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La transformation de Fisz pour l'estimation d'images d'intensité Poissonnienne dans le domaine des ondelettes

Nous présentons un nouvel estimateur d'images d'intensité Poissonnienne dans le domaine des ondelettes. Cette méthode est basée sur la normalité asymptotique d'une fonction non-linéaire des coefficients de détail et d'échelle de la transformée de Haar, appelée la transformée de Fisz. Nous exposons quelques résultats asymptotiques, tels que la normalité et la décorrélation des pixels de l'image transformée. Fort de ces résultats, l'image originale bruitée par un processus de Poisson, peut être considérée après transformation de Fisz comme étant contaminée par un bruit Gaussien additif blanc. Ainsi, les débruiteurs classiques s'appliquent directement. Plus exactement, nous appliquons dans le cadre de ce papier un estimateur Bayesien que nous avons récemment développé, utilisant comme a priori une nouvelle classe de distributions, les formes K de Bessel (FKB). Les simulations menées montrent que la transformation de Fisz offre des performances au moins aussi bonnes que les transformations stabilisatrices pour des images d'intensité régulière ou constante par morceaux. Elle dépasse clairement ces approches lorsque le taux de comptage faible. Combiner la transfortmation de Fisz avec le débruiteur Bayesien FKB offre les meilleurs résultats.

Introduction

La régression non-paramétrique dans le domaine des ondelettes est un outil fondamental en analyse des signaux et des images. Le but est d'estimer une fonction ( D) ¡ à partir de ses mesures bruitées. Seules quelques hypothèses sont imposées sur ¡ , e.g. appartenance à un espace de fonctions donné (Sobolev, Besov, etc). Plusieurs débruiteurs basés sur la théorie statistique ont ainsi vu le jour aussi bien dans un contexte classique que Bayesien, voir [START_REF] Antoniadis | Wavelet estimators in nonparametric regression: A comparative simulation study[END_REF] pour un état de l'art détaillé.

Si la plupart des débruiteurs dans le domaine des ondelettes existants s'attaquent à l'estimation d'une composante déterministe noyée dans un bruit additif (souvent Gaussien), le débruitage en présence d'un bruit Poissonnien pose lui des problèmes spécifiques. Ce dernier cas a déjà fait l'objet de quelques travaux dans la littérature [START_REF] Starck | Astronomical image and signal processing looking at noise, information and scale[END_REF]. L'approche usuelle consiste à utiliser une transformation stabilisatrice de la variance, telle que la transformation d'Anscombe. L'estimation est ensuite effectuée considérant le bruit ainsi transformé comme additif blanc Gaussien. Cependant, cette transformation atteint clairement ses limites à faible comptage, où l'on s'éloigne des conditions du théorème central limite. L'approche de Kolaczyk [START_REF] Kolaczyk | Wavelet shrinkage estimation of certain poisson intensity signals using corrected thresholds[END_REF] consiste à ajuster les seuils directement lors du débruitage mais seule la base de Haar peut être utilisée. Ainsi, cette méthode n'est pas adaptée pour des images d'intensité Poissonnienne régulière.

En nous inspirant des travaux de [START_REF] Fryzlewicz | A wavelet-fisz algorithm for poisson intensity estimation[END_REF] en 1D, nous présentons un estimateur d'images d'intensité Poissonnienne dans le domaine des ondelettes basé sur la normalité asymptotique d'une fonction non-linéaire des coefficients de détail et d'échelle de la transformée de Haar, appelée la transformée de Fisz. Nous montrons quelques propriétés statistiques de cette transformée notamment la décorrelation et la normalité du bruit dans l'image transformée. Exploitant ces propriétés, les estimateurs classiques destinés à un bruit additif Gaussien peuvent directement s'appliquer. Plus spécifiquement, nous mettons à profit un débruiteur Bayesien que nous avons introduit récemment, et qui utilise une nouvelle famille de distributions a priori appelées les formes K de Bessel (FKB) [START_REF] Fadili | Analytical form for a Bayesian wavelet estimator of images using the Bessel K forms densities[END_REF].

thonormale discrète (TOD) de l'image ¡ . Compte tenu du ca- ractère creux de la TOD, les densités de probabilité de ces coefficients sont connues pour être généralement symétrique, leptokurtique et à queues relevées. Le simple modèle a priori Gaussien se révèle ainsi inefficace. Plusieurs choix ont été proposés dans la littérature dont le modèle des Gaussiennes généralisées (GGD) et le modèle -stable. Chacun présente ses avantages et inconvénients mais aucun des deux ne possède une forme analytique simple pour le débruiteur, nécessitant ainsi une intégration numérique. Nous avons mis en oeuvre une nouvelle famille de distributions a priori à deux paramètres. Ce modèle a été proposé récemment dans [START_REF] Grenander | Probability models for clutter in natural images[END_REF] et se révèle très efficace pour modéliser la distribution d'une large classe d'images filtrées par une variété de filtres passe-bandes. Il est évident que la TOD fait partie de cette classe de filtres. Le modèle FKB est alors adapté pourvu que la distribution des coefficients de détail soit unimodale, symétrique et leptokurtique.

La densité de probabilité des FKB est donnée par: 3 La transformation de Fisz 2D 
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La preuve de ce lemme découle directement du théorème de Fisz [START_REF] Fisz | The limiting distribution function of two independent random variables and its statistical application[END_REF] 

Propriétés

Nous pouvons établir une expression générale de l'opérateur

x . L'opérateur de reconstruction inverse peut aussi être déduit simplement de 

Le débruiteur

Résultats

Nous comparons tout d'abord, par le biais de simulations, les performances de notre débruiteur en présence de bruit Poissonnien en utilisant les transformations de Fisz et d'Anscombe. L'image des intensités est celle du fantôme de Hoffman. Nous utilisons l'ondelette de Daubechies de régularité 4 et l'échelle la plus grossière d'analyse est stu d stu v d ¡ issue de résultats asymptotiques [START_REF] Antoniadis | Wavelet estimators in nonparametric regression: A comparative simulation study[END_REF].

Les simulations montrent la supériorité de la transformation de Fisz sur celle d'Anscombe (Fig. 3). Ces graphes représentent le rapport signal-sur-risque (RSR) en dB moyenné sur 100 simulations en fonction du facteur d'échelle des intensités. C'est le facteur par lequel est multipliée l'image des intensités afin de simuler les faibles et les forts taux de comptage. La différence entre les deux transformations est flagrante à faible comptage mais s'amenuise à mesure que les comptages sont grands. En combinant la transformation de Fisz et le débruiteur Bayesien, 

  ) pour § ) 0 ¦ ¥ ) 0 , où $ 1 ¢£ ¨est la fonction de Bessel modifiée. § et ¥ sont respectivement les paramètres de forme et d'échelle. En utilisant cet a priori dans [6], nous avons montré son efficacité pour modéliser la distribution des coefficients d'ondelettes sur une large base d'images. Nous avons par ailleurs mis au point un estimateur des hyperparamètres ( § , ¥ et variance du bruit) par une méthode de cumulants. Une expression analytique de l'espérance conditionnelle a posteriori (ECP) a aussi été montrée facilitant l'implémentation du débruiteur.
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 434 figure à titre de comparaison. La transformation de Fisz aboutit à une meilleure "normalisation" que la transformation d'Anscombe. Les FACs sont cependant assez proches montrant que la transformation de Fisz n'introduit pas de corrélation supplémentaire. Cette normalité et blancheur du bruit dans l'image transformée nous ramènent naturellement à appliquer les algorithmes de débruitage non-linéaire, notamment en contexte Bayesien en utilisant la nouvelle famille d'a priori des FKB.
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 1 FIG. 1: Comparaison entre les transformations de Fisz et d'Anscombe sur le fantôme de Hoffman. Les graphes des quantiles et les FACS sont sur la 2 ème et la 3 ème ligne.
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 3 Appliquer la transformation de Fisz inverse sur l'image débruitée w pour obtenir une estimée .
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 234 FIG. 2: Exemple d'application des transformées de Fisz d'Anscombe avec les débruiteurs Bayesien FKB et universel avec seuillage dur (Hard). L'image de Hoffman est contaminée par un bruit de Poisson avec un facteur d'échelle de 0.01 (faible comptage).

  

  

3.1 Algorithme

  

	Étant donnée une image de comptages 23 4, qui est une réalisation d'une variable aléatoire 53 4 6 7 ¢8 3 4 ¨, la transformation de
	Fisz se décrit de la manière suivante:	
	1. Appliquer une échelle de décomposition de la transformée
	d'ondelette de Haar. Cependant, les filtres non norma-lisés 9@ ¦ A @ B et 9@ ¦ @ B sont utilisés. Nous no-
	tons CD 3 4 les coefficients de détail à chaque orientation E et localisation ¢ F ¦ ¨, et les coefficients d'approximation GHH 3 4.
	2. Modifier les coefficients de détail comme suit: I D 3 4 © P 0 si GHH © 0 3 Q4 RS TU VWW TU sinon.	(2)
	Ces nouveaux coefficients de détail sont ainsi les réalisations
	d'une variable aléatoire X D 3 4 dont la distribution asymp-
	totique est Gaussienne:	
	Lemme 3.1 suivant des lois de Poisson avec des intensités Si les 53 4 sont des variables indépendantes 8 3 4 , alors:

  pour des processus de Poisson 1D. Ce résultat signifie que les coefficients de détail modifiés I D 3 4 tendent en distribution vers une Gaussienne (centrés et de variance @) lorsque les comptages moyens sont suffisam- ment grands et proches dans tout voisinage. Des déviations de ces hypothèses induiront un écart de la normalité.

	© ¨) en gardant les coefficients d'approximation in-3. Répéter les étapes 1-2 à chaque échelle (jusqu'à r stu d ¢v
	tacts. Il en découle que les coefficients de détail à toutes
	les échelles et orientations, ainsi modifiés, sont une ver-
	sion Gaussienne des coefficients originaux.	
	4. Reconstruire la nouvelle image w en utilisant la trans-
	formée d'ondelette de Haar inverse, avec les filtres non
	normalisés. Ainsi, on peut écrire:	
	w	© x y	(4)

où

x est l'opérateur de la transformation de Fisz.

Le modèle a priori FKBDans l'approche Bayesienne, un modèle a priori est imposé sur les coefficients de détail de la transformée d'ondelettes or-

Conclusion

Nous avons introduit la transformation de Fisz comme nouvelle transformation "Normalisante" pour l'estimation d'images d'intensité Poissonnienne dans le domaine des ondelettes. Ses propriétés statistiques ainsi que ses performances pratiques ont été établies. Combiner cette transformation avec le débruiteur Bayesien FKB fournit un algorithme puissant d'estimation d'images avec un bruit de Poisson.