
HAL Id: hal-01107299
https://hal.science/hal-01107299

Submitted on 20 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Classical low-pass filter and real-time wavelet-based
denoising technique implemented on a DSP: a

comparison study Comparison of Low-pass Filter and
Real-time Wavelet-based Denoising

Christophe Dolabdjian, Jalal M. Fadili, E Huertas Leyva

To cite this version:
Christophe Dolabdjian, Jalal M. Fadili, E Huertas Leyva. Classical low-pass filter and real-time
wavelet-based denoising technique implemented on a DSP: a comparison study Comparison of Low-
pass Filter and Real-time Wavelet-based Denoising. European Physical Journal: Applied Physics,
2002, pp.135-140. �10.1051/epjap:2002083�. �hal-01107299�

https://hal.science/hal-01107299
https://hal.archives-ouvertes.fr


EPJ Applied Physics proofs
(will be inserted by the editor)

Classical low-pass filter and real-time wavelet-based denoising
technique implemented on a DSP: a comparison study

Comparison of Low-pass Filter and Real-time Wavelet-based Denoising

Ch. Dolabdjiana, J. Fadili, and E. Huertas Leyva

Groupe de Recherche en Informatique, Image et Instrumentation de Caenb, ISMRA et Université de Caen, 6 Bd du Maréchal
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Abstract. We have implemented a real-time numerical denoising algorithm, using the Discrete Wavelet
Transform (DWT ), on a TMS320C3x Digital Signal Processor (DSP ). We also compared from a theoretical
and practical viewpoints this post-processing approach to a more classical low-pass filter. This comparison
was carried out using an ECG-type signal (ElectroCardiogram). The denoising approach is an elegant and
extremely fast alternative to the classical linear filters class. It is particularly adapted to non-stationary
signals such as those encountered in biological applications. The denoising allows to substantially improve
detection of such signals over Fourier-based techniques. This processing step is a vital element in our
acquisition chain using high sensitivity magnetic sensors. It should enhance detection of cardiac-type
magnetic signals or magnetic particles in movement.

PACS. 07.50.Qx Signal processing electronics – 84.30.Vn Filters

1 Introduction

Discrete wavelet-based smoothing techniques are becom-
ing a popular and an elegant alternative to classical linear
filters (digital or analog). It is particularly adapted for
analysis and non-parametric estimation of non-stationary
signals such as those we aim to detect [1,2]. In our context,
we define non-stationary signals as those with phenomena
well localised in time (e.g. with isolated singularities).

It is now agreed that although linear Fourier-based
approaches have long predominated because of their sim-
plicity, they are of limited performance and cannot handle
properly non-stationary signals [4]. Indeed, due to the in-
finite support nature of the Fourier basis waveforms (i.e.
sines and cosines), classical linear filters present many de-
ficiencies for analysing signals with high temporal varia-
tions and/or well localised in time. Because of the Heisen-
berg uncertainty [3,4], the Fourier transform spreads the
energy of such temporally well localised signals on a high
(possibly infinite) number of coefficients. This lack of spar-
sity makes discrimination of the signal from a noisy back-
ground a hard task.

From these preliminary considerations has grown the
idea of expanding a signal over a family of elementary
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functions (waveforms called also time-frequency atoms)
that are well concentrated both in time and frequency.
Such bases are of interest because they can efficiently
approximate many types of signals with just few atoms.
Windowed Fourier transforms and Wavelet transforms are
two important classes of local time-frequency decomposi-
tions. However, the former is very redundant in L2(R) and
has a fixed window (mother function) length. This window
length constancy poses the problem of compromise be-
tween time and frequency resolutions: a long analysis win-
dow yields a good frequency resolution but deteriorates
the temporal resolution and vice versa. This compromise
can be negotiated by considering a scale parameter in the
window expression in order to analyse the signal in a mul-
tiscale framework. The wavelet transform is a much more
flexible and an inherent multi-scale approach whose atoms
possess good localisation in both time and frequency. It
is designed to represent efficiently (i.e. sparse represen-
tation) signals with both smooth and transient features.
Owing to these properties, in the last 10 years, the wavelet
transform has become a very popular technique in digi-
tal signal processing for analysing and estimating signals
in noisy backgrounds. Throughout this paper, we restrict
our attention to discrete, finite-energy, real-valued and N -
dimensional signals (without loss of generality N = 2J)
and to orthonormal bases of L2(R).
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The organization of this paper is as follows. We first
review some of the most important aspects of the wavelet
transform. More comprehensive accounts can be found
elsewhere [3–5]. Then, we will focus our attention on the
Discrete Wavelet Transform (DWT ) and the denoising
problem. Results of the denoising procedure and imple-
mentation aspects are presented. This is followed by a
theoretical comparison study between the nonparametric
wavelet-based denoising and low-pass Fourier-based ap-
proaches. We finally conclude on this work and give some
perspectives.

2 The wavelet transform

The dyadic orthonormal wavelet transform of a finite en-
ergy signal is defined as the inner product [10]:

dj,i = 〈f, ψj,i〉 = 2−j/2

∫
R

f (t)ψ
(
2−jt− i

)
dt, (j, i) ∈ Z

2.

(1)

The coefficient dj,i is the detail coefficient (or the wavelet
coefficient) at scale j and position i. The function ψ is
the wavelet function (mother wavelet), whose collection
of dilations j and translations i form an orthonormal ba-
sis of the Hilbertian space L2(R). Any continuous function
qualifies if the admissibility conditions are satisfied: ψ is
well-localised around zero (compact support) and oscil-
lates (

∫
ψ(t)dt = 0). These conditions can be strengthened

to include more vanishing moments (up to an order R)
and/or higher order continuous derivatives [5]. From a
filter-bank point of view, the wavelet ψji can be viewed as
an octave bandpass filter in [−π/2j,−π/2j+1] ∪ [π/2j+1,
π/2j].

Multiresolution approximations compute the approxi-
mation of the signal (the smooth component) at scale j as
the inner product [10]:

sj,i = 〈f, φj,i〉 = 2−j/2

∫
R

f (t)φ
(
2−jt− i

)
dt, (j, i) ∈ Z

2.

(2)

The coefficient sj,i is the smooth coefficient at scale j
and position i. The function φ is the scaling function (fa-
ther wavelet), whose collection of translations i form an
orthonormal basis of L2(R). From a filter-bank point of
view, φji can be viewed as a low-pass filter in the octave
]−π/2j+1, π/2j+1[. The multiresolution decomposition of
signal can be entirely described by the function φ(t) [10].

In digital signal processing, the pyramidal algo-
rithm [10] is routinely used to calculate the discrete
wavelet transform (DWT ) of a sampled signal. The com-
putational complexity of both the analysis and synthe-
sis processes is in O(N)1. Mallat [10] has demonstrated
the existence of a sequence of quadrature mirror filters
(QMF ) associated to the functions φ and ψ: a low-pass

1 Read order of N which means that there exists a constant
A > 0 such as the complexity function behaves as AN .

filter h used to calculate the smooth component and a
high-pass filter g for the detail component with the well-
known relation

g(n) = (−1)nh(1− n).

Different choices for h and g are available in the liter-
ature [3,5] and to each mother wavelet is associated a
pair of QMF filters. These filters are at the heart of the
multi-resolution wavelet analysis. They allow an easy and
fast implementation of the analysis-synthesis algorithms.
Thus, the decomposition in equation (1) (resp. Eq. (2)) is
equivalent to a high-pass (resp. low-pass) filtering opera-
tion followed by a decimation by 2. This is further detailed
in the next section where the implementation steps are de-
scribed.

3 Practical aspects of the denoising
procedure

3.1 The analysis step

Here, we prefer the Daubechies wavelet family [5] given the
maximum compactness of their support for a given num-
ber of vanishing moments. However, the question remains
as how many vanishing moments R the wavelet should
possess when used to estimate the signal. Its compactness
must mitigate the extent of inter-coefficient correlations
introduced by periodic boundary correction in comput-
ing wavelet coefficients at the limits (0 and N − 1) of a
finite times series [4]. Furthermore, using a Matched Fil-
ter Theory argument, one has to chose the wavelet whose
shape matches that of the signal of interest (e.g. ECG
signal). From our simulations study, the Daubechies D4
wavelet has the necessary properties to satisfy these re-
quirements and is therefore used in our context. This
wavelet is associated to an approximation filter with 4 co-
efficients (c0, c1, c2, c3). For this filter, the DWT written
in matrix form is illustrated in Figure 1. It transforms the
smooth N/2j−1-dimensional vector into smooth (sj,i) and
detail (dj,i) N/2j-dimensional vectors at scale j Figure 2.

3.2 The denoising step

Once the detail coefficients are calculated up to scale J , we
can now apply our denoising algorithm. The main idea is
that the DWT allows to represent effectively a large class
of signals using only few coefficients, the remaining coeffi-
cients are essentially predominated by the noise. Then, a
simple thresholding procedure is applied to the detail co-
efficients in each scale according to a kill-or-keep principle

d∗j,i = ρλ(dj,i) = dj,iI(|dj,i| > λ) (3)

where λ is the threshold and I the indicator function.
This is the so-called hard thresholding technique in non-
parametric curve estimation widely used in the statis-
tics community (see e.g. [6,7]). An alternative shrink-or-
keep procedure can also be used (soft thresholding). Soft
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Fig. 1. Example of the DWT (analysis step) of an N-dimensional signal vector Y written in matrix form. Here we used a
Daubechies wavelet with 4 coefficients (D4). The matrix W1 includes both the convolution and the decimation operators.
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Fig. 2. DWT analysis (left to right) and synthesis (right to left) steps of a discrete N-dimensional signal.

thresholding yields smaller variance but much higher bias
than hard thresholding [8] and will therefore be omitted.

For each set of coefficients dj,i, at scale j, the corre-
sponding threshold λj is calculated 2. Then, the compari-
son in equation (3) is applied. It is well known that, in the
white noise case, the choice of threshold λ = σ

√
2 logN is

optimal in minimax sense [6]. the standard deviation of the
noise σ can be estimated by σ̂ = MAD(d1,i)

0.6745 , where MAD
is the median absolute deviation. To avoid calculating the

2 For the white noise case the thresholds λj at all scales are
the same.

square−root operation, the detail coefficients are squared
and directly compared to λ2.

3.3 The reconstruction step

The completeness and uniqueness of the wavelet trans-
form implies that a signal analysed up to a scale J can
be perfectly reconstructed from its detail coefficients dj,i

(j ∈ {1, . . . , J}) and the remaining approximation coef-
ficient(s) at the scale J [4]. Then, the thresholded DWT
vector is reconstructed according to the synthesis steps
in Figure 2, yielding a denoised version of the observed
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Fig. 3. Top: Results of the real-time implementation on a DSP
of the DWT -based denoising approach (with hard threshold-
ing), applied to a reference 512-samples ECG-type signal for
different noise variances. Bottom: Comparison between the im-
plemented DWT -based non-linear denoising and classical lin-
ear low-pass filter applied to the same reference signal for a
low input SNR of −2.24 dB. Four successive cut off frequen-
cies (100 Hz, 30 Hz, 10 Hz and 3 Hz) were tried for the low-pass
filter. As we can clearly see the denoising approach outperforms
the low-pass filtering technique at all frequencies. This will be
further investigated in the theoretical comparison study.

signal. Note that, as the wavelet basis is orthonormal,
the reconstruction matrix is the transpose of the analy-
sis matrix.

4 Real-time implementation
on the TMS320C3x DSP

Our processing system consists of a TMS320C31 digital
signal processor (DSP ) of Texas Instrument associated
to a 14 bit analog-to-digital and digital-analog convert-
ers [1]. The correct operation of the program, first of all,
was checked using the emulator provided with the DSP
Starter-Kit in order to test the various stages of the al-
gorithm calculation during decomposition, synthesis and
thresholding. The real time processing of the denoising
was carried out with two tables of 512 data which are al-
ternatively managed in the mode “in place”. Thus, on a
same data table, the signal previously treated is transfered
and the acquired signal is simultaneously recorded. Dur-
ing this time of acquisition, the digital processing is carried
out on the other table. Hence, the signal is filtered in con-
tinuous way as in real time (see Fig. 3). The optimizations
of the program is performed directly by programming in
assembly language code.

5 Signal-to-Noise ratio comparison

We suppose a degradation model where a signal X(n) of
size N (e.g. ECG-type signal of Fig. 3) is contaminated
by the addition of a noise. This noise is modelled as the
realisation of a stationary random process ε(n) of known
distribution. The measured data are:

Y (n) = X (n) + ε (n) n ∈ {0, . . . , N − 1} · (4)

In estimation theory, the goal is to minimize the estima-
tion error, which is a loss function. A mean squared dis-
tance is certainly not perfect but it is sufficiently precise
and mathematically simple in most applications. The es-
timation risk Φ

(
X, X̃ = DY

)
is the average loss between

the true signal X and its estimate X̃ obtained from the
noisy observations transformed with a decision operator
X̃ = DY . In a Bayesian framework, the optimal esti-
mator is the one maximising the posterior expectation
E(X(n)/Y (1, . . . , N)). However, this conditional expec-
tation is generally a complicated non-linear function and
is difficult to estimate or to implement efficiently. This can
be considerably simplified by limiting ourselves to a large
but finite set of stochastic signals. Further simplification
can be obtained under normality by invoking the central
limit theorem. Thus our loss function is chosen to be the
square Euclidean norm:

Φ
(
X, X̃

)
= E

(∥∥∥X − X̃
∥∥∥2
)
. (5)
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Fig. 4. SNR comparison between DWT non-linear denoising and classical low-pass linear filtering for a an ECG-type reference
signal, as a function of the input SNRin. The cut off frequency of the low-pass filter has been optimised for each simulated
value of the noise variance (i.e. SNRin). The quantization noise is supposed to be negligible.

5.1 Linear estimation

For a linear decision operator D (e.g. low-pass filter), the
estimate can be written as the convolution:

X̃ (n) = DY =
N−1∑
l=0

h (n− l)Y (l) = h ∗ Y (n) (6)

where h is the impulse response of the linear filter. For
the non-linear case, D can take much complicated expres-
sions (e.g. Eq. (3)). In the following, we shall suppose that
the noise process is white Gaussian with variance σ2. The
Fourier basis is a Karhunen-Loève basis for stationary sig-
nals. Taking the projection of equation (4) and using the
Plancherel formula, we can show that the quadratic risk
can be expressed

Φ
(
X, X̃

)
=

N−1∑
n=0

[∣∣∣X̂(n)
∣∣∣2 (1− ĥ (n)

)2

+ ĥ (n)2 σ2

]
(7)

where X̂ and h are the discrete Fourier transforms of X
and h. The first and second parts in equation (7) are inter-
preted as the bias (distortion) and the variance of the esti-
mator. This quantity is often specified by the output SNR
measured in decibels. For the linear low-pass filter g with
a cut off frequency fc and a noise specified by its power

spectral density (PSD) en, the output SNR is:

SNRLPF (dB) = 10 log10

×
∑
n

∣∣∣X̂ (n)
∣∣∣2 |G (n)|2

∑
n

∣∣∣X̂ (n)
∣∣∣2 |1−G (n)|2 +Ne2n

π
2 fc

· (8)

Mimicking this expression, the input SNR takes the clas-
sical form:

SNRin (dB) = 10 log10

∑
n

∣∣∣X̂ (n)
∣∣∣2

Ne2n
π
2 Bandwidth

· (9)

5.2 Thresholding estimation

The main result of this paper is due to a pioneering work
in nonparametric curve estimation by Donoho et al. [6,7].
This is stated in the following theorem:
Theorem 1 For soft or hard thresholding and for the ap-
propriate choice of threshold λ = σ

√
2 logN , the estima-

tion risk in the basis W has an upper bound for all N ≥ 4

ΦW (X) ≤ (2 logN + 1)

(
σ2 +

N−1∑
n=0

min
(
XW (n)2 , σ2

))
.

(10)
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The lower bound on the output SNR for the DWT -based
hard thresholding estimator is:

SNRW (dB) ≥ 10 log10

×

N−1∑
n=0

[
XW (n)2 I (|XW | > λ)

]

(2 logN + 1)
(
σ2 +

N−1∑
n=0

min
(
XW (n)2 , σ2

)) (11)

where XW is the projection of X in the basis W (e.g. its
DWT ). The factor

√
2 logN is optimal among all diagonal

estimators in W . Proof of equation (11) is a direct calcu-
lation from equation (10). The latter has been proved by
Donoho et al. (see e.g. [6]).

5.3 SNR comparison

Using the SNR criterion, we can compare the two esti-
mators (DWT denoising versus low-pass filter) in an ob-
jective way. This is portrayed in Figure 4 for the 512 sam-
ples ECG reference signal as a function of the input
SNRin (Bandwidth= 1kHz). In this figure, the lower
bound of SNRW in equation (11) has been calculated.
The upper bound in equation (8) of the low-pass filter
is also plotted. The cut off frequency was optimised for
each variance value to maximise SNRLPF. We can see
that in addition to its adaptivity, the denoising is clearly
superior to the simple low-pass filtering. This effect is ac-
centuated as the noise variance increases where a lower
cut off frequency is necessary to filter out the noise com-
ponents but with the side effect of distorting the original
signal. For real life ECG signals, the lower bound of the
denoising approach is higher that the upper bound of the
low-pass filter. In fact, it turns out that in practical sit-
uations, DWT denoising clearly outperforms the simple
linear low pass filtering.

6 Conclusion

The implemented program uses a data size of 512 samples
which is limited by the RAM size available on the DSP .
In order to optimise the memory management, the

calculations are executed in place. It is worth noting that
increasing the regularity of the wavelet will impose a limit
on the maximum decomposition scale. Indeed, the com-
puting time must be less than the acquisition time of
the 512 samples.

As far as the denoising is concerned, an improved
Translation Invariant (TI) thresholding estimator can be
obtained by denoising K translated versions of the sig-
nal and averaging them after reverse translations [9]. This
has advantage of reducing the Gibbs-like effect [4]. Alter-
native denoising procedures can be applied in the Wavelet-
Packet (WP) or Cosine-Packet (CP) bases [4]. Simulation
results under Matlab the superiority of the translation
invariance, WP and CP denoising are very encouraging
leading to substantial gain in SNR. All these alterna-
tives require additional calculations (e.g. O(KN) for TI or
O(N logN) for WP). The real-time implemented program
as well as the hardware must be adapted to satisfy these
requirements and allow efficient real-time processing.
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