 and TE,n in hand, we compute the
speed-ups with relation (18), the efficiency with equation (19), and finally deduce Pn
from the Amdahl’s Law (20). The algorithm was implemented in C`` and parallelized
using the openMP framework. The machine has 8 Intel Xeon processors with 2.2 GHz
of clock rate and 2 MB of cache memory for each core. We display the speed-up and
the efficiency for the P1, P3, and P5 polynomial reconstructions in Fig.s 9, 10, and 11,
respectively, where DOF is the total number of unknowns, i.e. DOF “ 2K ` I.

We report a very good scalability using 2 CPU cores with speed-ups close to 2 for the
three kinds of reconstruction. We obtain larger speed-ups allocating more CPU cores
until reaching a speed-up around 4.5 with 8 cores with small variations with respect
to the polynomial degree and the mesh size (except for very small meshes where all
the data is contained in the cache memory). Such a situation is expected since more
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threads lead to larger overhead delays, that is, task start-up time, synchronizations,
data communications, task termination time, among other factors, slowing down the
simulations. Moreover, the bottleneck between the main and the cache memory slows
down the data transfer when dealing with more than two cores. We notice some efficiency
rates above 100% because some cache memory effects can lead to a superlinear speed-
up in some scenarios. Moreover, the smallest mesh has the worst efficiency (36% with
speed-up of 2.9) since the overhead affects very much the simulation.

Considering the Amdahl’s Law, we predict a fraction of parallelized code around
P “ 90% which is a indicator of a good scalability. Of course, as stated before, the
Amdahl’s prediction does not take into account some factors which can slow down the
algorithm.

To sum up, the tests we have carried out show that the method we propose has a
great potential to be parallelized for large multicore machines to drastically reduce the
execution time.

5.3.2. Time consumption versus mesh size

Tables 8, 9, and 10 provide the execution time per task and the total execution time,
where DOF “ 2K ` I. The time computation of the preconditioning matrices and the
incomplete inverse rP: during the pre-processing stage is only given in Table 8 since it
does not depend on the polynomial reconstruction degree.

Table 8: Runtime per task and multithreading performance of the P1 scheme using uniform triangular
Delaunay meshes.

DOF n TPREC [s] TGMRES [s] TE [s]

956

1 0.04 0.47 0.57
2 0.02 0.26 0.33
4 0.01 0.06 0.26
8 0.01 0.11 0.20

3852

1 0.53 10.10 10.94
2 0.28 5.44 5.93
4 0.15 2.97 3.26
8 0.09 1.84 2.01

16308

1 9.31 238.22 249.65
2 4.81 128.10 134.17
4 2.47 81.39 84.58
8 1.30 61.53 63.28

65812

1 169.73 5319.71 5510.26
2 87.87 2743.64 2843.42
4 46.12 1741.87 1794.20
8 22.57 1145.93 1172.36
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Table 9: Runtime per task and multithreading
performance of the P3 scheme using uniform
triangular Delaunay meshes.

DOF n TGMRES [s] TE [s]

956

1 0.95 1.39
2 0.44 0.68
4 0.26 0.39
8 0.16 0.24

3852

1 14.23 16.43
2 8.10 9.28
4 4.06 4.68
8 3.39 3.74

16308

1 302.00 319.30
2 161.46 170.55
4 101.50 106.19
8 75.66 78.20

65812

1 6541.88 6759.10
2 3228.46 3342.11
4 2123.95 2183.35
8 1477.90 1508.14

Table 10: Runtime per task and multithread-
ing performance of the P5 scheme using uni-
form triangular Delaunay meshes.

DOF n TGMRES [s] TE [s]

956

1 1.95 4.06
2 0.94 2.00
4 0.47 1.02
8 0.28 0.59

3852

1 23.69 32.24
2 13.11 17.59
4 8.27 10.53
8 6.92 8.11

16308

1 477.74 523.93
2 252.88 276.73
4 159.29 171.51
8 115.87 122.14

65812

1 10673.78 11058.73
2 5234.73 5433.43
4 3108.89 3215.69
8 2474.25 2526.57

The pre-processing stage is very low consuming with respect to the whole computa-
tional process and the essential cost derives from the GMRES routine. We observe that
the P3 situation generates an overcost of about 30% whatever the number of core and
the mesh size are. For the P5 reconstruction, the situation is less clear: for small mesh
size the ratio between the time consumption with P5 and P1 ranges between 3 and 4 in
function of the cores number. For the two finest meshes, the ratio is stabilized around
a factor 2 independently of the core numbers. At last we observe that the time con-
sumption roughly increases as I3{4 or, taking into account the space dimension, the time
consumption increases as h´3{2 where h “ 1{

?
I is the mesh parameter and we observe

low sensitivity regarded to the number of cores and the polynomial degree. Of course
the time is reduced when employing more cores or lower degree but the time is still a
function of order h´3{2.

5.3.3. Time consumption versus the error of approximation

We now compare the computational cost of the proposed method in terms of accuracy.
For a given tolerance, we want to determine the mesh and the associated execution time
one has to use to provide an accurate approximation up to the prescribed error for several
type of reconstructions. To do so, we compute the L2-norm errors of the velocity and
the pressure, given by

Eβ2 pDq “

¨

˚

˚

˝

ÿ

kPCD

|ck|pU
‹
β,k ´ Uβ,kq

2

ÿ

kPCD

|ck|U
2

β

˛

‹

‹

‚

1
2

and EP2 pMq “

¨

˚

˚

˝

ÿ

iPCM

|ci|pP
‹
i ´ P iq

2

ÿ

iPCM

|ci|P
2

i
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2

,

30



1E0 1E1 1E2 1E3 1E4

1E0

1E-2

1E-4

1E-6

1E-8

1E-10

1E-12

Execution Time, TE

L
2
-n
o
rm
E
rr
o
r,
E
2

P1
P3
P5
U
P

1E-1 1E0 1E1 1E2 1E3

1E0

1E-2

1E-4

1E-6

1E-8

1E-10

1E-12

Execution Time, TE

L
2
-n
o
rm
E
rr
o
r,
E
2

P1
P3
P5
U
P

Figure 12: L2-norm error as a function of the execution time. The simulations were carried out using
uniform triangular Delaunay meshes with DOF “ 956, 3852, 16308, 65812 and one CPU core (top) and
eight CPU cores (bottom).

using successive finer uniform triangular Delaunay meshes and the execution time of the
simulation, TE. We plot in Fig. 12 the L2-norm error as a function of the execution
time with P1, P3, and P5 polynomial reconstructions for four meshes. Clearly the P5

reconstruction has the lower computational cost to achieve an approximate solution up
to a given tolerance. As an example, to provide a numerical solution with one core such
that the L2-error of the velocity is lower than 10´6, the P5 version requires 10s with a
mesh of 2500 cells, the P3 reconstruction needs 100s with a mesh of 12000 cells, and the
P1 second-order method performs the computation in 108s (about 3 years and 2 months)
with a mesh of about 107 cells (estimated value).

6. Simulation of a polymer extruder apparatus

We dedicate this section to the polymer extrusion simulation in order to highlight
the method capacity to handle complex geometries with unstructured meshes within the
very high-order finite volume context. We also intend to evaluate the preconditioning
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Figure 13: Polymer extruder machine geometry where a rotation screw (1) forces the molten polymer
through a die (3) after passing through the breaker plate (2). The breaker plate creates back pressure
in the barrel required for uniform melting and proper mixing of the polymer.

technique efficiency in the case of a concrete application. For this purpose, we consider
a geometry which corresponds to a standard extruder machine [21] displayed in Fig. 13
where a molten polymer material flows out to the extruder head with a specific constant
cross section shape (plastic pipes, window frames, etc.). Due to the high viscosity and
the low velocity, the nonlinear contribution of the Navier-Stokes equation is neglected
and we assume that the process is governed by the steady-state Stokes equation for
incompressible fluids. To prescribe the boundary conditions, we consider an inlet velocity
UD,in defined on x P Γin “ tpx1, x2q P BΩ : x1 “ 0^ p0 ă x2 ă 0.2_ 0.8 ă x2 ă 1qu given
by

UD,inp0, x2q “

#

p4x2p0.2´ x2q, 0q , if 0 ă x2 ă 0.2,

p6p1´ x2qpx2 ´ 0.8q, 0q , if 0.8 ă x2 ă 1,

and an outlet velocity UD,out defined on x P Γout “ tpx1, x2q P BΩ : x1 “ 1.4 ^ p0.4 ă
x2 ă 0.45_ 0.55 ă x2 ă 0.6qu given by

UD,outp1.4, x2q “

#

p320p0.45´ x2qpx2 ´ 0.4q, 0q , if 0.4 ă x2 ă 0.45,

p320p0.6´ x2qpx2 ´ 0.55q, 0q , if 0.55 ă x2 ă 0.6.

The other portions of the boundary are walls with null velocity UDpxq “ p0, 0q.
We consider a null source term, that is fpxq “ p0, 0q, and we assume the viscosity to be
unitary, that is µ “ 1, for the sake of simplicity since the problem is linear. We carried out
three simulations with triangular Delaunay meshes as primal meshes (with 2406, 9354,
and 26572 cells) and deduce the respective diamond meshes (with 3750, 14334, and 40380
cells, respectively). We display a coarse version of the primal and dual meshes in Fig. 14.
Fig. 15 shows the isocontours of the horizontal (top panel) and vertical (middle panel)
components of velocity together with the isocontours of the pressure (bottom panel)
for the finer mesh and with P5 polynomial reconstructions. An enlargement near the
extruder outlet is plotted on the right side to detail the flow structures. The isolines are
slightly asymmetric since the inflow conditions are not the same in the upper and lower
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Figure 14: A coarse non-uniform triangular Delaunay mesh (left) and its associated diamond mesh
(right).

inflow pipes. To assess the accuracy of the different polynomial reconstruction, we report
in Table 11 the minimum and the maximum mean values of the three scalar quantities,
where DOF “ K for U1 and U2 and DOF “ I for P . The minimum of the horizontal and
vertical velocities presents the main variations. We notice that the fourth- and sixth-order
schemes provide very similar values whereas we observe larger differences between the
second- and fourth-order ones. The most noteworthy difference occurs with the pressure
where the P5 reconstruction with the smaller mesh provides the same approximation than
the P1 reconstruction with the middle size mesh. The fourth- and sixth-order methods
provide very similar pressure results with the finer mesh (difference of about 7 units
for the maximum) whereas the second-order scheme is 80 units far from the maximum
pressure using the P5 reconstruction.

Table 11: Maximum and minimum mean values for U1, U2, and P .

P1 P3 P5

DOF Min Max Min Max Min Max

U1

3750 ´1.17E´3 1.98E´1 ´1.64E´3 1.99E´1 ´2.35E´3 2.00E´1
14334 ´6.37E´4 2.00E´1 ´2.31E´4 2.00E´1 ´2.53E´4 2.00E´1
40380 ´7.36E´4 2.00E´1 ´1.10E´4 2.00E´1 ´1.83E´4 2.00E´1

U2

3750 ´7.05E´2 7.45E´2 ´7.85E´2 7.51E´2 ´7.65E´2 7.43E´2
14334 ´7.59E´2 7.63E´2 ´7.74E´2 7.73E´2 ´7.75E´2 7.71E´2
40380 ´7.78E´2 7.76E´2 ´7.82E´2 7.82E´2 ´7.81E´2 7.81E´2

P
2406 ´80948.13 9868.84 ´88824.25 10707.79 ´88096.95 10711.55
9354 ´88784.94 10699.58 ´90888.84 10938.38 ´90796.49 10932.28
26572 ´90753.83 10907.28 ´91526.43 10993.90 ´91472.65 10987.23

To assess the efficiency of the preconditioning method, we have carried out the pre-
vious simulations with and without the inverse preconditioning matrix and we plot the
L2-norm residuals curves for the P1 polynomial reconstruction in Fig. 16 (we do not rep-
resent the curves with the other reconstructions since they are very similar). We report

33



0 0.7 1.4
0

0.5

1

x

x

1

2

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

U1 [m/s]

0 0.7 1.4
0

0.5

1

x

x

1

2

-0.08

-0.06

-0.05

-0.03

-0.02

0.00

0.02

0.03

0.05

0.06

0.08

U2 [m/s]

0 0.7 1.4
0

0.5

1

x

x

1

2

-91713.36

-81440.65

-71167.95

-60895.24

-50622.54

-40349.83

-30077.13

-19804.43

-9531.72

740.99

11013.69

P [Pa]
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Figure 16: Residual curves of the GMRES method with and without preconditioning matrix and P1

polynomial reconstructions for a mesh corresponding to 9906 unknowns.

Table 12: Number of GMRES iterations (NITER), final L2-norm residual (RITER), and execution time
in seconds (TE).

DOF 9906 38022 107332

NITER RITER TE [s] NITER RITER TE [s] NITER RITER TE [s]

P1
Id NC 2.39E´07 — NC 8.06E´08 — NC 1.19E´07 —
rP: 1220 9.83E´15 10.30 2805 9.86E´15 161.55 5184 9.97E´15 1621.02

P3
Id NC 1.15E´07 — NC 3.23E´08 — NC 1.41E´08 —
rP: 1417 9.38E´15 17.01 2555 9.95E´15 191.67 5043 9.93E´15 1691.06

P5
Id NC 7.18E´08 — NC 2.02E´08 — NC 9.15E´09 —
rP: 1599 9.59E´07 29.49 3109 9.71E´15 299.33 6513 1.00E´14 2180.70

NC: No Convergence

in Table 12 a set of output parameters for the simulations we have done.
We observe that the non-preconditioning versions do not converge and the residual

norm saturate above the prescribe tolerance threshold. We report the minimum residual
we achieved and notice the low sensitivity to the polynomial degree and the high de-
pendency to the mesh size. When the preconditioning technique is applied, the GMRES
method always converge up to the prescribed tolerance and we report the number of
iterations that took to obtain convergence and the associated running time.

7. Conclusion

We have presented an high-order finite volume scheme to solve the bidimensional
incompressible Stokes problem based on a new class of polynomial reconstructions. The
scheme achieves an effective sixth-order accuracy for the velocity and the fifth-order
accuracy for the pressure. We have also presented a new preconditioning technique
based on the Schur complement. A large number of numerical tests were carried out to
prove its high-efficiency in reducing the computational effort.
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